1
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
2
|
Huo J, Molkentin JD. MCU genetically altered mice suggest how mitochondrial Ca 2+ regulates metabolism. Trends Endocrinol Metab 2024; 35:918-928. [PMID: 38688781 PMCID: PMC11490413 DOI: 10.1016/j.tem.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Skeletal muscle has a major impact on total body metabolism and obesity, and is characterized by dynamic regulation of substrate utilization. While it is accepted that acute increases in mitochondrial matrix Ca2+ increase carbohydrate usage to augment ATP production, recent studies in mice with deleted genes for components of the mitochondrial Ca2+ uniporter (MCU) complex have suggested a more complicated regulatory scenario. Indeed, mice with a deleted Mcu gene in muscle, which lack acute mitochondrial Ca2+ uptake, have greater fatty acid oxidation (FAO) and less adiposity. By contrast, mice deleted for the inhibitory Mcub gene in skeletal muscle, which have greater acute mitochondrial Ca2+ uptake, antithetically display reduced FAO and progressive obesity. In this review we discuss the emerging concept that dynamic fluxing of mitochondrial matrix Ca2+ regulates metabolism.
Collapse
Affiliation(s)
- Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Feldman JM, Frishman WH, Aronow WS. Ninerafaxstat in the Treatment of Diabetic Cardiomyopathy and Nonobstructive Hypertrophic Cardiomyopathy. Cardiol Rev 2024:00045415-990000000-00318. [PMID: 39194232 DOI: 10.1097/crd.0000000000000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Ninerafaxstat is a novel mitotrope under investigation in 2 large clinical trials: IMPROVE-DiCE (a phase IIa trial investigating ninerafaxstat) and IMPROVE-hypertrophic cardiomyopathy (HCM). IMPROVE-DiCE is a single-center, open-label, phase 2a trial investigating the effectiveness of ninerafaxstat in diabetic cardiomyopathy. Ninerafaxstat significantly improved phosphocreatine/adenosine triphosphate median by 32% (P < 0.01) and reduced myocardial triglyceride content by 34% (P = 0.026). Magnetic resonance imaging (MRI) analysis showed improved left ventricular peak circumferential diastolic strain rate by 15% (P < 0.047) and peak left ventricular filling rate by 11% (P < 0.05). Pyruvate dehydrogenase flux was increased in 7 of 9 patients (P = 0.08), consistent with improved glucose utilization. IMPROVE-HCM (ninerafaxstat safe, effective for nonobstructive hypertrophic cardiomyopathy patients) is a phase 2, multicenter, randomized controlled and double-blinded study. From baseline to 12 weeks, ninerafaxstat was associated with a significantly improved ventilatory efficiency slope compared with placebo (P = 0.006). In a post hoc analysis with 35 patients with baseline Kansas City Cardiomyopathy Questionnaire score ≤80, changes in ventilatory efficiency slope favored ninerafaxstat versus placebo (P = 0.02). Left atrial size, a surrogate marker of diastolic dysfunction, was significantly decreased in patients on ninerafaxstat versus placebo (P = 0.01). These findings support a larger phase 3 study in symptomatic nonobstructive HCM patients to further investigate ninerafaxstat. Several drugs that also improve glucose utilization including fatty acid oxidation inhibitors, carnitine palmitoyltransferase I inhibitors, and glucagon-like peptide-1 receptor agonists are presently under investigation in clinical trials.
Collapse
Affiliation(s)
- Jared M Feldman
- From the Department of Medicine, Long Island Jewish Medical Center and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Daniel O Cervantes
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Benjamin Buck
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
5
|
Bahrami HSZ, Hasselbalch RB, Søholm H, Thomsen JH, Sørgaard M, Kofoed KF, Valeur N, Boesgaard S, Fry NAS, Møller JE, Raja AA, Køber L, Iversen K, Rasmussen H, Bundgaard H. First-In-Man Trial of β3-Adrenoceptor Agonist Treatment in Chronic Heart Failure: Impact on Diastolic Function. J Cardiovasc Pharmacol 2024; 83:466-473. [PMID: 38452283 DOI: 10.1097/fjc.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
ABSTRACT Diastolic dysfunction (DD) in heart failure is associated with increased myocardial cytosolic calcium and calcium-efflux through the sodium-calcium exchanger depends on the sodium gradient. Beta-3-adrenoceptor (β3-AR) agonists lower cytosolic sodium and have reversed organ congestion. Accordingly, β3-AR agonists might improve diastolic function, which we aimed to assess. In a first-in-man, randomized, double-blinded trial, we assigned 70 patients with HF with reduced ejection fraction, New York Heart Association II-III, and left ventricular ejection fraction <40% to receive the β3-AR agonist mirabegron (300 mg/day) or placebo for 6 months, in addition to recommended heart failure therapy. We performed echocardiography and cardiac computed tomography and measured N-terminal probrain natriuretic peptide at baseline and follow-up. DD was graded per multiple renowned algorithms. Baseline and follow-up data were available in 57 patients (59 ± 11 years, 88% male, 49% ischemic heart disease). No clinically significant changes in diastolic measurements were found within or between the groups by echocardiography (E/e' placebo: 13 ± 7 to 13 ± 5, P = 0.21 vs. mirabegron: 12 ± 6 to 13 ± 8, P = 0.74, between-group follow-up difference 0.2 [95% CI, -3 to 4], P = 0.89) or cardiac computed tomography (left atrial volume index: between-group follow-up difference 9 mL/m 2 [95% CI, -3 to 19], P = 0.15). DD gradings did not change within or between the groups following 2 algorithms ( P = 0.72, P = 0.75). N-terminal probrain natriuretic peptide remained unchanged in both the groups ( P = 0.74, P = 0.64). In patients with HF with reduced ejection fraction, no changes were identified in diastolic measurements, gradings or biomarker after β3-AR stimulation compared with placebo. The findings add to the previous literature questioning the role of impaired Na + -Ca 2+ -mediated calcium export as a major culprit in DD. NCT01876433.
