1
|
Qvist T, Nielsen BU, Olesen HV, Mathiesen IHM, Faurholt-Jepsen D, Katzenstein TL, Helweg-Larsen J, Rönsholt F, Jeppesen M, Olsen MF, Buchvald FF, Nielsen KG, Jensen-Fangel S, Pressler T, Skov M. Close monitoring and early intervention: management principles for cystic fibrosis in Denmark. APMIS 2024; 132:223-235. [PMID: 38267398 DOI: 10.1111/apm.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Cystic fibrosis (CF) care in Denmark has been characterized by close monitoring and pre-emptive treatment of lung disease and other CF-related complications. Continuous evaluation through data collection and commitment to clinical research has incrementally improved outcomes. This approach has been in line with best practices set forth by European Standards of Care but has also gone beyond Society standards particularly pertaining to early treatment with high-dose combination antimicrobial therapy. Despite a high prevalence of severe CF variants, lung function has been among the best in Europe. In this review, the Danish approach to management of CF prior to the introduction of new CF modulator treatment is explained and benchmarked. Downsides to the Danish approach are discussed and include increased burden of treatment, risk of antimicrobial resistance, side-effects and costs.
Collapse
Affiliation(s)
- Tavs Qvist
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bibi Uhre Nielsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vebert Olesen
- Cystic Fibrosis Center Aarhus, Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Inger Hee Mabuza Mathiesen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Terese L Katzenstein
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jannik Helweg-Larsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederikke Rönsholt
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Majbritt Jeppesen
- Cystic Fibrosis Center Aarhus, Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Frahm Olsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederik Fouirnaies Buchvald
- Cystic Fibrosis Center Copenhagen, Danish Pediatric Pulmonary Service, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kim Gjerum Nielsen
- Cystic Fibrosis Center Copenhagen, Danish Pediatric Pulmonary Service, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jensen-Fangel
- Cystic Fibrosis Center Aarhus, Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Tania Pressler
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Cystic Fibrosis Center Copenhagen, Danish Pediatric Pulmonary Service, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Cystic Fibrosis Center Copenhagen, Danish Pediatric Pulmonary Service, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
3
|
Burke A, Thomson RM, Wainwright CE, Bell SC. Nontuberculous Mycobacteria in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Regulator Modulators. Semin Respir Crit Care Med 2023; 44:287-296. [PMID: 36649736 DOI: 10.1055/s-0042-1759883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nontuberculous mycobacteria (NTM) are a group of mycobacteria which represent opportunistic pathogens that are of increasing concern in people with cystic fibrosis (pwCF). The acquisition has been traditionally though to be from environmental sources, though recent work has suggested clustered clonal infections do occur and transmission potential demonstrated among pwCF attending CF specialist centers. Guidelines for the screening, diagnosis, and identification of NTM and management of pwCF have been published. The emergence of CF-specific therapies, in particular cystic fibrosis transmembrane regulator (CFTR) modulator drugs, have led to significant improvement in the health and well-being of pwCF and may lead to challenges in sampling the lower respiratory tract including to screen for NTM. This review highlights the epidemiology, modes of acquisition, screening and diagnosis, therapeutic approaches in the context of improved clinical status for pwCF, and the clinical application of CFTR modulator therapies.
