1
|
Gaynullina DK, Shvetsova AA, Borzykh AA, Kiryukhina OO, Sirotina NS, Abramochkin DV, Tarasova OS. Hibernation enhances contractile responses of basilar artery in ground squirrels: The role of rho-kinase and NO. Comp Biochem Physiol A Mol Integr Physiol 2024:111796. [PMID: 39716717 DOI: 10.1016/j.cbpa.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Hibernation is accompanied by dramatic decrease of blood flow in many organs due to the increase of their vascular resistances. We compared the responses of mesenteric, renal, and cerebral proximal resistance arteries in summer active (SA) and winter hibernating (WH) ground squirrels and studied the signaling pathways of Rho-kinase and NO. Wire myography and Western blotting were used to assess the arterial responses and protein abundances. Basal tone ane contractile responses did not differ between SA and WH squirrels in mesenteric and renal arteries, but were greatly increased in basilar arteries of WH compared to SA. Rho-kinase inhibitor abolished the differences in basilar artery basal tone and contractile responses between WH and SA squirrels, while the content of Rho-kinase II protein in the cerebral arteries did not differ between the groups. NO-synthase inhibitor increased basal tone level and basilar artery contractile responses only in SA but not in WH animals, so that the intergroup differences disappeared. The responses of basilar artery to the NO-donor and eNOS protein content did not differ between the two groups, while nNOS protein content was reduced in WH compared to SA. Therefore, the increase of basilar artery basal tone and contractile responses in hibernating animals is due to the increase of procontractile influence of Rho-kinase and the decrease of anticontractile influence of NO. Localization of high resistance in the hibernating brain at the level of proximal resistance arteries may be important for rapid restoration of cerebral blood flow upon arousal from hibernation.
Collapse
Affiliation(s)
- Dina K Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Borzykh
- Laboratory of Muscle Physiology, State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oxana O Kiryukhina
- Laboratory for the Study of Information Processes at the Cellular and Molecular Levels, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S Sirotina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Physiology and Pathology, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
3
|
Garcia SM, Naik JS, Resta TC, Jernigan NL. Acid-sensing ion channel 1a activates IKCa/SKCa channels and contributes to endothelium-dependent dilation. J Gen Physiol 2023; 155:e202213173. [PMID: 36484717 PMCID: PMC9984545 DOI: 10.1085/jgp.202213173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) belongs to a novel family of proton-gated cation channels that are permeable to both Na+ and Ca2+. ASIC1a is expressed in vascular smooth muscle and endothelial cells in a variety of vascular beds, yet little is known regarding the potential impact of ASIC1a to regulate local vascular reactivity. Our previous studies in rat mesenteric arteries suggest ASIC1a does not contribute to agonist-induced vasoconstriction but may mediate a vasodilatory response. The objective of the current study is to determine the role of ASIC1a in systemic vasodilatory responses by testing the hypothesis that the activation of endothelial ASIC1a mediates vasodilation of mesenteric resistance arteries through an endothelium-dependent hyperpolarization (EDH)-related pathway. The selective ASIC1a antagonist psalmotoxin 1 (PcTX1) largely attenuated the sustained vasodilatory response to acetylcholine (ACh) in isolated, pressurized mesenteric resistance arteries and ACh-mediated Ca2+ influx in freshly isolated mesenteric endothelial tubes. Similarly, basal tone was enhanced and ACh-induced vasodilation blunted in mesenteric arteries from Asic1a knockout mice. ASIC1a colocalizes with intermediate- and small-conductance Ca2+-activated K+ channels (IKCa and SKCa, respectively), and the IKCa/SKCa-sensitive component of the ACh-mediated vasodilation was blocked by ASIC1a inhibition. To determine the role of ASIC1a to activate IKCa/SKCa channels, we measured whole-cell K+ currents using the perforated-patch clamp technique in freshly isolated mesenteric endothelial cells. Inhibition of ASIC1a prevented ACh-induced activation of IKCa/SKCa channels. The ASIC1 agonist, α/β-MitTx, activated IKCa/SKCa channels and induced an IKCa/SKCa-dependent vasodilation. Together, the present study demonstrates that ASIC1a couples to IKCa/SKCa channels in mesenteric resistance arteries to mediate endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Selina M. Garcia