Collapse
Affiliation(s)
- Hashmat Sayed Zohori Bahrami
- Department of Cardiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Søholm
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | - Jakob Hartvig Thomsen
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mathias Sørgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Fuglsang Kofoed
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nana Valeur
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Boesgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Natasha Alexandria Sarah Fry
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, St Leonards, NSW, Australia ; and
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Axelsson Raja
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Emergency Medicine, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Helge Rasmussen
- Department of Cardiology, Royal North Shore Hospital and University of Sydney, St Leonards, NSW, Australia ; and
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Henry JA, Couch LS, Rider OJ. Myocardial Metabolism in Heart Failure with Preserved Ejection Fraction. J Clin Med 2024; 13:1195. [PMID: 38592048 PMCID: PMC10931709 DOI: 10.3390/jcm13051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent and now accounts for half of all heart failure cases. This rise is largely attributed to growing rates of obesity, hypertension, and diabetes. Despite its prevalence, the pathophysiological mechanisms of HFpEF are not fully understood. The heart, being the most energy-demanding organ, appears to have a compromised bioenergetic capacity in heart failure, affecting all phenotypes and aetiologies. While metabolic disturbances in heart failure with reduced ejection fraction (HFrEF) have been extensively studied, similar insights into HFpEF are limited. This review collates evidence from both animal and human studies, highlighting metabolic dysregulations associated with HFpEF and its risk factors, such as obesity, hypertension, and diabetes. We discuss how changes in substrate utilisation, oxidative phosphorylation, and energy transport contribute to HFpEF. By delving into these pathological shifts in myocardial energy production, we aim to reveal novel therapeutic opportunities. Potential strategies include modulating energy substrates, improving metabolic efficiency, and enhancing critical metabolic pathways. Understanding these aspects could be key to developing more effective treatments for HFpEF.
Collapse
Affiliation(s)
- John Aaron Henry
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
- Department of Cardiology, Jersey General Hospital, Gloucester Street, St. Helier JE1 3QS, Jersey, UK
| | - Liam S. Couch
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| |
Collapse
|
7
|
Meng S, Yu Y, Yu S, Zhu S, Shi M, Xiang M, Ma H. Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure. J Cardiovasc Transl Res 2024; 17:36-55. [PMID: 37843752 DOI: 10.1007/s12265-023-10443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The heart is the most energy-demanding organ throughout the whole body. Perturbations or failure in energy metabolism contributes to heart failure (HF), which represents the advanced stage of various heart diseases. The poor prognosis and huge economic burden associated with HF underscore the high unmet need to explore novel therapies targeting metabolic modulators beyond conventional approaches focused on neurohormonal and hemodynamic regulators. Emerging evidence suggests that alterations in metabolic substrate reliance, metabolic pathways, metabolic by-products, and energy production collectively regulate the occurrence and progression of HF. In this review, we provide an overview of cardiac metabolic remodeling, encompassing the utilization of free fatty acids, glucose metabolism, ketone bodies, and branched-chain amino acids both in the physiological condition and heart failure. Most importantly, the latest advances in pharmacological interventions are discussed as a promising therapeutic approach to restore cardiac function, drawing insights from recent basic research, preclinical and clinical studies.
Collapse
Affiliation(s)
- Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mengjia Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
8
|
Kourampi I, Katsioupa M, Oikonomou E, Tsigkou V, Marinos G, Goliopoulou A, Katsarou O, Kalogeras K, Theofilis P, Tsatsaragkou A, Siasos G, Tousoulis D, Vavuranakis M. The Role of Ranolazine in Heart Failure-Current Concepts. Am J Cardiol 2023; 209:92-103. [PMID: 37844876 DOI: 10.1016/j.amjcard.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.
Collapse
Affiliation(s)
- Islam Kourampi
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
9
|
Akhtar MS, Alavudeen SS, Raza A, Imam MT, Almalki ZS, Tabassum F, Iqbal MJ. Current understanding of structural and molecular changes in diabetic cardiomyopathy. Life Sci 2023; 332:122087. [PMID: 37714373 DOI: 10.1016/j.lfs.2023.122087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Diabetic Mellitus has been characterized as the most prevalent disease throughout the globe associated with the serious morbidity and mortality of vital organs. Cardiomyopathy is the major leading complication of diabetes and within this, myocardial dysfunction or failure is the leading cause of the emergency hospital admission. The review is aimed to comprehend the perspectives associated with diabetes-induced cardiovascular complications. The data was collected from several electronic databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc. using the keywords such as diabetes and its associated complication, the prevalence of diabetes, the anatomical and physiological mechanism of diabetes-induced cardiomyopathy, the molecular mechanism of diabetes-induced cardiomyopathy, oxidative stress, and inflammatory stress, etc. The collected scientific data was screened by different experts based on the inclusion and exclusion criteria of the study. This review findings revealed that diabetes is associated with inefficient substrate utilization, inability to increase glucose metabolism and advanced glycation end products within the diabetic heart resulting in mitochondrial uncoupling, glucotoxicity, lipotoxicity, and initially subclinical cardiac dysfunction and finally in overt heart failure. Furthermore, several factors such as hypertension, overexpression of renin angiotensin system, hypertrophic obesity, etc. have been seen as majorly associated with cardiomyopathy. The molecular examination showed biochemical disability and generation of the varieties of free radicals and inflammatory cytokines and becomes are the substantial causes of cardiomyopathy. This review provides a better understanding of the involved pathophysiology and offers an open platform for discussing and targeting therapy in alleviating diabetes-induced early heart failure or cardiomyopathy.
