1
|
Groarke JD, Ness KK, Dhaduk R, Plana JC, Durand JB, Luepker RV, Joshi VM, Ehrhardt M, Mulrooney DA, Dixon SB, Nohria A, Green DM, Howell RM, Srivastava DK, Jefferies JL, Robison LL, Hudson MM, Armstrong GT. Autonomic Dysfunction Among Adult Survivors of Childhood Cancer in the St. Jude Lifetime Cohort Study. JACC CardioOncol 2024; 6:775-787. [PMID: 39479326 PMCID: PMC11520214 DOI: 10.1016/j.jaccao.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 11/02/2024] Open
Abstract
Background The burden and functional significance of autonomic dysfunction among survivors of childhood cancer is unknown. Objectives We evaluated the prevalence, risk factors, and functional relevance of autonomic dysfunction in survivors. Methods We conducted a cross-sectional prospective evaluation of 1,041 adult survivors of childhood cancer treated with anthracyclines (31.1%), chest-directed radiation (13.5%), both (19.5%), or neither (35.9%), and 286 community control subjects enrolled in the SJLIFE (St Jude Lifetime Cohort Study). Four measures of autonomic dysfunction were evaluated: elevated resting heart rate, decreased heart rate reserve, decreased systolic blood pressure response to exercise, and delayed heart rate recovery. Logistic regression tested associations with impaired cardiorespiratory fitness (peak Vo2 < 80% predicted). Results Survivors (50.7% female) were 9.0 ± 5.8 years at cancer diagnosis and 35.5 ± 8.9 years at evaluation. Prevalence (survivors vs control subjects) of elevated resting heart rate (17.9% vs 7.0%), decreased heart rate reserve (21.7% vs 9.1%), decreased systolic blood pressure response to exercise (25.3% vs 12.6%), and delayed heart rate recovery (24.3% vs 10.6%) was more than 2-fold higher among survivors (P < 0.001 for all). Carboplatin (adjusted OR: 2.50; 95% CI: 1.42-4.40; P = 0.001), chest-directed radiation therapy (adjusted OR: 2.06; 95% CI: 1.52-2.75; P < 0.001), and cranial radiation (adjusted OR: 1.49; 95% CI: 1.08-2.05; P = 0.015) were associated with an increased likelihood of having ≥2 measures of autonomic dysfunction. Survivors with ≥2 measures of autonomic dysfunction were at increased risk for impaired cardiorespiratory fitness (adjusted OR: 2.71; 95% CI: 1.82-4.02; P < 0.001). Conclusions Survivors of childhood cancer manifest a higher prevalence of autonomic dysfunction associated with impaired cardiorespiratory fitness.
Collapse
Affiliation(s)
- John D. Groarke
- Department of Cardiovascular Medicine, Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA (affiliation for J.D.G. at time research was conducted)
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rikeenkumar Dhaduk
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Juan C. Plana
- Division of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jean Bernard Durand
- Division of Cardiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Russell V. Luepker
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vijaya M. Joshi
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Matthew Ehrhardt
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel A. Mulrooney
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stephanie B. Dixon
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Anju Nohria
- Department of Cardiovascular Medicine, Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA (affiliation for J.D.G. at time research was conducted)
| | - Daniel M. Green
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rebecca M. Howell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John L. Jefferies
- Division of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Abdin A, Lauder L, Fudim M, Abraham WT, Anker SD, Böhm M, Mahfoud F. Neuromodulation interventions in the management of heart failure. Eur J Heart Fail 2024; 26:502-510. [PMID: 38247193 DOI: 10.1002/ejhf.3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Despite remarkable improvements in the management of heart failure (HF), HF remains one of the most rapidly growing cardiovascular condition resulting in a substantial burden on healthcare systems worldwide. In clinical practice, however, a relevant proportion of patients are treated with suboptimal combinations and doses lower than those recommended in the current guidelines. Against this background, it remains important to identify new targets and investigate additional therapeutic options to alleviate symptoms and potentially improve prognosis in HF. Therefore, non-pharmacological interventions targeting autonomic imbalance in HF have been evaluated. This paper aims to review the physiology, available clinical data, and potential therapeutic role of device-based neuromodulation in HF.