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Jay S. Naik
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Thomas C. Resta
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Nikki L. Jernigan
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
4
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
5
|
Vivarelli S, Falzone L, Basile MS, Candido S, Libra M. Nitric Oxide in Hematological Cancers: Partner or Rival? Antioxid Redox Signal 2021; 34:383-401. [PMID: 32027171 DOI: 10.1089/ars.2019.7958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significance: Hematological malignancies represent the fourth most diagnosed cancer. Relapse and acquired resistance to anticancer therapy constitute two actual issues that need to be overcome. Nitric oxide (NO) plays a pivotal role in regulating cancer progression. At present, many studies are attempting to uncover the potentials of modulating NO levels to improve the efficacy of currently available treatments against lymphoma, leukemia, and myeloma. Recent Advances: It is becoming progressively clear that NO modulation may help hematological cancer management, either by targeting directly tumor cells or by driving the immune system to eliminate cancer cells. Critical Issues: NO is a dual molecule that can have a tumor-protecting or stimulating effect, depending on its local concentration. Moreover, NO is able to target a wide range of molecules involved in both cancer genesis and evolution. In this review, an overview of the recent findings regarding the pivotal role played by NO and nitric oxide synthase in cancer progression and anticancer therapy is presented, with particular focus on hematological malignancies. Future Directions: It is critical to establish the cancer-specific function of NO and critically drive its modulation to improve cancer management toward a personalized approach. This has a special importance in hematological tumors, where the urgency of finding eradicative therapies is constant. Antioxid. Redox Signal. 34, 383-401.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Caracuel L, Sastre E, Callejo M, Rodrigues-Díez R, García-Redondo AB, Prieto I, Nieto C, Salaices M, Aller MÁ, Arias J, Blanco-Rivero J. Hepatic Encephalopathy-Associated Cerebral Vasculopathy in Acute-on-Chronic Liver Failure: Alterations on Endothelial Factor Release and Influence on Cerebrovascular Function. Front Physiol 2020; 11:593371. [PMID: 33329042 PMCID: PMC7716775 DOI: 10.3389/fphys.2020.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
The acute-on-chronic liver failure (ACLF) is a syndrome characterized by liver decompensation, hepatic encephalopathy (HE) and high mortality. We aimed to determine the mechanisms implicated in the development of HE-associated cerebral vasculopathy in a microsurgical liver cholestasis (MHC) model of ACLF. Microsurgical liver cholestasis was induced by ligating and extracting the common bile duct and four bile ducts. Sham-operated and MHC rats were maintained for eight postoperative weeks Bradykinin-induced vasodilation was greater in middle cerebral arteries from MHC rats. Both Nω-Nitro-L-arginine methyl ester and indomethacin diminished bradykinin-induced vasodilation largely in arteries from MHC rats. Nitrite and prostaglandin (PG) F1α releases were increased, whereas thromboxane (TX) B2 was not modified in arteries from MHC. Expressions of endothelial nitric oxide synthase (eNOS), inducible NOS, and cyclooxygenase (COX) 2 were augmented, and neuronal NOS (nNOS), COX-1, PGI2 synthase, and TXA2S were unmodified. Phosphorylation was augmented for eNOS and unmodified for nNOS. Altogether, these endothelial alterations might collaborate to increase brain blood flow in HE.