Collapse
Affiliation(s)
- Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia.
| | - Sirajudeen S Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Ziad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Al Qassim 51418, Saudi Arabia; Department of Pharmacology, Vision College, Ishbilia, Riyadh 13226-3830, Saudi Arabia
| | - Mir Javid Iqbal
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Popoiu TA, Maack C, Bertero E. Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1235188. [PMID: 39086688 PMCID: PMC11285591 DOI: 10.3389/fmmed.2023.1235188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/02/2024]
Abstract
The energy demand of cardiomyocytes changes continuously in response to variations in cardiac workload. Cardiac excitation-contraction coupling is fueled primarily by adenosine triphosphate (ATP) production by oxidative phosphorylation in mitochondria. The rate of mitochondrial oxidative metabolism is matched to the rate of ATP consumption in the cytosol by the parallel activation of oxidative phosphorylation by calcium (Ca2+) and adenosine diphosphate (ADP). During cardiac workload transitions, Ca2+ accumulates in the mitochondrial matrix, where it stimulates the activity of the tricarboxylic acid cycle. In this review, we describe how mitochondria internalize and extrude Ca2+, the relevance of this process for ATP production and redox homeostasis in the healthy heart, and how derangements in ion handling cause mitochondrial and cardiomyocyte dysfunction in heart failure.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
11
|
Oksen D, Aslan M, Ozmen E, Yavuz YE. Ranolazine improved left ventricular diastolic functions and ventricular repolarization indexes in patients with coronary slow flow. Front Cardiovasc Med 2023; 10:1207580. [PMID: 37671136 PMCID: PMC10475721 DOI: 10.3389/fcvm.2023.1207580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Coronary slow flow (CSF) is a condition commonly encountered during angiography. Recent studies have shown the adverse effects of CSF on left ventricular diastolic functions. CSF reportedly increases the novel ventricular repolarization parameters. Ranolazine is a preparation with a prominent anti-anginal activity that has positive effects on anti-arrhythmic and diastolic parameters. In this context, this study was carried out to investigate the effects of ranolazine on left ventricular diastolic functions and repolarization in patients with CSF. Material and methods Forty-six patients with CSF and 29 control subjects were included in the patient and control groups, respectively. Both groups received ranolazine for one month and were evaluated using 12-lead electrocardiography, conventional echocardiography, and tissue Doppler imaging at the baseline and after one month of ranolazine treatment. Results Corrected P, QT dispersion, and Tp-e interval values were significantly higher in the patient group than in the control group. There was a significant decrease in isovolumic relaxation time (IVRT) and deceleration time (DT) values after the ranolazine treatment compared to the baseline values in the patient group but not the control group. A significant increase was observed in the mean E and A velocities and the mean E/A ratio after the ranolazine treatment compared to the baseline values in the patient group. Additionally, there was a significant difference between the Tp-e interval and corrected P dispersion values measured after the ranolazine treatment compared to the baseline values in the patient group but not in the control group. Conclusion This study's findings demonstrated that ranolazine positively affected impaired diastolic functions and repolarization parameters, particularly in patients with CSF.
Collapse
Affiliation(s)
- Dogac Oksen
- Department of Cardiology, Faculty of Medicine, Altınbaş University, Istanbul, Türkiye
| | - Muzaffer Aslan
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| | - Emre Ozmen
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| | - Yunus Emre Yavuz
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| |
Collapse
|
12
|
Fan L, Meng C, Wang X, Wang Y, Li Y, Lv S, Zhang J. Driving force of deteriorated cellular environment in heart failure: Metabolic remodeling. Clinics (Sao Paulo) 2023; 78:100263. [PMID: 37557005 PMCID: PMC10432917 DOI: 10.1016/j.clinsp.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.
Collapse
Affiliation(s)
- Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Vaz-Salvador P, Adão R, Vasconcelos I, Leite-Moreira AF, Brás-Silva C. Heart Failure with Preserved Ejection Fraction: a Pharmacotherapeutic Update. Cardiovasc Drugs Ther 2023; 37:815-832. [PMID: 35098432 PMCID: PMC8801287 DOI: 10.1007/s10557-021-07306-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
While guidelines for management of heart failure with reduced ejection fraction (HFrEF) are consensual and have led to improved survival, treatment options for heart failure with preserved ejection fraction (HFpEF) remain limited and aim primarily for symptom relief and improvement of quality of life. Due to the shortage of therapeutic options, several drugs have been investigated in multiple clinical trials. The majority of these trials have reported disappointing results and have suggested that HFpEF might not be as simply described by ejection fraction as previously though. In fact, HFpEF is a complex clinical syndrome with various comorbidities and overlapping distinct phenotypes that could benefit from personalized therapeutic approaches. This review summarizes the results from the most recent phase III clinical trials for HFpEF and the most promising drugs arising from phase II trials as well as the various challenges that are currently holding back the development of new pharmacotherapeutic options for these patients.
Collapse
Affiliation(s)
- Pedro Vaz-Salvador
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês Vasconcelos
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua Do Campo Alegre, 823 4150-180 Porto, Portugal
| |
Collapse
|
14
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
15
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Myocardial metabolism is intricately linked to cardiac function. Perturbations of cardiac energy metabolism result in an energy-starved heart and the development of contractile dysfunction. In this review, we discuss alterations in myocardial energy supply, transcriptional changes in response to different energy demands, and mitochondrial function in the development of heart failure. RECENT FINDINGS Recent studies on substrate modulation through modifying energy substrate supply have shown cardioprotective properties. In addition, large cardiovascular outcome trials of anti-diabetic agents have demonstrated prognostic benefit, suggesting the importance of myocardial metabolism in cardiac function. Understanding molecular and transcriptional controls of cardiac metabolism promises new research avenues for metabolic treatment targets. Future studies assessing the impact of substrate modulation on cardiac energetic status and function will better inform development of metabolic therapies.
Collapse
Affiliation(s)
- Sher May Ng
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Stefan Neubauer
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Cardiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Oliver J Rider
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK.
