1
|
Ruiz-Ciancio D, Lin LH, Veeramani S, Barros MN, Sanchez D, Di Bartolo AL, Masone D, Giangrande PH, Mestre MB, Thiel WH. Selection of a novel cell-internalizing RNA aptamer specific for CD22 antigen in B cell acute lymphoblastic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:698-712. [PMID: 37662970 PMCID: PMC10469072 DOI: 10.1016/j.omtn.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.
Collapse
Affiliation(s)
- Dario Ruiz-Ciancio
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Li-Hsien Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Suresh Veeramani
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Maya N. Barros
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Diego Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza 5500, Argentina
| | - Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Paloma H. Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- VP Platform Discovery Sciences, Biology, Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - María Belén Mestre
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
Clyburn C, Browning KN. Glutamatergic plasticity within neurocircuits of the dorsal vagal complex and the regulation of gastric functions. Am J Physiol Gastrointest Liver Physiol 2021; 320:G880-G887. [PMID: 33730858 PMCID: PMC8202199 DOI: 10.1152/ajpgi.00014.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The meticulous regulation of the gastrointestinal (GI) tract is required for the coordination of gastric motility and emptying, intestinal secretion, absorption, and transit as well as for the overarching management of food intake and energy homeostasis. Disruption of GI functions is associated with the development of severe GI disorders and the alteration of food intake and caloric balance. Functional GI disorders as well as the dysregulation of energy balance and food intake are frequently associated with, or result from, alterations in the central regulation of GI control. The faithful and rapid transmission of information from the stomach and upper GI tract to second-order neurons of the nucleus of the tractus solitarius (NTS) relies on the delicate modulation of excitatory glutamatergic transmission, as does the relay of integrated signals from the NTS to parasympathetic efferent neurons of the dorsal motor nucleus of the vagus (DMV). Many studies have focused on understanding the physiological and pathophysiological modulation of these glutamatergic synapses, although their role in the control and regulation of GI functions has lagged behind that of cardiovascular and respiratory functions. The purpose of this review is to examine the current literature exploring the role of glutamatergic transmission in the DVC in the regulation of GI functions.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
3
|
Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, Yang Z, Qin X, Wang R, Kong D, Bai H, Zhang H, Zhang W, Jia Z. Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 2021; 164:105391. [PMID: 33352230 DOI: 10.1016/j.phrs.2020.105391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
Abstract
Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Lifang Huo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yiting Gao
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dongfang Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Shengnan Wang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yu Han
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacy, Children's Hospital of Hebei Province, China
| | - Hongchao Men
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Ri Wang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Hailin Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Zhanfeng Jia
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
4
|