Collapse
Affiliation(s)
- Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - María Callejo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana B. García-Redondo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Isabel Prieto
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Cirugía General y Digestiva, Hospital Universitario la Paz, Madrid, Spain
| | - Carlos Nieto
- Departamento de Cirugía Cardiaca, Hospital Universitario la Paz, Madrid, Spain
| | - Mercedes Salaices
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ma Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Javier Blanco-Rivero,
| |
Collapse
|
7
|
Garcia SM, Herbert LM, Walker BR, Resta TC, Jernigan NL. Coupling of store-operated calcium entry to vasoconstriction is acid-sensing ion channel 1a dependent in pulmonary but not mesenteric arteries. PLoS One 2020; 15:e0236288. [PMID: 32702049 PMCID: PMC7377459 DOI: 10.1371/journal.pone.0236288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Although voltage-gated Ca2+ channels (VGCC) are a major Ca2+ entry pathway in vascular smooth muscle cells (VSMCs), several other Ca2+-influx mechanisms exist and play important roles in vasoreactivity. One of these is store-operated Ca2+ entry (SOCE), mediated by an interaction between STIM1 and Orai1. Although SOCE is an important mechanism of Ca2+ influx in non-excitable cells (cells that lack VGCC); there is debate regarding the contribution of SOCE to regulate VSMC contractility and the molecular components involved. Our previous data suggest acid-sensing ion channel 1a (ASIC1a) is a necessary component of SOCE and vasoconstriction in small pulmonary arteries. However, it is unclear if ASIC1a similarly contributes to SOCE and vascular reactivity in systemic arteries. Considering the established role of Orai1 in mediating SOCE in the systemic circulation, we hypothesize the involvement of ASIC1a in SOCE and resultant vasoconstriction is unique to the pulmonary circulation. To test this hypothesis, we examined the roles of Orai1 and ASIC1a in SOCE- and endothelin-1 (ET-1)-induced vasoconstriction in small pulmonary and mesenteric arteries. We found SOCE is coupled to vasoconstriction in pulmonary arteries but not mesenteric arteries. In pulmonary arteries, inhibition of ASIC1a but not Orai1 attenuated SOCE- and ET-1-induced vasoconstriction. However, neither inhibition of ASIC1a nor Orai1 altered ET-1-induced vasoconstriction in mesenteric arteries. We conclude that SOCE plays an important role in pulmonary, but not mesenteric, vascular reactivity. Furthermore, in contrast to the established role of Orai1 in SOCE in non-excitable cells, the SOCE response in pulmonary VSMCs is largely mediated by ASIC1a.
Collapse
Affiliation(s)
- Selina M. Garcia
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Herbert
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Benjimen R. Walker
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Thomas C. Resta
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Nikki L. Jernigan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bychkov M, Shulepko M, Osmakov D, Andreev Y, Sudarikova A, Vasileva V, Pavlyukov MS, Latyshev YA, Potapov AA, Kirpichnikov M, Shenkarev ZO, Lyukmanova E. Mambalgin-2 Induces Cell Cycle Arrest and Apoptosis in Glioma Cells via Interaction with ASIC1a. Cancers (Basel) 2020; 12:E1837. [PMID: 32650495 PMCID: PMC7408772 DOI: 10.3390/cancers12071837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are fast growing and highly invasive brain tumors, characterized by tumor microenvironment acidification that drives glioma cell growth and migration. Channels containing Acid-sensing Ion Channel 1a subunit (ASIC1a) mediate amiloride-sensitive cation influx in late stage glioma cells, but not in normal astrocytes. Thus, selective targeting of ASIC1a can be a perspective strategy for glioma treatment. Here, ASIC1a expression in U251 MG and A172 glioma cells, but not in normal astrocytes, was demonstrated. Recombinant analog of mambalgin-2 from black mamba Dendroaspis polylepis inhibited amiloride-sensitive currents at ASIC1a both in Xenopus laevis oocytes and in U251 MG cells, while its mutants with impaired activity towards this channel did not. Mambalgin-2 inhibited U251 MG and A172 glioma cells growth with EC50 in the nanomolar range without affecting the proliferation of normal astrocytes. Notably, mambalgin-2 mutants did not affect glioma cell proliferation, pointing on ASIC1a as the main molecular target of mambalgin-2 in U251 MG and A172 cells. Mambalgin-2 induced a cell cycle arrest, inhibited Cyclin D1 and cyclin-dependent kinases (CDK) phosphorylation and caused apoptosis in U251 MG and A172 cells. Moreover, mambalgin-2 inhibited the growth of low-passage primary cells from a patient with glioblastoma. Altogether, our data point to mambalgin-2 as a useful hit for the development of new drugs for glioma treatment.
Collapse
Affiliation(s)
- Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Mikhail Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Dmitry Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yaroslav Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia Sudarikova
- Institute of Cytology, Russian Academy of Science, 194064 St-Petersburg, Russia; (A.S.); (V.V.)
| | - Valeria Vasileva
- Institute of Cytology, Russian Academy of Science, 194064 St-Petersburg, Russia; (A.S.); (V.V.)
| | - Marat S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
| | - Yaroslav A. Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (Y.A.L.); (A.A.P.)
| | - Alexander A. Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (Y.A.L.); (A.A.P.)