- Department of Cardiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
17
|
Aimo A, Senni M, Barison A, Panichella G, Passino C, Bayes-Genis A, Emdin M. Management of heart failure with preserved ejection fraction: from neurohormonal antagonists to empagliflozin. Heart Fail Rev 2023; 28:179-191. [PMID: 35488030 PMCID: PMC9902425 DOI: 10.1007/s10741-022-10228-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent syndrome with multifaceted pathophysiology. All approaches to neurohormonal modulation were shown not to improve survival in HFpEF, despite their well-established efficacy in heart failure with reduced ejection fraction (HFrEF). This might be attributed to suboptimal study design, inadequate diagnostic criteria, or statistical power, but is also likely to reflect a lack of consideration for its clinical heterogeneity. The attention then shifted to the phenotypic heterogeneity of HFpEF, with the ultimate goal of developing therapies tailored to individual patient phenotypes. Recently, the sodium-glucose co-transporter-2 inhibitor (SGLT2i) empagliflozin has been found to reduce the combined risk of cardiovascular death or hospitalization for HF in patients with HFpEF, a result driven by a reduction in HF hospitalizations. This paper recapitulates the journey from the failure of trials on neurohormonal antagonists to the attempts of personalized approaches and the new perspectives of SGLT2i therapy for HFpEF.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Senni
- Cardiovascular Department & Cardiology Unit, ASST Papa Giovanni XXIII - Bergamo, Bergamo, Italy
| | - Andrea Barison
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias I Pujol (IGTP), Badalona, Spain
- Hospital Universitari Germans Trias I Pujol, Badalona (Barcelona), Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
18
|
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines 2022; 11:70. [PMID: 36672578 PMCID: PMC9856156 DOI: 10.3390/biomedicines11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem in nearly 50% of patients with heart failure. Therefore, research on new strategies for its diagnosis and management has become imperative in recent years. Few drugs have successfully improved clinical outcomes in this population. Therefore, numerous attempts are being made to find new pharmacological interventions that target the main mechanisms responsible for this disease. In recent years, pathological mechanisms such as cardiac fibrosis and inflammation, alterations in calcium handling, NO pathway disturbance, and neurohumoral or mechanic impairment have been evaluated as new pharmacological targets showing promising results in preliminary studies. This review aims to analyze the new strategies and mechanical devices, along with their initial results in pre-clinical and different phases of ongoing clinical trials for HFpEF patients. Understanding new mechanisms to generate interventions will allow us to create methods to prevent the adverse outcomes of this silent pandemic.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Esteban Romero-Hernández
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sebastián Weitz-Muñoz
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Martín Reyes
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Diego Vergara
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sergio Bustamante
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Marcelo Llancaqueo
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
19
|
Zhan Q, Peng W, Wang S, Gao J. Heart Failure with Preserved Ejection Fraction: Pathogenesis, Diagnosis, Exercise, and Medical Therapies. J Cardiovasc Transl Res 2022; 16:310-326. [PMID: 36171526 DOI: 10.1007/s12265-022-10324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of total heart failure cases, with a high prevalence and poor prognosis, especially in older and female patients. Patients with HFpEF are characterized by hypertension, left ventricular hypertrophy, and diastolic dysfunction, and the main symptoms are dyspnea and exercise intolerance. HFpEF is currently poorly studied, and pharmacological treatment for HFpEF is still underexplored. Accumulating clinical trials have shown that exercise could exert benefits on diastolic dysfunction and quality of life in patients with HFpEF. However, there is a high limitation for applying exercise therapy due to exercise intolerance in patients with HFpEF. Key effectors of exercise-protection could be novel therapeutic targets for developing drugs to prevent and treat HFpEF. In this review article, we provide an overview of the pathogenic factors, diagnostic methods, research animal models, the mechanisms of exercise-mediated cardiac protection, and current treatments for HFpEF.
Collapse
Affiliation(s)
- Qingyi Zhan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wenjing Peng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
21
|
Cervantes DO, Pizzo E, Ketkar H, Parambath SP, Tang S, Cianflone E, Cannata A, Vinukonda G, Jain S, Jacobson JT, Rota M. Scn1b expression in the adult mouse heart modulates Na + influx in myocytes and reveals a mechanistic link between Na + entry and diastolic function. Am J Physiol Heart Circ Physiol 2022; 322:H975-H993. [PMID: 35394857 PMCID: PMC9076421 DOI: 10.1152/ajpheart.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC β1- and β1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of β1/β1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC β1/β1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel β1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of β1-subunits in the physiology of the heart.
Collapse
Affiliation(s)
| | - Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Eleonora Cianflone
- Department of Physiology, New York Medical College, Valhalla, New York
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Antonio Cannata
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | | | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
22
|
Das BB. Therapeutic Approaches in Heart Failure with Preserved Ejection Fraction (HFpEF) in Children: Present and Future. Paediatr Drugs 2022; 24:235-246. [PMID: 35501560 DOI: 10.1007/s40272-022-00508-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
For a long time, pediatric heart failure (HF) with preserved systolic function (HFpEF) has been noted in patients with cardiomyopathies and congenital heart disease. HFpEF is infrequently reported in children and instead of using the HFpEF terminology the HF symptoms are attributed to diastolic dysfunction. Identifying HFpEF in children is challenging because of heterogeneous etiologies and unknown pathophysiological mechanisms. Advances in echocardiography and cardiac magnetic resonance imaging techniques have further increased our understanding of HFpEF in children. However, the literature does not describe the incidence, etiology, clinical features, and treatment of HFpEF in children. At present, treatment of HFpEF in children is extrapolated from clinical trials in adults. There are significant differences between pediatric and adult HF with reduced ejection fraction, supported by a lack of adequate response to adult HF therapies. Evidence-based clinical trials in children are still not available because of the difficulty of conducting trials with a limited number of pediatric patients with HF. The treatment of HFpEF in children is based upon the clinician's experience, and the majority of children receive off-level medications. There are significant differences between pediatric and adult HFpEF pharmacotherapies in many areas, including side-effect profiles, underlying pathophysiologies, the β-receptor physiology, and pharmacokinetics and pharmacodynamics. This review describes the present and future treatments for children with HFpEF compared with adults. This review also highlights the need to urgently test new therapies in children with HFpEF to demonstrate the safety and efficacy of drugs and devices with proven benefits in adults.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS, 39216, USA.
| |
Collapse
|
23
|
Aronow WS, Lloji A, Sreenivasan J, Novograd J, Pan S, Lanier GM. Heart failure with preserved ejection fraction: key stumbling blocks for experimental drugs in clinical trials. Expert Opin Investig Drugs 2022; 31:463-474. [PMID: 35443138 DOI: 10.1080/13543784.2022.2069009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Heart failure with preserved ejection fraction (HFpEF) is a disease process with a high prevalence. Accounting for more than 50% of all heart failure cases, it carries a significant mortality. So far, there has been a lack of therapeutic options that truly show improvement in morbidity and mortality. Certain novel therapies have shown a decrease in heart failure hospitalizations, however, this beneficial effect was more pronounced for heart failure patients with mildly reduced ejection fraction (EF). AREAS COVERED This review summarizes the pathophysiology of the disease to help elucidate the differences between heart failure with reduced ejection fraction (HFrEF), and HFpEF, which could explain why therapies are successful in one (rather than the other). At the focus of this review are non-standardized nomenclature across major trials, the challenges of finding a therapeutic agent for such a heterogeneous population, and identification of specific phenotypes that have different outcomes and could be a target for future therapies. EXPERT OPINION Lack of standardized diagnostic criteria, associated with population heterogeneity, might explain why trials have failed to improve outcomes for patients with HFpEF. Standardizing phenotypes and recapitulating these phenotypes in animal models, as well as understanding the mechanisms of the disease at the molecular level could be the first steps in identifying promising therapeutic options.