Collapse
Affiliation(s)
- Andrew Burke
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rachel M Thomson
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
4
|
Bashford J, Flowers W, Haworth C, Ryan J, Cervi A, Dulayymi JRA, Mason PS, Plank A, Baird M, Floto A. Evaluation of a novel ELISA test using synthetic mycolic acid antigens for serodiagnosis of non-tuberculous mycobacterial (NTM) infections. Thorax 2023; 78:309-312. [PMID: 36627190 DOI: 10.1136/thorax-2022-218800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/20/2022] [Indexed: 01/12/2023]
Abstract
The diagnosis of non-tuberculous mycobacteria (NTM) is a particular challenge in people with cystic fibrosis. Current standard diagnostic approaches rely on serial sputum culture, which is resource demanding, dependent on patient expectoration and may be compromised by excessive decontamination, conventional bacterial overgrowth and masking by concomitant oral and nebulised antibiotics. An alternative rapid, reliable and inexpensive diagnostic method is therefore urgently needed. Serum of patients with Mycobacterium abscessus infection and chronic suppurative lung disease without NTM infection was tested against an array of novel synthetic mycolic acids, identical or similar to natural components of mycobacterial cell walls, and glycopeptidolipid (GPL)-core antigen, which has previously been investigated in Mycobacterium avium pulmonary infection. Diagnostic accuracy of individual antigens and combination of various antigens were calculated. An ELISA using individual trehalose dimycolates and GPL-core antigen was able to effectively distinguish serum from infected and non-infected individuals with a specificity of 88% and a sensitivity of up to 88%, which increased to 88% sensitivity and 93% specificity by combining several antigens in the test. These results suggest synthetic mycolic acid antigens, used individually or in combination with GPL-core antigen could be successfully used to distinguish patients with M. abscessus infection from disease controls.
Collapse
Affiliation(s)
- Julia Bashford
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, UK
| | - William Flowers
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Charles Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, UK
| | - Judy Ryan
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anna Cervi
- Diagnostig Ltd, MSParc, Gaerwen Anglesey, Wales, UK
| | - J R Al Dulayymi
- School of Natural Sciences, Bangor University, Bangor, Wales, UK
| | - Paul S Mason
- Diagnostig Ltd, MSParc, Gaerwen Anglesey, Wales, UK
| | - Ashley Plank
- Icon Cancer Foundation, Brisbane, Queensland, Australia
| | - Mark Baird
- Diagnostig Ltd, MSParc, Gaerwen Anglesey, Wales, UK
| | - Andres Floto
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, UK .,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Lenhart-Pendergrass PM, Malcolm KC, Wheeler E, Rysavy NM, Poch K, Caceres S, Calhoun KM, Martiniano SL, Nick JA. Deficient Complement Opsonization Impairs Mycobacterium avium Killing by Neutrophils in Cystic Fibrosis. Microbiol Spectr 2023; 11:e0327922. [PMID: 36651756 PMCID: PMC9927418 DOI: 10.1128/spectrum.03279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Nontuberculous mycobacteria (NTM), including Mycobacterium avium, are clinically important pathogens in cystic fibrosis (CF). The innate immune response to M. avium remains incompletely understood. We evaluated the role of complement opsonization in neutrophil-mediated killing of M. avium. Killing assays were performed using neutrophils from healthy donors (HDs) and persons with CF (pwCF). Clinical isolates of M. avium were opsonized with plasma from HDs or pwCF, which was intact or heat-treated to inactivate complement. HD neutrophils had killing activity against M. avium opsonized with intact HD plasma and killing was significantly reduced when M. avium was opsonized with heat-inactivated HD plasma. When opsonized with HD plasma, CF neutrophils had killing activity against M. avium that was not different than HD neutrophils. When opsonized with intact plasma from pwCF, HD neutrophil killing of M. avium was significantly reduced. Opsonization of M. avium with C3-depleted serum or IgM-depleted plasma resulted in significantly reduced killing. Plasma C3 levels were elevated in pwCF with NTM infection compared to pwCF without NTM infection. These studies demonstrate that human neutrophils efficiently kill M. avium when opsonized in the presence of plasma factors from HD that include C3 and IgM. Killing efficiency is significantly lower when the bacteria are opsonized with plasma from pwCF. This indicates a novel role for opsonization in neutrophil killing of M. avium and a deficiency in complement opsonization as a mechanism of impaired M. avium killing in CF. IMPORTANCE Mycobacterium avium is a member of a group of bacterial species termed nontuberculous mycobacteria (NTM) that cause lung disease in certain populations, including persons with cystic fibrosis (CF). NTM infections are challenging to diagnose and can be even more difficult to treat. This study investigated how the immune system responds to M. avium infection in CF. We found that neutrophils, the most abundant immune cell in the lungs in CF, can effectively kill M. avium in individuals both with and without CF. Another component of the immune response called the complement system is also required for this process. Levels of complement proteins are altered in persons with CF who have a history of NTM compared to those without a history of NTM infection. These results add to our understanding of how the immune system responds to M. avium, which can help pave the way toward better diagnostic and treatment strategies.