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Ekaterina Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.B.); (M.S.); (D.O.); (Y.A.); (M.S.P.); (M.K.); (Z.O.S.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
9
|
Zhang RJ, Yin YF, Xie XJ, Gu HF. Acid-sensing ion channels: Linking extracellular acidification with atherosclerosis. Clin Chim Acta 2019; 502:183-190. [PMID: 31901478 DOI: 10.1016/j.cca.2019.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023]
Abstract
Extracellular acidification in atherosclerosis-prone regions of arterial walls is considered pro-atherosclerotic by exerting detrimental effect on macrophages, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Acid-sensing ion channels (ASICs), a family of extracellular H+ (proton)-gated cation channels, are present extensively in the nervous system and other tissues, implying physiologic as well as pathophysiologic importance. Aberrant activation of ASICs is thought to be associated in EC dysfunction, macrophage phenotypic switch, and VSMC migration and proliferation. Although in vitro evidence acknowledges the contribution of ASIC activation in atherosclerosis, no direct evidence confirms their pro-atherosclerotic roles in vivo. In this review, the effect of extracellular acidity on three major contributors, ECs, macrophages, and VSMCs, is discussed focusing on the potential roles of ASICs in atherosclerotic development and underlying pathology. A more comprehensive understanding of ASICs in these processes may provide promising new therapeutic targets for treatment and prevention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Rong-Jie Zhang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois University Springfield, Illinois, United States
| | - Xue-Jiao Xie
- Department of Zhongjing' Theory, College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China.
| |
Collapse
|
10
|
Blockade of Acid-Sensing Ion Channels Attenuates Recurrent Hypoglycemia-Induced Potentiation of Ischemic Brain Damage in Treated Diabetic Rats. Neuromolecular Med 2019; 21:454-466. [PMID: 31134484 DOI: 10.1007/s12017-019-08546-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a chronic metabolic disease and cerebral ischemia is a serious complication of diabetes. Anti-diabetic therapy mitigates this complication but increases the risk of exposure to recurrent hypoglycemia (RH). We showed previously that RH exposure increases ischemic brain damage in insulin-treated diabetic (ITD) rats. The present study evaluated the hypothesis that increased intra-ischemic acidosis in RH-exposed ITD rats leads to pronounced post-ischemic hypoperfusion via activation of acid-sensing (proton-gated) ion channels (ASICs). Streptozotocin-diabetic rats treated with insulin were considered ITD rats. ITD rats were exposed to RH for 5 days and were randomized into Psalmotoxin1 (PcTx1, ASIC1a inhibitor), APETx2 (ASIC3 inhibitor), or vehicle groups. Transient global cerebral ischemia was induced overnight after RH. Cerebral blood flow was measured using laser Doppler flowmetry. Ischemic brain injury in hippocampus was evaluated using histopathology. Post-ischemic hypoperfusion in RH-exposed rats was of greater extent than that in control rats. Inhibition of ASICs prevented RH-induced increase in the extent of post-ischemic hypoperfusion and ischemic brain injury. Since ASIC activation-induced store-operated calcium entry (SOCE) plays a role in vascular tone, next we tested if acidosis activates SOCE via activating ASICs in vascular smooth muscle cells (VSMCs). We observed that SOCE in VSMCs at lower pH is ASIC3 dependent. The results show the role of ASIC in post-ischemic hypoperfusion and increased ischemic damage in RH-exposed ITD rats. Understanding the pathways mediating exacerbated ischemic brain injury in RH-exposed ITD rats may help lower diabetic aggravation of ischemic brain damage.