Lin LH, Jones S, Talman WT. Cellular Localization of Acid-Sensing Ion Channel 1 in Rat Nucleus Tractus Solitarii. Cell Mol Neurobiol 2018; 38:219-232. [PMID: 28825196 DOI: 10.1007/s10571-017-0534-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions. We hypothesized that saporin would increase ASIC1 expression in areas of gliosis. Using fluorescent immunohistochemistry and confocal microscopy, we found that cells and processes containing ASIC1-immunoreactivity (IR) were present in the NTS, the dorsal motor nucleus of vagus, and the area postrema. In control tissue, ASIC1-IR predominantly colocalized with IR for the astrocyte marker, glial fibrillary acidic protein (GFAP), or the microglial marker, integrin αM (OX42). The subpostremal NTS was the only NTS region where neurons, identified by protein gene product 9.5 (PGP9.5), contained ASIC1-IR. ASIC1-IR increased significantly (157 ± 8.6% of control, p < 0.001) in the NTS seven days after microinjection of saporin. As we reported previously, GFAP-IR was decreased in the center of the saporin injection site, but GFAP-IR was increased in the surrounding areas where OX42-IR, indicative of activated microglia, was also increased. The over-expressed ASIC1-IR colocalized with GFAP-IR and OX42-IR in those reactive astrocytes and microglia. Our results support the hypothesis that ASIC1 would be increased in activated microglia and in reactive astrocytes after injection of saporin into the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Susan Jones
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - William T Talman
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
- Neurology Service, Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
5
|
Li C, Fitzgerald MEC, Del Mar N, Reiner A. Disinhibition of neurons of the nucleus of solitary tract that project to the superior salivatory nucleus causes choroidal vasodilation: Implications for mechanisms underlying choroidal baroregulation. Neurosci Lett 2016; 633:106-111. [PMID: 27663135 DOI: 10.1016/j.neulet.2016.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Preganglionic neurons in the superior salivatory nucleus (SSN) that mediate parasympathetic vasodilation of choroidal blood vessels receive a major excitatory input from the baroresponsive part of the nucleus of the solitary tract (NTS). This input appears likely to mediate choroidal vasodilation during systemic hypotension, which prevents decreases in choroidal blood flow (ChBF) due to reduced perfusion pressure. It is uncertain, however, how low blood pressure signals to NTS from the aortic depressor nerve (ADN), which fires at a low rate during systemic hypotension, could yield increased firing in the NTS output to SSN. The simplest hypothesis is that SSN-projecting NTS neurons are under the inhibitory control of ADN-receptive GABAergic NTS neurons. As part of evaluating this hypothesis, we assessed if SSN-projecting NTS neurons, in fact, receive prominent inhibitory input and if blocking GABAergic modulation of them increases ChBF. We found that SSN-projecting NTS neuronal perikarya identified by retrograde labeling are densely coated with GABAergic terminals, but lightly coated with excitatory terminals. We also found that, infusion of the GABA-A receptor antagonist GABAzine into NTS increased ChBF. Our results are consistent with the possibility that low blood pressure signals from the ADN produce vasodilation in choroid by causing diminished activity in ADN-receptive NTS neurons that tonically suppress SSN-projecting NTS neurons.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States.
| | - Malinda E C Fitzgerald
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States; Department of Ophthalmology, University of Tennessee, Memphis, TN, 38163, United States; Department of Biology, Christian Brothers University, Memphis, TN, United States.
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States.
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States; Department of Ophthalmology, University of Tennessee, Memphis, TN, 38163, United States.
| |
Collapse
|
6
|
|
7
|
Enhanced NMDA receptor-mediated modulation of excitatory neurotransmission in the dorsal vagal complex of streptozotocin-treated, chronically hyperglycemic mice. PLoS One 2015; 10:e0121022. [PMID: 25799386 PMCID: PMC4370733 DOI: 10.1371/journal.pone.0121022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.
Collapse
|
8
|
Lin LH, Jin J, Nashelsky MB, Talman WT. Acid-sensing ion channel 1 and nitric oxide synthase are in adjacent layers in the wall of rat and human cerebral arteries. J Chem Neuroanat 2014; 61-62:161-8. [PMID: 25462386 DOI: 10.1016/j.jchemneu.2014.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/23/2023]
Abstract