Collapse
Affiliation(s)
| | - Kenneth C. Malcolm
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Emily Wheeler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Noel M. Rysavy
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Kara M. Calhoun
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stacey L. Martiniano
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jerry A. Nick
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
6
|
Nick JA, Malcolm KC, Hisert KB, Wheeler EA, Rysavy NM, Poch K, Caceres S, Lovell VK, Armantrout E, Saavedra MT, Calhoun K, Chatterjee D, Aboellail I, De P, Martiniano SL, Jia F, Davidson RM. Culture independent markers of nontuberculous mycobacterial (NTM) lung infection and disease in the cystic fibrosis airway. Tuberculosis (Edinb) 2023; 138:102276. [PMID: 36417800 PMCID: PMC10965158 DOI: 10.1016/j.tube.2022.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic pathogens that affect a relatively small but significant portion of the people with cystic fibrosis (CF), and may cause increased morbidity and mortality in this population. Cultures from the airway are the only test currently in clinical use for detecting NTM. Culture techniques used in clinical laboratories are insensitive and poorly suited for population screening or to follow progression of disease or treatment response. The lack of sensitive and quantitative markers of NTM in the airway impedes patient care and clinical trial design, and has limited our understanding of patterns of acquisition, latency and pathogenesis of disease. Culture-independent markers of NTM infection have the potential to overcome many of the limitations of standard NTM cultures, especially the very slow growth, inability to quantitate bacterial burden, and low sensitivity due to required decontamination procedures. A range of markers have been identified in sputum, saliva, breath, blood, urine, as well as radiographic studies. Proposed markers to detect presence of NTM or transition to NTM disease include bacterial cell wall products and DNA, as well as markers of host immune response such as immunoglobulins and the gene expression of circulating leukocytes. In all cases the sensitivity of culture-independent markers is greater than standard cultures; however, most do not discriminate between various NTM species. Thus, each marker may be best suited for a specific clinical application, or combined with other markers and traditional cultures to improve diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Emily Armantrout
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Milene T Saavedra
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kara Calhoun
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ibrahim Aboellail
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Jia
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| |
Collapse
|
7
|
Malcolm KC, Wheeler EA, Calhoun K, Lenhart-Pendergrass PM, Rysavy N, Poch KR, Caceres SM, Saavedra MT, Nick JA. Specificity of Immunoglobulin Response to Nontuberculous Mycobacteria Infection in People with Cystic Fibrosis. Microbiol Spectr 2022; 10:e0187422. [PMID: 35863022 PMCID: PMC9430546 DOI: 10.1128/spectrum.01874-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are increasingly prevalent in chronic lung diseases, including cystic fibrosis (CF). Mycobacterium abscessus is of particular concern due to relatively greater virulence and intrinsic antimicrobial resistance. Airway culture identification, the standard method for detecting pulmonary infection, is hindered by low sensitivity, long culture times, and reliance on sputum production or lavage. A culture-independent test for detecting NTM infection could complement, or replace, sputum culture, which is becoming more difficult to obtain with reduced sputum production by people with CF (pwCF) on highly effective modulator therapy. We describe an assay for the detection of plasma anti-M. abscessus antibodies of pwCF to antigens from M. abscessus lysates. Anti-M. abscessus IgG and IgA, but not IgM, discriminated with high specificity subjects infected with M. abscessus from those infected by M. avium complex, and from those with distant or no NTM infections. The IgG3 subclass predominated with minor contributions by other subclasses. Both aqueous and organic soluble antigens were recognized by plasma IgG. A validation cohort measuring IgG and IgG3 identified M. abscessus positive subjects, and elevated IgG was sustained over several years. These studies show the benefit of M. abscessus cell lysates to detect plasma IgG of subjects with CF and M. abscessus infections. Subclass analysis suggests that IgG3 is the predominant subtype in these subjects with chronic bacterial infections suggesting a defect in class maturation. Serodiagnosis could be useful to monitor M. abscessus group infections in chronic lung disease as an adjunct or alternative to culture. IMPORTANCE Lung infections with nontuberculous mycobacteria (NTM), and particularly Mycobacterium abscessus, a pathogen with high antibiotic resistance, are of great concern due to poor clinical outcomes and challenging detection in people with cystic fibrosis and other diseases. Standard detection methods are insensitive and increasingly difficult. We describe the measurement of NTM-specific antibodies from plasma to identify subjects infected with M. abscessus. The assay is sensitive and provides information on the immune response to NTM infections. This assay could be used to help identify subjects with NTM pulmonary infections and track disease progression, either alone or in conjunction with other tests.