Collapse
Affiliation(s)
- Wilbert S Aronow
- Westchester Medical Center, New York Medical College,New York, USA
| | - Amanda Lloji
- Westchester Medical Center, New York Medical College,New York, USA
| | | | - Joel Novograd
- Westchester Medical Center, New York Medical College,New York, USA
| | - Stephen Pan
- Westchester Medical Center, New York Medical College,New York, USA
| | - Gregg M Lanier
- Westchester Medical Center, New York Medical College,New York, USA
| |
Collapse
|
24
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
25
|
Boulmpou A, Theodorakopoulou MP, Alexandrou ME, Boutou AK, Papadopoulos CE, Pella E, Sarafidis P, Vassilikos V. Meta-analysis addressing the impact of cardiovascular-acting medication on peak oxygen uptake of patients with HFpEF. Heart Fail Rev 2022; 27:609-623. [DOI: 10.1007/s10741-021-10207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
|
26
|
Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1352-1371. [PMID: 34556322 PMCID: PMC8528638 DOI: 10.1016/j.jacc.2021.07.042] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Coronary microvascular dysfunction (CMD) encompasses several pathogenetic mechanisms involving coronary microcirculation and plays a major role in determining myocardial ischemia in patients with angina without obstructive coronary artery disease, as well as in several other conditions, including obstructive coronary artery disease, nonischemic cardiomyopathies, takotsubo syndrome, and heart failure, especially the phenotype associated with preserved ejection fraction. Unfortunately, despite the identified pathophysiological and prognostic role of CMD in several conditions, to date, there is no specific treatment for CMD. Due to the emerging role of CMD as common denominator in different clinical phenotypes, additional research in this area is warranted to provide personalized treatments in this "garden variety" of patients. The purpose of this review is to describe the pathophysiological mechanisms of CMD and its mechanistic and prognostic role across different cardiovascular diseases. We will also discuss diagnostic modalities and the potential therapeutic strategies resulting from recent clinical studies.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy. https://twitter.com/marcodelbuono3
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia, USA; VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carl J Lavie
- Department of Cardiovascular Diseases, Ochsner Clinical School, New Orleans, Louisiana, USA
| | | | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
27
|
Mesquita T, Lin Y, Ibrahim A. Chronic low-grade inflammation in heart failure with preserved ejection fraction. Aging Cell 2021; 20:e13453. [PMID: 34382743 PMCID: PMC8441359 DOI: 10.1111/acel.13453] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low-grade inflammation, as occurs with aging (termed "inflammaging"), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome-immune signaling axis on the age-dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age-dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.
Collapse
Affiliation(s)
- Thassio Mesquita
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Yen‐Nien Lin
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
- Division of Cardiovascular MedicineDepartment of MedicineChina Medical University and HospitalTaichungTaiwan
| | - Ahmed Ibrahim
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| |
Collapse
|
28
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
29
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
30
|
Baral N, Gautam S, Yadav SA, Poudel S, Adhikari G, Rauniyar R, Savarapu P, Katel A, Paudel AC, Parajuli PR. Pharmacotherapies in Heart Failure With Preserved Ejection Fraction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cureus 2021; 13:e13604. [PMID: 33816003 PMCID: PMC8009057 DOI: 10.7759/cureus.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) causes significant cardiovascular morbidity and mortality. It is a growing problem in the developed world, especially, in the aging population. There is a paucity of data on the treatment of patients with HFpEF. We aimed to identify pharmacotherapies that improve peak oxygen consumption (peak VO2), cardiovascular mortality, and HF hospitalizations in patients with HFpEF. METHODS We conducted a systematic literature search for English studies in PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, Scopus, and Google scholar. We searched databases using terms relating to or describing HFpEF, stage C HFpEF, and diastolic HF and included only randomized controlled trials (RCTs). RevMan 5.4 (The Cochrane Collaboration, 2020, London, UK) was used for data analysis, and two independent investigators performed literature retrieval and data-extraction. We used PRISMA guidelines to report the outcomes. We included 14 articles in our systematic review and six studies in meta-analysis. RESULTS We calculated the pooled mean difference (MD) of peak VO2 between placebo and pharmacotherapies. Our meta-analysis showed that the peak VO2 was comparable between pharmacotherapies and placebo in HFpEF (MD = 0.09, 95% CI: -0.11, 0.30, I2 =28%). Our systematic review highlights that statins and spironolactone use should be further studied in larger RCTs due to their potential beneficial effect on all-cause mortality and hospitalizations, respectively. CONCLUSION Compared to placebo, none of the pharmacotherapies significantly improved peak VO2 in HFpEF except ivabradine. In our meta-analysis, the pooled improvement in peak VO2 is non-significant. This needs validation with larger studies. We are lacking larger studies on pharmacotherapies that improve peak VO2 in HFpEF. Statin and spironolactone should be further studied in patients with HFpEF as few trials have shown improvement in all-cause mortality and reduction in HF hospitalizations in selected patients, respectively.