Collapse
Affiliation(s)
- Amr Abdin
- Internal Medicine Clinic III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Lauder
- Internal Medicine Clinic III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Marat Fudim
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - William T Abraham
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Michael Böhm
- Internal Medicine Clinic III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Felix Mahfoud
- Internal Medicine Clinic III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
3
|
Pahuja M, Akhtar KH, Krishan S, Nasir YM, Généreux P, Stavrakis S, Dasari TW. Neuromodulation Therapies in Heart Failure: A State-of-the-Art Review. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101199. [PMID: 39131073 PMCID: PMC11307467 DOI: 10.1016/j.jscai.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 08/13/2024]
Abstract
Heart failure (HF) continues to impact the population globally with increasing prevalence. While the pathophysiology of HF is quite complex, the dysregulation of the autonomic nervous system, as evident in heightened sympathetic activity, serves as an attractive pathophysiological target for newer therapies and HF. The degree of neurohormonal activation has been found to correlate to the severity of symptoms, decline in functional capacity, and mortality. Neuromodulation of the autonomic nervous system aims to restore the balance between sympathetic nervous system and the parasympathetic nervous system. Given that autonomic dysregulation plays a major role in the development and progression of HF, restoring this balance may potentially have an impact on the core pathophysiological mechanisms and various HF syndromes. Autonomic modulation has been proposed as a potential therapeutic strategy aimed at reduction of systemic inflammation. Such therapies, complementary to drug and device-based therapies may lead to improved patient outcomes and reduce disease burden. Most professional societies currently do not provide a clear recommendation on the use of neuromodulation techniques in HF. These include direct and indirect vagal nerve stimulation, spinal cord stimulation, baroreflex activation therapy, carotid sinus stimulation, aortic arch stimulation, splanchnic nerve modulation, cardiopulmonary nerve stimulation, and renal sympathetic nerve denervation. In this review, we provide a comprehensive overview of neuromodulation in HF.
Collapse
Affiliation(s)
- Mohit Pahuja
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Khawaja Hassan Akhtar
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusra Minahil Nasir
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Philippe Généreux
- Department of Medicine, Section of Cardiovascular Medicine, Morristown Medical Center, Morristown, New Jersey
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W. Dasari
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Arya AV, Bisht H, Tripathi A, Agrawal M, Konat A, Patel J, Mozumder K, Shah D, Chaturvedi D, Sharma K. A Comparative Review of Vagal Nerve Stimulation Versus Baroreceptor Activation Therapy in Cardiac Diseases. Cureus 2023; 15:e40889. [PMID: 37492836 PMCID: PMC10364457 DOI: 10.7759/cureus.40889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Sympathetic imbalance coupled with impairment of baroreceptor control is a key factor responsible for hemodynamic abnormalities in congestive heart failure. Vagal nerve stimulation (VNS) and baroreceptor activation therapy (BAT) are two novel interventions for the same. In this paper, we review the role of sympathovagal alterations in cardiac diseases like heart failure, arrhythmia, hypertension (HTN), etc. Studies like neural cardiac therapy for heart failure (NECTAR-HF), autonomic regulation therapy to enhance myocardial function and reduce progression of heart failure (ANTHEM-HF), and baroreflex activation therapy for heart failure (BEAT-HF), which comprise the history, efficacy, limitations, and current protocols, were extensively analyzed in contrast to one another. Vagal nerve stimulation reverses the reflex inhibition of cardiac vagal efferent activity, which is caused as a result of sympathetic overdrive during the course for heart failure. It has shown encouraging results in certain pre-clinical studies; however, there is also a possibility of serious cardiovascular adverse events if given in higher than the recommended dosage. Attenuated baroreflex sensitivity is attributed to cardiac arrhythmogenesis during heart failure. Baroreceptor activation therapy reverses this phenomenon. However, the surgical procedure for baroreceptor stimulation can have unwarranted complications, including worsening heart failure and hypertension. Considering the effectiveness of the given modalities and taking into account the inconclusive evidence of their adverse events, more clinical trials are needed for establishing the future prospects of these interventional approaches.
Collapse
Affiliation(s)
- Akshat V Arya
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Himanshi Bisht
- Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | | | - Manali Agrawal
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Ashwati Konat
- Zoology, Biomedical Technology and Human Genetics, Gujarat University, Ahmedabad, IND
| | - Jay Patel
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Kamalika Mozumder
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Dhrumil Shah
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Gandhinagar, IND
| | | | - Kamal Sharma
- Cardiology, Kamal Sharma Cardiology Clinic, Ahmedabad, IND
| |
Collapse
|
5
|
Popa IP, Haba MȘC, Mărănducă MA, Tănase DM, Șerban DN, Șerban LI, Iliescu R, Tudorancea I. Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics 2022; 14:1964. [PMID: 36145711 PMCID: PMC9503448 DOI: 10.3390/pharmaceutics14091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) is a progressively deteriorating medical condition that significantly reduces both the patients' life expectancy and quality of life. Even though real progress was made in the past decades in the discovery of novel pharmacological treatments for HF, the prevention of premature deaths has only been marginally alleviated. Despite the availability of a plethora of pharmaceutical approaches, proper management of HF is still challenging. Thus, a myriad of experimental and clinical studies focusing on the discovery of new and provocative underlying mechanisms of HF physiopathology pave the way for the development of novel HF therapeutic approaches. Furthermore, recent technological advances made possible the development of various interventional techniques and device-based approaches for the treatment of HF. Since many of these modern approaches interfere with various well-known pathological mechanisms in HF, they have a real ability to complement and or increase the efficiency of existing medications and thus improve the prognosis and survival rate of HF patients. Their promising and encouraging results reported to date compel the extension of heart failure treatment beyond the classical view. The aim of this review was to summarize modern approaches, new perspectives, and future directions for the treatment of HF.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Mihai Ștefan Cristian Haba
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Maria Tănase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Radu Iliescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
6
|
Geraldes V, Caldeira E, Afonso A, Machado F, Amaro-Leal Â, Laranjo S, Rocha I. Cardiovascular Dysautonomia in Patients with Breast Cancer. Open Cardiovasc Med J 2022. [DOI: 10.2174/18741924-v16-e2206271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most frequent malignant disease among women, being responsible for a considerable percentage of fatalities and comorbidities every year. Despite advances in early detection and therapy, evidence shows that breast cancer survivors are at increased risk of developing other chronic conditions, such as cardiovascular diseases.