Extracellular acidification activates a family of proteins known as acid-sensing ion channels (ASICs). One ASIC subtype, ASIC type 1 (ASIC1), may play an important role in synaptic plasticity, memory, fear conditioning and ischemic brain injury. ASIC1 is found primarily in neurons, but one report showed its expression in isolated mouse cerebrovascular cells. In this study, we sought to determine if ASIC1 is present in intact rat and human major cerebral arteries. A potential physiological significance of such a finding is suggested by studies showing that nitric oxide (NO), which acts as a powerful vasodilator, may modulate proton-gated currents in cultured cells expressing ASIC1s. Because both constitutive NO synthesizing enzymes, neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), are expressed in cerebral arteries we also studied the anatomical relationship between ASIC1 and nNOS or eNOS in both rat and human cerebral arteries. Western blot analysis demonstrated ASIC1 in cerebral arteries from both species. Immunofluorescent histochemistry and confocal microscopy also showed that ASIC1-immunoreactivity (IR), colocalized with the smooth muscle marker alpha-smooth muscle actin (SMA), was present in the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA) and basilar artery (BA) of rat and human. Expression of ASIC1 in cerebral arteries is consistent with a role for ASIC1 in modulating cerebrovascular tone both in rat and human. Potential interactions between smooth muscle ASIC1 and nNOS or eNOS were supported by the presence of nNOS-IR in the neighboring adventitial layer and the presence of nNOS-IR and eNOS-IR in the adjacent endothelial layer of the cerebral arteries.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jingwen Jin
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - William T Talman
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Neurology Service, Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
9
|
Hermes SM, Colbert JF, Aicher SA. Differential content of vesicular glutamate transporters in subsets of vagal afferents projecting to the nucleus tractus solitarii in the rat. J Comp Neurol 2014; 522:642-53. [PMID: 23897509 DOI: 10.1002/cne.23438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
The vagus nerve contains primary visceral afferents that convey sensory information from cardiovascular, pulmonary, and gastrointestinal tissues to the nucleus tractus solitarii (NTS). The heterogeneity of vagal afferents and their central terminals within the NTS is a common obstacle for evaluating functional groups of afferents. To determine whether different anterograde tracers can be used to identify distinct subpopulations of vagal afferents within NTS, we injected cholera toxin B subunit (CTb) and isolectin B4 (IB4) into the vagus nerve. Confocal analyses of medial NTS following injections of both CTb and IB4 into the same vagus nerve resulted in labeling of two exclusive populations of fibers. The ultrastructural patterns were also distinct. CTb was found in both myelinated and unmyelinated vagal axons and terminals in medial NTS, whereas IB4 was found only in unmyelinated afferents. Both tracers were observed in terminals with asymmetric synapses, suggesting excitatory transmission. Because glutamate is thought to be the neurotransmitter at this first primary afferent synapse in NTS, we determined whether vesicular glutamate transporters (VGLUTs) were differentially distributed among the two distinct populations of vagal afferents. Anterograde tracing from the vagus with CTb or IB4 was combined with immunohistochemistry for VGLUT1 or VGLUT2 in medial NTS and evaluated with confocal microscopy. CTb-labeled afferents contained primarily VGLUT2 (83%), whereas IB4-labeled afferents had low levels of vesicular transporters, VGLUT1 (5%) or VGLUT2 (21%). These findings suggest the possibility that glutamate release from unmyelinated vagal afferents may be regulated by a distinct, non-VGLUT, mechanism.
Collapse
Affiliation(s)
- Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, 97239-3098
| | | | | |
Collapse
|
10
|
de Lartigue G. Putative roles of neuropeptides in vagal afferent signaling. Physiol Behav 2014; 136:155-69. [PMID: 24650553 DOI: 10.1016/j.physbeh.2014.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Dept Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
11
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
12
|
Accorsi-Mendonça D, Machado BH. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons. Auton Neurosci 2013; 175:3-8. [DOI: 10.1016/j.autneu.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 11/17/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
|
13
|