Collapse
Affiliation(s)
- Nischit Baral
- Internal Medicine, McLaren Health Care, Flint/Michigan State University, Michigan, USA
| | - Swotantra Gautam
- General Medicine, B. P. Koirala Institute of Health Sciences, Dharan, NPL
| | - Saroj A Yadav
- General Medicine, Patan Academy of Health Sciences, Kathmandu, NPL
| | - Sangeeta Poudel
- General Medicine, KIST Medical College/Tribhuvan University, Kathmandu, NPL
| | - Govinda Adhikari
- Internal Medicine, McLaren Flint/Michigan State University, Flint, USA
| | - Rohit Rauniyar
- Internal Medicine, McLaren Flint/Michigan State University, Flint, USA
| | - Pramod Savarapu
- Internal Medicine, McLaren Flint/Michigan State University, Flint, USA
| | - Anjan Katel
- Internal Medicine, Kathmandu University School of Medical Sciences, Dhulikhel, NPL
| | - Anish C Paudel
- Internal Medicine, Reading Hospital Tower Health, Reading, USA
| | - Prem R Parajuli
- Internal Medicine, Reading Hospital Tower Health, Reading, USA
| |
Collapse
|
31
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Chen M, Ou L, Chen Y, Men L, Zhong X, Yang S, Luan J. Effectiveness and safety of Baduanjin exercise (BDJE) on heart failure with preserved left ventricular ejection fraction (HFpEF): A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22994. [PMID: 33181663 PMCID: PMC7668503 DOI: 10.1097/md.0000000000022994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nearly half of the heart failure (HF) patients have been classified as HF with preserved left ventricular ejection fraction (HFpEF) and the prevalence has been increasing over time. The subject of this study is to assess the clinical effectiveness and safety of Baduanjin exercise (BDJE), as a kind of traditional Chinese exercises, for HFpEF patients. METHODS A systematic literature search for articles up to September 2020 will be performed in following electronic databases: PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP) Database, Chinese Biomedical Database (CBM), Chinese Biomedical Literature Service System (SinoMed) and Wanfang Database. Inclusion criteria are randomized controlled trials of BDJE applied on HFpEF patients. The primary outcome measures will be exercise capacity (cardiopulmonary exercise test or 6-minute walking test) and quality of life. The secondary outcomes will be as the following: blood pressure, heart rate, echocardiography, endothelial function, arterial stiffness and hypersensitive C-reactive protein and N-Terminal pro-B-type natriuretic peptide. The safety outcome measures will be adverse events, liver and kidney function. RevMan 5.3 software will be used for data synthesis, sensitivity analysis, subgroup analysis and risk of bias assessment. A funnel plot will be developed to evaluate reporting bias. Stata 12.0 will be used for meta-regression and Egger tests. We will use the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to assess the quality of evidence. CONCLUSION The study will give an explicit evidence to evaluate the effectiveness and safety of BDJE for HFpEF patients. ETHICS AND DISSEMINATION This systematic review does not require ethics approval and will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER PROSPERO CRD42020200324.
Collapse
Affiliation(s)
| | - Lijun Ou
- Department of Cardiovascular Disease
| | | | | | - Xiaoling Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | | | | |
Collapse
|
33
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Castro-Torres Y, Katholi RE. Recently Approved and Under Investigation Drugs for Treating Patients with Heart Failure. Curr Cardiol Rev 2020; 16:202-211. [PMID: 32351188 PMCID: PMC7536816 DOI: 10.2174/1573403x14666180702151626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Heart Failure (HF) represents a leading cause of morbidity and mortality worldwide. Despite the recent advances in the treatment of this condition, patients´ prognosis remains unfavorable in most cases. Sacubitril/valsartan and ivabradine have been recently approved to improve clinical outcomes in patients with HF with reduced ejection fraction. Drugs under investigation for treating patients with HF encompass many novel mechanisms including vasoactive peptides, blocking inflammatory- mediators, natriuretic peptides, selective non-steroidal mineralocorticoid-receptor antagonists, myocardial β3 adrenoreceptor agonists, inhibiting the cytochrome C/cardiolipin peroxidase complex, neuregulin-1/ErbB signaling and inhibiting late inward sodium current. The aim of this manuscript is to review the main drugs under investigation for the treatment of patients with HF and give perspectives for their implementation into clinical practice.
Collapse
Affiliation(s)
- Yaniel Castro-Torres
- Servicio de Cardiología, Hospital Universitario Celestino Hernández Robau, Santa Clara, Villa Clara, Cuba
| | - Richard E Katholi
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, IL 62702, United States
| |
Collapse
|
35
|
López-Patiño HG, Niño-Pulido CD, Vásquez-Trespalacios EM, Aristizábal-Aristizábal JM, Duque-Ramírez M. Disfunción diastólica y relación con arritmias: un vínculo más allá de la fibrilación auricular. REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [DOI: 10.1016/j.rccar.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Zhabyeyev P, Chen X, Vanhaesebroeck B, Oudit GY. PI3Kα in cardioprotection: Cytoskeleton, late Na + current, and mechanism of arrhythmias. Channels (Austin) 2020; 13:520-532. [PMID: 31790629 PMCID: PMC6930018 DOI: 10.1080/19336950.2019.1697127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
38
|
Contribution of the neuronal sodium channel Na V1.8 to sodium- and calcium-dependent cellular proarrhythmia. J Mol Cell Cardiol 2020; 144:35-46. [PMID: 32418916 DOI: 10.1016/j.yjmcc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myocardial pathology such as heart failure a late sodium current (INaL) augmentation is known to be involved in conditions of arrhythmogenesis. However, the underlying mechanisms of the INaL generation are not entirely understood. By now evidence is growing that non-cardiac sodium channel isoforms could also be involved in the INaL generation. The present study investigates the contribution of the neuronal sodium channel isoform NaV1.8 to arrhythmogenesis in a clearly-defined setting of enhanced INaL by using anemone toxin II (ATX-II) in the absence of structural heart disease. METHODS Electrophysiological experiments were performed in order to measure INaL, action potential duration (APD), SR-Ca2+-leak and cellular proarrhythmic triggers in ATX-II exposed wild-type (WT) and SCN10A-/- mice cardiomyocytes. In addition, WT cardiomyocytes were stimulated with ATX-II in the presence or absence of NaV1.8 inhibitors. INCX was measured by using the whole cell patch clamp method. RESULTS In WT cardiomyocytes exposure to ATX-II augmented INaL, prolonged APD, increased SR-Ca2+-leak and induced proarrhythmic triggers such as early afterdepolarizations (EADs) and Ca2+-waves. All of them could be significantly reduced by applying NaV1.8 blockers PF-01247324 and A-803467. Both blockers had no relevant effects on cellular electrophysiology of SCN10A-/- cardiomyocytes. Moreover, in SCN10A-/--cardiomyocytes, the ATX-II-dependent increase in INaL, SR-Ca2+-leak and APD prolongation was less than in WT and comparable to the results which were obtained with WT cardiomyocytes being exposed to ATX-II and NaV1.8 inhibitors in parallel. Moreover, we found a decrease in reverse mode NCX current and reduced CaMKII-dependent RyR2-phosphorylation after application of PF-01247324 as an underlying explanation for the Na+-mediated Ca2+-dependent proarrhythmic triggers. CONCLUSION The current findings demonstrate that NaV1.8 is a significant contributor for INaL-induced arrhythmic triggers. Therefore, NaV1.8 inhibition under conditions of an enhanced INaL constitutes a promising antiarrhythmic strategy which merits further investigation.