Collapse
|
11
|
Shear force modulates the activity of acid-sensing ion channels at low pH or in the presence of non-proton ligands. Sci Rep 2019; 9:6781. [PMID: 31043630 PMCID: PMC6494901 DOI: 10.1038/s41598-019-43097-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Acid-sensing ion channels (ASICs) belong to the degenerin/epithelial sodium channel protein family that form mechanosensitive ion channels. Evidence as to whether or not ASICs activity is directly modulated by mechanical force is lacking. Human ASICs (hASIC1V3, hASIC2a and hASIC3a) were heterologously expressed as homomeric channels in Xenopus oocytes and two-electrode voltage-clamp recordings were performed. hASIC3a was expressed in HEK-293 cells and currents measured by whole-cell patch-clamp recordings. ASIC currents in response to shear force (SF) were measured at pH 7.4, acidic pH, or in the presence of non-proton ligands at pH 7.4. SF was applied via a fluid stream generated through a pressurized perfusion system. No effect was observed at pH 7.4. Increased transient currents for each homomeric channel were observed when elevated SF was applied in conjunction with acidic pH (6.0-4.0). The sustained current was not (hASIC2a) or only slightly increased (hASIC1V3 and hASIC3a). SF-induced effects were not seen in water injected oocytes and were blocked by amiloride. Non-proton ligands activated a persistent current in hASIC1V3 and cASIC1 (MitTx) and hASIC3a (GMQ) at pH 7.4. Here SF caused a further current increase. Results suggest that ASICs do have an intrinsic ability to respond to mechanical force, supporting their role as mechanosensors in certain local environments.
Collapse
|
12
|
Akanji O, Weinzierl N, Schubert R, Schilling L. Acid sensing ion channels in rat cerebral arteries: Probing the expression pattern and vasomotor activity. Life Sci 2019; 227:193-200. [PMID: 31026454 DOI: 10.1016/j.lfs.2019.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
AIMS The recent identification of acid sensing ion channels (ASICs) in vascular beds suggests their possible involvement in modulating vasomotor tone. Therefore, we investigated the gene expression profiles of ASIC subtypes in the middle cerebral artery (MCA) of Wistar rats and the functional implication of ASICs in acidosis-induced relaxation as well as maintenance of resting tension. MAIN METHODS Real time PCR was employed to study the pattern of ASIC mRNA expression in the MCA wall in comparison with (i) matching brain tissue samples and (ii) arteries cultured for 24 h and 48 h. The functional implication regarding vasomotor response to acidosis and maintenance of resting tension was assessed using in vitro myography. KEY FINDINGS A robust mRNA expression of ASIC-1, -2 and -4 was found in brain tissue samples and to a lower extent in freshly isolated MCA. In the MCA wall, short term culture induced a down-regulation of ASIC-1 and -2 expression without any remarkable change in ASIC-4 expression. Acidosis induced a pH-related relaxation of freshly isolated MCA ring segments, being more pronounced after short term culture. Incubation with the ASIC blocker amiloride moderately enhanced acidosis-induced relaxation, in cultured MCAs somewhat stronger than in freshly isolated vessels. In addition, amiloride resulted in a decrease of resting tension, albeit only in freshly isolated MCA. SIGNIFICANCE Our results comprehensively describe ASIC subtype composition in the rat MCA in physiological and pathological conditions and strongly suggest the involvement of ASICs in the modulation of vasomotor responses under conditions of normal or decreased pH values.
Collapse
Affiliation(s)
- Oluwadamilola Akanji
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nina Weinzierl
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rudolf Schubert
- Cardiovascular Physiology, Center for Biomedicine and Medical Technology (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
13
|
Lin LH, Jones S, Talman WT. Cellular Localization of Acid-Sensing Ion Channel 1 in Rat Nucleus Tractus Solitarii. Cell Mol Neurobiol 2018; 38:219-232. [PMID: 28825196 DOI: 10.1007/s10571-017-0534-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions. We hypothesized that saporin would increase ASIC1 expression in areas of gliosis. Using fluorescent immunohistochemistry and confocal microscopy, we found that cells and processes containing ASIC1-immunoreactivity (IR) were present in the NTS, the dorsal motor nucleus of vagus, and the area postrema. In control tissue, ASIC1-IR predominantly colocalized with IR for the astrocyte marker, glial fibrillary acidic protein (GFAP), or the microglial marker, integrin αM (OX42). The subpostremal NTS was the only NTS region where neurons, identified by protein gene product 9.5 (PGP9.5), contained ASIC1-IR. ASIC1-IR increased significantly (157 ± 8.6% of control, p < 0.001) in the NTS seven days after microinjection of saporin. As we reported previously, GFAP-IR was decreased in the center of the saporin injection site, but GFAP-IR was increased in the surrounding areas where OX42-IR, indicative of activated microglia, was also increased. The over-expressed ASIC1-IR colocalized with GFAP-IR and OX42-IR in those reactive astrocytes and microglia. Our results support the hypothesis that ASIC1 would be increased in activated microglia and in reactive astrocytes after injection of saporin into the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Susan Jones