Lin LH, Nitschke Dragon D, Jin J, Tian X, Chu Y, Sigmund C, Talman WT. Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. J Physiol 2012; 590:3545-59. [PMID: 22687614 DOI: 10.1113/jphysiol.2012.237966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite numerous studies it remains controversial whether nitric oxide (NO·) synthesized by neuronal NOS (nNOS) plays an excitatory or inhibitory role in transmission of baroreflex signals in the nucleus tractus solitarii (NTS). In the current studies we sought to test the hypothesis that nNOS is involved in excitation of baroreflex pathways in NTS while excluding pharmacological interventions in assessing the influence of nNOS. We therefore developed, validated and utilized a short hairpin RNA (shRNA) to reduce expression of nNOS in the NTS of rats whose baroreflex activity was then studied. We demonstrate downregulation of nNOS through transduction with adeno-associated virus type 2 (AAV2) carrying shRNA for nNOS. When injected bilaterally into NTS AAV2nNOSshRNA significantly reduced reflex tachycardic responses to acute hypotension while not affecting reflex bradycardic responses to acute increases of arterial pressure. Control animals treated with intravenous propranolol to block sympathetically mediated chronotropic responses manifested the same baroreflex responses as animals that had been treated with AAV2nNOSshRNA. Neither AAV2 eGFP nor AAV2nNOScDNA affected baroreflex responses. Blocking cardiac vagal influences with atropine similarly reduced baroreflex-mediated bradycardic responses to increases in arterial pressure both in control animals and in those treated with AAV2nNOSshRNA. We conclude that NO· synthesized by nNOS in the NTS is integral to excitation of baroreflex pathways involved in reflex tachycardia, a largely sympathetically mediated response, but not reflex bradycardia, a largely parasympathetically mediated response. We suggest that, at the basal state, nNOS is maximally engaged. Thus, its upregulation does not augment the baroreflex.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Laboratory of Neurobiology, Department of Neurology, Roy and Lucille Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Talman WT, Dragon DN, Jones SY, Moore SA, Lin LH. Sudden death and myocardial lesions after damage to catecholamine neurons of the nucleus tractus solitarii in rat. Cell Mol Neurobiol 2012; 32:1119-26. [PMID: 22484855 DOI: 10.1007/s10571-012-9835-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/19/2012] [Indexed: 11/24/2022]
Abstract
Lesions that remove neurons expressing neurokinin-1 (NK1) receptors from the nucleus tractus solitarii (NTS) without removing catecholaminergic neurons lead to loss of baroreflexes, labile arterial pressure, myocardial lesions, and sudden death. Because destruction of NTS catecholaminergic neurons expressing tyrosine hydroxylase (TH) may also cause lability of arterial pressure and loss of baroreflexes, we sought to test the hypothesis that cardiac lesions associated with lability are not dependent on damage to neurons with NK1 receptors but would also occur when TH neurons in NTS are targeted. To rid the NTS of TH neurons we microinjected anti-dopamine β-hydroxylase conjugated to saporin (anti-DBH-SAP, 42 ng/200 nl) into the NTS. After injection of the toxin unilaterally, immunofluorescent staining confirmed that anti-DBH-SAP decreased the number of neurons and fibers that contain TH and DBH in the injected side of the NTS while sparing neuronal elements expressing NK1 receptors. Bilateral injections in eight rats led to significant lability of arterial pressure. For example, on day 8 standard deviation of mean arterial pressure was 16.8 ± 2.5 mmHg when compared with a standard deviation of 7.83 ± 0.33 mmHg in six rats in which phosphate buffered saline (PBS) had been injected bilaterally. Two rats died suddenly at 5 and 8 days after anti-DBH-SAP injection. Seven-treated animals demonstrated microscopic myocardial necrosis as reported in animals with lesions of NTS neurons expressing NK1 receptors. Thus, cardiac and cardiovascular effects of lesions directed toward catecholamine neurons of the NTS are similar to those following damage directed toward NK1 receptor-containing neurons.
Collapse
Affiliation(s)
- William T Talman
- Department of Neurology, Carver College of Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa, IA 52242, USA.