Collapse
|
39
|
Murabito A, Hirsch E, Ghigo A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front Cardiovasc Med 2020; 7:35. [PMID: 32226791 PMCID: PMC7080657 DOI: 10.3389/fcvm.2020.00035] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac side effects are a major drawback of anticancer therapies, often requiring the use of low and less effective doses or even discontinuation of the drug. Among all the drugs known to cause severe cardiotoxicity are anthracyclines that, though being the oldest chemotherapeutic drugs, are still a mainstay in the treatment of solid and hematological tumors. The recent expansion of the field of Cardio-Oncology, a branch of cardiology dealing with prevention or treatment of heart complications due to cancer treatment, has greatly improved our knowledge of the molecular mechanisms behind anthracycline-induced cardiotoxicity (AIC). Despite excessive generation of reactive oxygen species was originally believed to be the main cause of AIC, recent evidence points to the involvement of a plethora of different mechanisms that, interestingly, mainly converge on deregulation of mitochondrial function. In this review, we will describe how anthracyclines affect cardiac mitochondria and how these organelles contribute to AIC. Furthermore, we will discuss how drugs specifically targeting mitochondrial dysfunction and/or mitochondria-targeted drugs could be therapeutically exploited to treat AIC.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Gollmer J, Zirlik A, Bugger H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44:33-53. [PMID: 32097997 PMCID: PMC7043970 DOI: 10.4093/dmj.2019.0185] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial medicine is increasingly discussed as a promising therapeutic approach, given that mitochondrial defects are thought to contribute to many prevalent diseases and their complications. In individuals with diabetes mellitus (DM), defects in mitochondrial structure and function occur in many organs throughout the body, contributing both to the pathogenesis of DM and complications of DM. Diabetic cardiomyopathy (DbCM) is increasingly recognized as an underlying cause of increased heart failure in DM, and several mitochondrial mechanisms have been proposed to contribute to the development of DbCM. Well established mechanisms include myocardial energy depletion due to impaired adenosine triphosphate (ATP) synthesis and mitochondrial uncoupling, and increased mitochondrial oxidative stress. A variety of upstream mechanisms of impaired ATP regeneration and increased mitochondrial reactive oxygen species have been proposed, and recent studies now also suggest alterations in mitochondrial dynamics and autophagy, impaired mitochondrial Ca²⁺ uptake, decreased cardiac adiponectin action, increased O-GlcNAcylation, and impaired activity of sirtuins to contribute to mitochondrial defects in DbCM, among others. In the current review, we present and discuss the evidence that underlies both established and recently proposed mechanisms that are thought to contribute to mitochondrial dysfunction in DbCM.
Collapse
Affiliation(s)
- Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
41
|
Henning RJ. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World J Cardiol 2020; 12:7-25. [PMID: 31984124 PMCID: PMC6952725 DOI: 10.4330/wjc.v12.i1.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Nearly six million people in United States have heart failure. Fifty percent of these people have normal left ventricular (LV) systolic heart function but abnormal diastolic function due to increased LV myocardial stiffness. Most commonly, these patients are elderly women with hypertension, ischemic heart disease, atrial fibrillation, obesity, diabetes mellitus, renal disease, or obstructive lung disease. The annual mortality rate of these patients is 8%-12% per year. The diagnosis is based on the history, physical examination, laboratory data, echocardiography, and, when necessary, by cardiac catheterization. Patients with obesity, hypertension, atrial fibrillation, and volume overload require weight reduction, an exercise program, aggressive control of blood pressure and heart rate, and diuretics. Miniature devices inserted into patients for pulmonary artery pressure monitoring provide early warning of increased pulmonary pressure and congestion. If significant coronary heart disease is present, coronary revascularization should be considered.
Collapse
Affiliation(s)
- Robert J Henning
- College of Public Health, University of South Florida, Tampa, FL33612, United States
| |
Collapse
|
42
|
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2019; 139:1435-1450. [PMID: 30856000 DOI: 10.1161/circulationaha.118.036259] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of HFpEF and appears to be caused by both cardiac and peripheral abnormalities in the arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to impaired oxygen utilization and the resulting exercise intolerance in HFpEF. We review key aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function, the methods that are currently available to assess mitochondrial function in humans, and the evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We also discuss the role of mitochondrial function as a therapeutic target, some key considerations for the design of early-phase clinical trials using agents that specifically target mitochondrial function to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in HFpEF.