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - William T Talman
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
- Neurology Service, Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
14
|
Cupino TL, Watson BA, Cupino AC, Oda K, Ghamsary MG, Soriano S, Kirsch WM. Stability and bioactivity of chitosan as a transfection agent in primary human cell cultures: A case for chitosan-only controls. Carbohydr Polym 2017; 180:376-384. [PMID: 29103517 DOI: 10.1016/j.carbpol.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
Chitosan polymers (Cs), from which microparticles (CsM) may be precipitated to deliver various intracellular payloads, are generally considered biologically inert. We examined the impact of cell culture conditions on CsM size and the effect of chitosan on CD59 expression in primary human smooth muscle cells. We found that particle concentration and incubation time in biological buffers augmented particle size. Between pH 7.0 and pH 7.5, CsM size increased abruptly. We utilized CsM containing a plasmid with a gene for CD59 (pCsM) to transfect cells. Both CD59 mRNA and the number of CD59-positive cells were increased after pCsM treatment. Unexpectedly, CsM also augmented the number of CD59-positive cells. Cs alone enhanced CD59 expression more potently than either pCSM or CsM. This observation strongly suggests that chitosan is in fact bioactive and that chitosan-only controls should be included to avoid misattributing the activity of the delivery agent with that of the payload.
Collapse
Affiliation(s)
- Tanya L Cupino
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| | - Billy A Watson
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Alan C Cupino
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Keiji Oda
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Mark G Ghamsary
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States (Retired)
| | - Salvador Soriano
- Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Wolff M Kirsch
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
15
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
16
|
Wang Z, Zhao J, Sun J, Nie S, Li K, Gao F, Zhang T, Duan S, Di Y, Huang Y, Gao X. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation. Neurosci Lett 2016; 621:47-53. [PMID: 27080431 DOI: 10.1016/j.neulet.2016.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/16/2022]
Abstract
The goal of this study was to investigate the contribution of NOS1AP-promoter DNA methylation to the risk of intracranial aneurysm (IA) and brain arteriovenous malformation (BAVM) in a Han Chinese population. A total of 48 patients with IAs, 22 patients with BAVMs, and 26 control individuals were enrolled in the study. DNA methylation was tested using bisulfite pyrosequencing technology. We detected significantly higher DNA methylation levels in BAVM patients than in IA patients based on the multiple testing correction (CpG4-5 methylation: 5.86±1.04% vs. 4.37±2.64%, P=0.006). In women, CpG4-5 methylation levels were much lower in IA patients (3.64±1.97%) than in BAVM patients (6.11±1.20%, P<0.0001). However, in men, CpG1-3 methylation levels were much higher in the controls (6.92±0.78%) than in BAVM patients (5.99±0.70%, P=0.008). Additionally, there was a gender-based difference in CpG1 methylation within the controls (men vs. women: 5.75±0.50% vs. 4.99±0.53%, P=0.003) and BAVM patients (men vs. women: 4.70±0.74% vs. 5.50±0.87%, P=0.026). A subgroup analysis revealed significantly higher CpG3 methylation in patients who smoked than in those who did not (P=0.041). Our results suggested that gender modulated the interaction between NOS1AP promoter DNA methylation in IA and BAVM patients. Our results also confirmed that regular tobacco smoking was associated with increased NOS1AP methylation in humans. Additional studies with larger sample sizes are required to replicate and extend these findings.
Collapse
Affiliation(s)
- Zhepei Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Jikuang Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Keqing Li
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Feng Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Tiefeng Zhang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China
| | - Shiwei Duan
- Zhejiang provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yazhen Di
- Department of Pediatric Rheumatoid Immunology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315010, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China.
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
17
|
Radu BM, Banciu A, Banciu DD, Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:137-67. [PMID: 26920689 DOI: 10.1016/bs.apcsb.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mihai Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Life and Environmental Physics, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Magurele, Romania.
| |
Collapse
|