| | | | | | | | | |
Collapse
|
15
|
Lin LH, Nitschke Dragon D, Talman WT. Collateral damage and compensatory changes after injection of a toxin targeting neurons with the neurokinin-1 receptor in the nucleus tractus solitarii of rat. J Chem Neuroanat 2012; 43:141-8. [PMID: 22414622 DOI: 10.1016/j.jchemneu.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
Injection into the nucleus tractus solitarii (NTS) of toxins that target substance P (SP) receptors ablates neurons that express neurokinin-1 (NK1) receptors, attenuates baroreflexes, and results in increased lability of arterial pressure. We and others have shown that the toxin leads to loss of neurons containing SP receptors and loss of GABAergic neurons in the NTS; but given that neither type neuron is thought to be integral to baroreflex transmission in NTS, mechanisms responsible for the cardiovascular changes remained unclear. Because NK1 receptors colocalize with N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in NTS and because glutamate transmission may be integral to baroreflex transmission in the NTS we hypothesized that the toxic lesions may interrupt mechanisms for glutamate transmission. Interruption of those mechanisms could be responsible for the cardiovascular effects. We tested the hypothesis by performing fluorescent immunohistochemistry, confocal microscopy and image analysis after injecting stabilized SP-SAP (SSP-SAP) unilaterally into the NTS. We assessed changes in immunoreactivity (IR) of NMDA receptor subunit 1 (NMDAR1), AMPA receptor subunit 2 (GluR2), and 3 types of vesicular glutamate transporters (VGluT) as well as IR of gamma-aminobutyric acid receptors type b (GABAb), neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), and protein gene product 9.5 (PGP 9.5), a neuronal marker, in the NTS. When compared to that of the same section of the un-injected NTS, IR decreased significantly in the injected side for NMDAR1 (p<0.01), GluR2 (p<0.01), VGluT3 (p<0.01), GABAb (p<0.001), and PGP9.5 (p<0.001). In contrast, IR for VGluT1 (p<0.001), VGluT2 (p<0.001), nNOS (p<0.001), and TH (p<0.001) increased significantly. We conclude that pathologic effects following ablation of neurons with NK1 receptors in NTS may result from interruption of neurotransmission through other neurochemical systems associated with NK1 receptors-containing neurons.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
16
|
Brumovsky PR, Robinson DR, La JH, Seroogy KB, Lundgren KH, Albers KM, Kiyatkin ME, Seal RP, Edwards RH, Watanabe M, Hökfelt T, Gebhart GF. Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum. J Comp Neurol 2012; 519:3346-66. [PMID: 21800314 DOI: 10.1002/cne.22730] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT(1) and VGLUT(2) , respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT(1) , VGLUT(2) , and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT(1) and VGLUT(2) , was also performed. Most colorectal DRG neurons expressed VGLUT(2) and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT(1) . VGLUT(2) -immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT(2) -IR nerves were detected in all layers of the colorectum; VGLUT(1) -IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT(2) , and to a lesser extent, VGLUT(1) ; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT(2). Altogether, our data suggests a role for VGLUT(2) in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility.
Collapse
Affiliation(s)
- Pablo R Brumovsky
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lin LH, Dragon DN, Jin J, Talman WT. Targeting neurons of rat nucleus tractus solitarii with the gene transfer vector adeno-associated virus type 2 to up-regulate neuronal nitric oxide synthase. Cell Mol Neurobiol 2011; 31:847-59. [PMID: 21431420 DOI: 10.1007/s10571-011-9674-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/05/2011] [Indexed: 01/27/2023]
Abstract
Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1-2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
18
|
Durand MDT, Castania JA, Fazan R, Salgado MCO, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious l-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2011; 300:R418-27. [DOI: 10.1152/ajpregu.00463.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-l-arginine methyl ester (l-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (−27 ± 2 to −64 ± 3 mmHg) than in normotensive rats (−17 ± 1 to −46 ± 2 mmHg), whereas the bradycardic response was similar in both groups (−34 ± 5 to −92 ± 9 and −21 ± 2 to −79 ± 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (−13 ± 2 to −27 ± 2 mmHg) and normotensive rats (−10 ± 1 to −25 ± 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious l-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of α1-adrenergic receptor.