Collapse
Affiliation(s)
- Kenneth C Malcolm
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
| | - Kara Calhoun
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - Noel Rysavy
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
| | - Katie R Poch
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
| | - Silvia M Caceres
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
| | - Milene T Saavedra
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Healthgrid.240341.0, Denver, Colorado, USA
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Nick JA, Dedrick RM, Gray AL, Vladar EK, Smith BE, Freeman KG, Malcolm KC, Epperson LE, Hasan NA, Hendrix J, Callahan K, Walton K, Vestal B, Wheeler E, Rysavy NM, Poch K, Caceres S, Lovell VK, Hisert KB, de Moura VC, Chatterjee D, De P, Weakly N, Martiniano SL, Lynch DA, Daley CL, Strong M, Jia F, Hatfull GF, Davidson RM. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 2022; 185:1860-1874.e12. [PMID: 35568033 PMCID: PMC9840467 DOI: 10.1016/j.cell.2022.04.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023]
Abstract
Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alice L Gray
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eszter K Vladar
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bailey E Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - L Elaine Epperson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Jo Hendrix
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimberly Callahan
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Kendra Walton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Emily Wheeler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Natalia Weakly
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael Strong
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Fan Jia
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
9
|
Mauch RM, Jensen PØ, Qvist T, Kolpen M, Moser C, Pressler T, Nolasco da Silva MT, Høiby N. Adaptive Immune Response to Mycobacterium abscessus Complex (MABSC) in Cystic Fibrosis and the Implications of Cross-Reactivity. Front Cell Infect Microbiol 2022; 12:858398. [PMID: 35548464 PMCID: PMC9084186 DOI: 10.3389/fcimb.2022.858398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to characterise the adaptive immune response to Mycobacterium abscessus complex (MABSC) and its cross-reactivity with Mycobacterium avium complex (MAC) and Mycobacterium bovis (Bacille Calmette-Guérin, BCG) in cystic fibrosis (CF) patients and non-CF controls in terms of lymphocyte proliferation and immunophenotyping, cytokine production and anti-MABSC IgG plasma levels. Methods In this cross-sectional analysis, peripheral blood mononuclear cells (PBMC) from CF patients with MABSC (CF/MABSC, n=12), MAC infection history (CF/MAC, n=5), no NTM history (CF/NTM-, n=15), BCG-vaccinated (C/BCG+, n=9) and non-vaccinated controls (C/BCG-, n=8) were cultured for four days under stimulation with an in-house MABSC lysate and we used flow cytometry to assess lymphocyte proliferation (given by lymphoblast formation) and immunophenotypes. Cytokine production was assessed after overnight whole blood stimulation with the same lysate, and anti-MABSC IgG levels were measured in plasma from non-stimulated blood. Results All CF/MABSC patients had increased CD3+ and CD19+ lymphoblast formation upon PBMC stimulation with MABSC lysate. There was a higher rate of CD3+ than CD19+ lymphoblasts, predominance of CD4+ over CD8+ lymphoblasts, IFN-γ, TNF-α and IL-2 production, low production of the Th17-associated IL-17, and discrete or no production of Th2/B cell-associated cytokines soluble CD40 ligand (CD40L), IL-4 and IL-5, indicating a Th1-dominated phenotype and infection restricted to the lungs. A similar pattern was seen in C/BCG+ controls, and CF/MAC patients, pointing to cross-reactivity. MABSC-IgG levels were higher in CF/MABSC patients than in both control groups, but not CF/NTM- patients, most of whom also had CD3+ and/or CD19+ lymphoblast formation upon PBMC stimulation, indicating previous exposure, subclinical or latent infection with MABSC or other NTM. Conclusion The anti-MABSC immune response is Th1-skewed and underlines the cross-reactivity in the anti-mycobacterial immune response. The results, together with published clinical observations, indicate that BCG vaccination may cross-react against NTM in CF patients, and this should be investigated. Due to cross-reactivity, it would also be interesting to investigate whether a combination of MABSC-induced cytokine production by blood cells and anti-MABSC IgG measurement can be useful for identifying latent or subclinical infection both with MABSC and other NTM in CF patients.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark.,Institute of Inflammation Research, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Tavs Qvist