Collapse
Affiliation(s)
- Anupam A Kumar
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Daniel P Kelly
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Julio A Chirinos
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.).,the Hospital of the University of Pennsylvania, Philadelphia (J.C.)
| |
Collapse
|
43
|
Abi-Gerges N, Miller PE, Ghetti A. Human Heart Cardiomyocytes in Drug Discovery and Research: New Opportunities in Translational Sciences. Curr Pharm Biotechnol 2019; 21:787-806. [PMID: 31820682 DOI: 10.2174/1389201021666191210142023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
In preclinical drug development, accurate prediction of drug effects on the human heart is critically important, whether in the context of cardiovascular safety or for the purpose of modulating cardiac function to treat heart disease. Current strategies have significant limitations, whereby, cardiotoxic drugs can escape detection or potential life-saving therapies are abandoned due to false positive toxicity signals. Thus, new and more reliable translational approaches are urgently needed to help accelerate the rate of new therapy development. Renewed efforts in the recovery of human donor hearts for research and in cardiomyocyte isolation methods, are providing new opportunities for preclinical studies in adult primary cardiomyocytes. These cells exhibit the native physiological and pharmacological properties, overcoming the limitations presented by artificial cellular models, animal models and have great potential for providing an excellent tool for preclinical drug testing. Adult human primary cardiomyocytes have already shown utility in assessing drug-induced cardiotoxicity risk and helping in the identification of new treatments for cardiac diseases, such as heart failure and atrial fibrillation. Finally, strategies with actionable decision-making trees that rely on data derived from adult human primary cardiomyocytes will provide the holistic insights necessary to accurately predict human heart effects of drugs.
Collapse
Affiliation(s)
- Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| |
Collapse
|
44
|
Fernandes SL, Carvalho RR, Santos LG, Sá FM, Ruivo C, Mendes SL, Martins H, Morais JA. Pathophysiology and Treatment of Heart Failure with Preserved Ejection Fraction: State of the Art and Prospects for the Future. Arq Bras Cardiol 2019; 114:120-129. [PMID: 31751442 PMCID: PMC7025301 DOI: 10.36660/abc.20190111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/15/2019] [Indexed: 11/18/2022] Open
|
45
|
Upadhya B, Haykowsky MJ, Kitzman DW. Therapy for heart failure with preserved ejection fraction: current status, unique challenges, and future directions. Heart Fail Rev 2019; 23:609-629. [PMID: 29876843 DOI: 10.1007/s10741-018-9714-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF. Among elderly women, HFpEF comprises more than 80% of incident HF cases. Adverse outcomes-exercise intolerance, poor quality of life, frequent hospitalizations, and reduced survival-approach those of classic HF with reduced EF (HFrEF). However, despite its importance, our understanding of the pathophysiology of HFpEF is incomplete, and despite intensive efforts, optimal therapy remains uncertain, as most trials to date have been negative. This is in stark contrast to management of HFrEF, where dozens of positive trials have established a broad array of effective, guidelines-based therapies that definitively improve a range of clinically meaningful outcomes. In addition to providing an overview of current management status, we examine evolving data that may help explain this paradox, overcome past challenges, provide a roadmap for future success, and that underpin a wave of new trials that will test novel approaches based on these insights.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Mark J Haykowsky
- College of Nursing and Health Innovation, University of Texas Arlington, Arlington, TX, USA
| | - Dalane W Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA.
| |
Collapse
|
46
|
Hemodynamic Effects of Late Sodium Current Inhibitors in a Swine Model of Heart Failure. J Card Fail 2019; 25:828-836. [DOI: 10.1016/j.cardfail.2019.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
|
47
|
Abstract
In heart failure, alterations of Na+ and Ca2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca2+ During physiological variations of workload, mitochondrial Ca2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca2+ via the mitochondrial Ca2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca2+ and Na+ handling hampers mitochondrial Ca2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure.
Collapse
Affiliation(s)
- Edoardo Bertero
- From the Comprehensive Heart Failure Center, University Clinic Würzburg, Germany
| | - Christoph Maack
- From the Comprehensive Heart Failure Center, University Clinic Würzburg, Germany.
| |
Collapse
|
48
|
Petutschnigg J, Edelmann F. [Heart failure with preserved left ventricular ejection fraction]. Internist (Berl) 2019; 60:925-942. [PMID: 31432196 DOI: 10.1007/s00108-019-0653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heart failure remains the number one diagnosis among patients receiving inpatient treatment in Germany. Heart failure with preserved ejection fraction (HFpEF) needs to be verified by signs and symptoms of HF, echocardiographic parameters as well as cardiac biomarkers. Based on etiological and pathophysiological considerations, a classification into systolic and diastolic heart failure and later heart failure with reduced ejection fraction (HFrEF) and HFpEF was proposed. The inhomogeneous group of patients with HFpEF accounts for half of all heart failure cases in the population. Effective treatment options are limited. This article discusses which verified treatments may help or may even be harmful. A glimpse is taken into the future and those substances that are in advanced stages of clinical trials are described.
Collapse
Affiliation(s)
- Johannes Petutschnigg
- Medizinische Klinik mit Schwerpunkt Kardiologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Deutschland.,Standort Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Deutschland
| | - Frank Edelmann
- Medizinische Klinik mit Schwerpunkt Kardiologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Deutschland. .,Standort Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Deutschland. .,Berliner Institut für Gesundheitsforschung, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland.
| |
Collapse
|
49
|
Abstract
The annual "heart report" published by the German Heart Foundation (Deutsche Herzstiftung) in December 2017 indicates that heart failure (ICD I50) remains the number one diagnosis of in-hospital-treated patients throughout Germany. For some time, the clinical diagnosis of heart failure has been verified by echocardiographic parameters as well as cardiac biomarkers that assist the clinician to rule in or rule out the presence of a failing heart, when used wisely. By introducing the term "heart failure with mid-range ejection fraction" (HFmrEF), the 2016 European Society of Cardiology (ESC) heart failure guidelines established a third heart failure entity, which was not necessarily seen as an improvement by the heart failure community. Nevertheless, half of all patients suffering from heart failure are now classified as having HFmrEF or heart failure with preserved ejection fraction (HFpEF), but the etiology and treatment options differ substantially. To elucidate this issue, the current review aims to highlight the key findings published to date. This should minimize the confusion that may have been generated by the new term "HFmrEF".
Collapse
|
50
|
Zelt JG, Chaudhary KR, Cadete VJ, Mielniczuk LM, Stewart DJ. Medical Therapy for Heart Failure Associated With Pulmonary Hypertension. Circ Res 2019; 124:1551-1567. [DOI: 10.1161/circresaha.118.313650] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason G.E. Zelt
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
| | - Ketul R. Chaudhary
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| | - Virgilio J. Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| | - Lisa M. Mielniczuk
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
| | - Duncan J. Stewart
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| |
Collapse
|