Collapse
|
19
|
Barnes MJ, Rogers RC, Van Meter MJ, Hermann GE. Co-localization of TRHR1 and LepRb receptors on neurons in the hindbrain of the rat. Brain Res 2010; 1355:70-85. [PMID: 20691166 DOI: 10.1016/j.brainres.2010.07.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 02/06/2023]
Abstract
We have reported a highly cooperative interaction between leptin and thyrotropin releasing hormone (TRH) in the hindbrain to generate thermogenic responses (Hermann et al., 2006) (Rogers et al., 2009). Identifying the locus in the hindbrain where leptin and TRH act synergistically to increase thermogenesis will be necessary before we can determine the mechanism(s) by which this interaction occurs. Here, we performed heat-induced epitope recovery techniques and in situ hybridization to determine if neurons or afferent fibers in the hindbrain possess both TRH type 1 receptor and long-form leptin receptor [TRHR1; LepRb, respectively]. LepRb receptors were highly expressed in the solitary nucleus [NST], dorsal motor nucleus of the vagus [DMN] and catecholaminergic neurons of the ventrolateral medulla [VLM]. All neurons that contained LepRb also contained TRHR1. Fibers in the NST and the raphe pallidus [RP] and obscurrus [RO] that possess LepRb receptors were phenotypically identified as glutamatergic type 2 fibers (vglut2). Fibers in the NST and RP that possess TRHR1 receptors were phenotypically identified as serotonergic [i.e., immunopositive for the serotonin transporter; SERT]. Co-localization of LepRb and TRHR1 was not observed on individual fibers in the hindbrain but these two fiber types co-mingle in these nuclei. These anatomical arrangements may provide a basis for the synergy between leptin and TRH to increase thermogenesis.
Collapse
Affiliation(s)
- Maria J Barnes
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
20
|
Lin LH, Langasek JE, Talman LS, Taktakishvili OM, Talman WT. Feline immunodeficiency virus as a gene transfer vector in the rat nucleus tractus solitarii. Cell Mol Neurobiol 2009; 30:339-46. [PMID: 19777342 DOI: 10.1007/s10571-009-9456-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 01/25/2023]
Abstract
Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effects produced by altered synthesis of transmitters in neurons. However, it has not been studied in NTS. Therefore, we sought to determine whether FIV transfects rat NTS cells and to define the type of cell transfected. We found that injection of FIV encoding LacZ gene (FIVLacZ) into the NTS led to transfection of numerous NTS cells. Injection of FIVLacZ did not alter immunoreactivity (IR) for neuronal nitric oxide synthase, which we have shown resides in NTS neurons. A majority (91.7 +/- 3.9%) of transfected cells contained IR for neuronal nuclear antigen, a neuronal marker; 2.1 +/- 3.8% of transfected cells contained IR for glial fibrillary acidic protein, a glial marker. No transfected neurons or fibers were observed in the nodose ganglion, which sends afferents to the NTS. We conclude that FIV almost exclusively transfects neurons in the rat NTS from which it is not retrogradely transported. The cell-type specificity of FIV in the NTS may provide a molecular method to study local physiological functions mediated by potential neurotransmitters in the NTS.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, 1191 ML, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
21
|
Lin LH. Glutamatergic neurons say NO in the nucleus tractus solitarii. J Chem Neuroanat 2009; 38:154-65. [PMID: 19778681 DOI: 10.1016/j.jchemneu.2009.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 01/13/2023]
Abstract
Both glutamate and nitric oxide (NO) may play an important role in cardiovascular reflex and respiratory signal transmission in the nucleus tractus solitarii (NTS). Pharmacological and physiological data have shown that glutamate and NO may be linked in mediating cardiovascular regulation by the NTS. Through tract tracing, multiple-label immunofluorescent staining, confocal microscopic, and electronic microscopic methods, we and other investigators have provided anatomical evidence that supports a role for glutamate and NO as well as an interaction between glutamate and NO in cardiovascular regulation in the NTS. This review article focuses on summarizing and discussing these anatomical findings. We utilized antibodies to markers