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Mette Kolpen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | | | - Niels Høiby
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Le Moigne V, Roux AL, Mahoudo H, Christien G, Ferroni A, Dumitrescu O, Lina G, Bouchara JP, Plésiat P, Gaillard JL, Canaan S, Héry-Arnaud G, Herrmann JL. Serological biomarkers for the diagnosis of Mycobacterium abscessus infections in cystic fibrosis patients. J Cyst Fibros 2021; 21:353-360. [PMID: 34511392 DOI: 10.1016/j.jcf.2021.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Culture conditions sometimes make it difficult to detect non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus, an emerging cystic fibrosis (CF) pathogen. The diagnosis of NTM positive cases not detected by classical culture methods might benefit from the development of a serological assay. METHODS As part of a diagnostic accuracy study, a total of 173 sera CF-patients, including 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls (HC) were evaluated. Four M. abscessus antigens were used separately, comprising two surface extracts (Interphase (INP) and a TLR2 positive extract (TLR2eF)) and two recombinant proteins (rMAB_2545c and rMAB_0555 also known as the phospholipase C (rPLC)). RESULTS TLR2eF and rPLC were the most efficient antigens to discriminate NTM-culture positive CF-patients from NTM-culture negative CF-patients. The best clinical values were obtained for the detection of M. abscessus-culture positive CF-patients; with sensitivities for the TLR2eF and rPLC of 81.2% (95% CI:65.7-92.3%) and 87.9% (95% CI:71.9-95.6%) respectively, and specificities of 88.9% (95% CI:85.3-94.8%) and 84.8% (95% CI:80.6-91.5%) respectively. When considering as positive all sera, giving a positive response in at least one of the two tests, and, as negative, all sera negative for both tests, we obtained a sensitivity of 93.9% and a specificity of 80.7% for the detection of M. abscessus-culture positive CF-patients. CONCLUSION High antibody titers against TLR2eF and rPLC were obtained in M. abscessus-culture positive CF-patients, allowing us to consider these serological markers as potential tools in the detection of CF-patients infected with M. abscessus.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France.
| | - Anne-Laure Roux
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Ambroise Paré, Service de Microbiologie, Boulogne-Billancourt, France
| | - Hélène Mahoudo
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Gaëtan Christien
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Agnès Ferroni
- AP-HP, GHU Paris, Hôpital Necker-Enfants Malades, Service de Microbiologie, Paris 15e, France
| | - Oana Dumitrescu
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004, Lyon, France; Centre International de Recherche en Infectiologie, INSERM U1111, Université de Lyon, Lyon, France
| | - Gérard Lina
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004, Lyon, France; Centre International de Recherche en Infectiologie, INSERM U1111, Université de Lyon, Lyon, France
| | - Jean-Philippe Bouchara
- CHU, Service de Parasitologie-Mycologie, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, CHRU de Besançon, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Louis Gaillard
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Ambroise Paré, Service de Microbiologie, Boulogne-Billancourt, France
| | - Stéphane Canaan
- Université Aix-Marseille, CNRS, LISM, IMM FR3479, Marseille, France
| | - Geneviève Héry-Arnaud
- Département de bactériologie-virologie, hygiène et parasitologie-mycologie, centre hospitalier régional universitaire (CHRU) de Brest, Brest, France; Inserm, EFS, UMR 1078 France « génétique, génomique fonctionnelle et biotechnologies », GGB, université Brest, 29200 Brest, France
| | - Jean-Louis Herrmann
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France.
| |
Collapse
|