of glutamatergic neurons and to neuronal NO synthase (nNOS), the enzyme that synthesizes NO in NTS neurons, to study the anatomical relationship between glutamate and NO in rats. Not only were glutamatergic markers and nNOS both found in similar subregions of the NTS and in vagal afferents, they were also frequently colocalized in the same neurons and fibers in the NTS. In addition, glutamatergic markers and nNOS were often present in fibers that were in close apposition to each other. Furthermore, N-methyl-d-aspartate (NMDA) type glutamate receptors and nNOS were often found on the same NTS neurons. Similarly, alpha-amino-3-hydroxy-5-methylisoxozole-proprionic acid (AMPA) type glutamate receptors also frequently colocalized with nNOS in NTS neurons. These findings support the suggestion that the interaction between glutamate and NO may be mediated both through NMDA and AMPA receptors. Finally, by applying tracer to the cut aortic depressor nerve (ADN) to identify nodose ganglion (NG) neurons that transmit cardiovascular signals to the NTS, we observed colocalization of vesicular glutamate transporters (VGluT) and nNOS in the ADN neurons. Thus, taken together, these neuroanatomical data support the hypothesis that glutamate and NO may interact with each other to regulate cardiovascular and likely other visceral functions through the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
da Silva LG, Dias ACR, Furlan E, Colombari E. Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1774-81. [DOI: 10.1152/ajpregu.00559.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 ± 5 mmHg before l-NAME to 9 ± 4 mmHg, 10 min after l-NAME, and HR fell by 100 ± 26 bpm before l-NAME to 20 ± 10 bpm, 10 min after l-NAME (both P < 0.05). Microinjection of the selective inhibitor of neuronal nitric oxide synthase (nNOS), 1-(2-trifluoromethylphenyl) imidazole (TRIM; 13.3 nmol in 100 nl), in the NTS also reduced responses to ACh: MAP fell from 42 ± 3 mmHg before TRIM to 27 ± 6 mmHg, 10 min after TRIM ( P < 0.05). TRIM also tended to reduce ACh-induced bradycardia, but this effect was not statistically significant. ACh-induced hypotension and bradycardia returned to control levels 30–45 min after NOS inhibition. Control injections with d-NAME and saline did not affect resting values or the response to ACh. In conclusion, injection of ACh into the NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.
Collapse
|
23
|
Nayate A, Moore SA, Weiss R, Taktakishvili OM, Lin LH, Talman WT. Cardiac damage after lesions of the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2008; 296:R272-9. [PMID: 19020288 DOI: 10.1152/ajpregu.00080.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humans with central lesions that augment sympathetic nerve activity are predisposed to cardiac arrhythmias, myocardial lesions, and sudden death. Previously, we showed that selectively killing neurons with neurokinin-1 receptors in the nucleus tractus solitarii (NTS) of rats attenuated the baroreflex and, in some animals, led to sudden unexplained death within approximately 2 wk. Interruption of arterial baroreflexes is known to increase sympathetic activity. Here we tested the hypothesis that lesions in the NTS lead to fatal cardiac arrhythmias and myocardial lesions. We studied electrocardiograms, echocardiograms, blood pressure, and heart rate in 14 adult male rats after bilateral microinjection into the NTS of stabilized substance P conjugated to the toxin saporin and compared the variables in five sham control rats and in five animals with toxin injected outside the NTS. Only injection of toxin into the NTS led to increased lability of arterial blood pressure, a sign of baroreflex interruption. Two animals treated with toxin died suddenly. All animals engaged in normal activity until, in two, rapid development of asystole and death over 6-8 min. Cardiac function when examined by echocardiography was normal, but pathologic examination of the heart revealed diffuse microscopic areas of acute coagulation necrosis in the myocardium in five animals, focal subacute necrosis in two animals, and both changes in one animal. This study supports the hypothesis that NTS lesions interrupting the baroreflex may induce cardiac arrhythmias and myocardial changes similar to those seen in humans with central lesions and may lead to sudden cardiac death.
Collapse
Affiliation(s)
- Ameya Nayate
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
24
|
Austgen JR, Fong AY, Foley CM, Mueller PJ, Kline DD, Heesch CM, Hasser EM. Expression of Group I metabotropic glutamate receptors on phenotypically different cells within the nucleus of the solitary tract in the rat. Neuroscience 2008; 159:701-16. [PMID: 19013221 DOI: 10.1016/j.neuroscience.2008.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 09/09/2008] [Accepted: 09/30/2008] [Indexed: 02/07/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are G-coupled receptors that modulate synaptic activity. Previous studies have shown that Group I mGluRs are present in the nucleus of the solitary tract (NTS), in which many visceral afferents terminate. Microinjection of selective Group I mGluR agonists into the NTS results in a depressor response and decrease in sympathetic nerve activity. There is, however, little evidence detailing which phenotypes of neurons within the NTS express Group I mGluRs. In brainstem slices, we performed immunohistochemical localization of Group I mGluRs and either glutamic acid decarboxylase 67 kDa isoform (GAD67), neuronal nitric oxide synthase (nNOS) or tyrosine hydroxylase (TH). Fluoro-Gold (FG, 2%; 15 nl) was microinjected in the caudal ventrolateral medulla (CVLM) of the rat to retrogradely label NTS neurons that project to CVLM. Group I mGluRs were distributed throughout the rostral-caudal extent of the NTS and were found within most NTS subregions. The relative percentages of Group I mGluR expressing neurons colabeled with the different markers were FG (6.9+/-0.7) nNOS (5.6+/-0.9), TH (3.9+/-1.0), and GAD67 (3.1+/-1.4). The percentage of FG containing cells colabeled with Group I mGluR (13.6+/-2.0) was greater than the percent colabeled with GAD67 (3.1+/-0.5), nNOS (4.7+/-0.5), and TH (0.1+/-0.08). Cells triple labeled for FG, nNOS, and Group I mGluRs were identified in the NTS. Thus, these data provide an anatomical substrate by which Group I mGluRs could modulate activity of CVLM projecting neurons in the NTS.
Collapse
Affiliation(s)
- J R Austgen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lin LH, Taktakishvili O, Talman WT. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 2007; 1171:42-51. [PMID: 17761150 PMCID: PMC2141649 DOI: 10.1016/j.brainres.2007.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 02/07/2023]
Abstract
Numerous studies have suggested that nitric oxide (NO) in the nucleus tractus solitarii (NTS) participates in modulating cardiovascular function. Nitric oxide synthase (NOS), the enzyme responsible for synthesis of NO, exists in 3 isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). Although the distribution of nNOS in the NTS has been well documented, the distribution of eNOS in the NTS has not. Because recent studies have shown that eNOS may contribute to regulation of baroreceptor reflexes and arterial pressure, we examined the distribution of eNOS and the types of cells that express it in rat NTS by using multiple labels for immunofluorescent staining and confocal microscopy. Immunoreactivity (IR) for eNOS and nNOS was found in cells and processes in all NTS subnuclei, but eNOS-IR was more uniformly distributed than was nNOS-IR. Although structures containing either eNOS-IR or nNOS-IR were often present in close proximity, they never contained both isoforms. Almost all eNOS-IR positive structures, but no nNOS-IR positive structures, contained IR for the glial marker glial fibrillary acidic protein. Furthermore, while all nNOS-IR positive cells contained IR for the neuronal marker neuronal nuclear antigen (NeuN), none of the eNOS-IR positive cells contained NeuN-IR. We conclude that eNOS in the NTS is present only in astrocytes and endothelial cells, not in neurons. Our data complement previous physiological studies and suggest that although NO from nNOS may modulate neurotransmission directly in the NTS, NO from eNOS in the NTS may modulate cardiovascular function through an interaction between astrocytes and neurons.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, University of Iowa, VAMC 1-10W19, MS 151, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
26
|
|