Autonomic dysfunction is an emerging, but poorly understood topic that has been suggested as a risk factor for cardiovascular disease in breast cancer patients. It clinically manifests through persistently elevated heart rates and abnormal heart rate variability, even before any signs of cardiovascular dysfunction appear. Since changes in the left ventricular ejection fraction only manifest when myocardial injury has already occurred, it has been hypothesized that autonomic dysfunction can constitute an early biomarker of cardiovascular impairment in breast cancer patients.
This review focuses on the direct and indirect effects of cancer and its treatment on the autonomic nervous system in breast cancer patients. We highlight the mechanisms potentially involved in cancer and antineoplastic therapy-related autonomic imbalance and review the potential strategies to prevent and/or attenuate autonomic dysfunction.
There are gaps in the current knowledge; more research in this area is needed to identify the relevance of autonomic dysfunction and define beneficial interventions to prevent cardiovascular disease in breast cancer patients.
Collapse
|
7
|
Abstract
Autonomic imbalance is a common finding in heart failure (HF) with reduced ejection fraction (HFrEF). Addressing different targets within the autonomic nervous systems has been evaluated in patients with HF, including renal sympathetic denervation, vagal nerve stimulation, and baroreceptor activation therapy (BAT). Although all are pathophysiologically plausible and promising, only BAT shows sufficient evidence for implementation into clinical practice in randomized controlled trials. Baroreceptor activation therapy can be used in patients with symptomatic HFrEF despite optimal guideline-directed medication and device therapy. This article reviews the current and future use of neuromodulation in HF and provides an overview on current guideline recommendations and clinical practice.
Collapse
Affiliation(s)
- David Duncker
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
8
|
Senekovič Kojc T, Marčun Varda N. Novel Biomarkers of Heart Failure in Pediatrics. CHILDREN 2022; 9:children9050740. [PMID: 35626917 PMCID: PMC9139970 DOI: 10.3390/children9050740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
Novel biomarkers of heart failure are the subject of numerous studies. Biomarkers of heart failure can be determined in the blood and in the urine. Seven groups of biomarkers of heart failure based on pathophysiological mechanisms are presented in this review, namely biomarkers of myocardial stretch, myocyte injury, myocardial remodeling, biomarkers of inflammation, renal dysfunction, neurohumoral activation, and oxidative stress. Studies of biomarkers in the pediatric population are scarce, therefore, further investigation is needed for reliable prognostic and therapeutic implications. The future of biomarker use is in multimarker panels that include a combination of biomarkers with different pathophysiological mechanisms in order to improve their diagnostic and prognostic predictive value.
Collapse
Affiliation(s)
- Teja Senekovič Kojc
- Department of Perinatology, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
- Correspondence:
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Verrier RL, Libbus I, Nearing BD, KenKnight BH. Multifactorial Benefits of Chronic Vagus Nerve Stimulation on Autonomic Function and Cardiac Electrical Stability in Heart Failure Patients With Reduced Ejection Fraction. Front Physiol 2022; 13:855756. [PMID: 35431984 PMCID: PMC9005779 DOI: 10.3389/fphys.2022.855756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Heart failure with reduced left ventricular ejection fraction is a progressive disease that claims > 352,000 lives annually in the United States alone. Despite the development of an extensive array of pharmacologic and device therapies, prognosis remains poor. Disruption in autonomic balance in the form of heightened sympathetic nerve activity and reduced vagal tone have been established as major causes of heart failure progression. Interest in chronic neuromodulation mediated by vagus nerve stimulation (VNS) has intensified in recent years. This review focuses on four main goals: (1) To review the preclinical evidence that supports the concept of a cardioprotective effect of VNS on autonomic function and cardiac electrical stability along with the underlying putative mechanisms. (2) To present the initial clinical experience with chronic VNS in patients with heart failure and highlight the controversial aspects of the findings. (3) To discuss the latest findings of the multifactorial effects of VNS on autonomic tone, baroreceptor sensitivity, and cardiac electrical stability and the state-of-the-art methods employed to monitor these relationships. (4) To discuss the implications of the current findings and the gaps in knowledge that require attention in future investigations.
Collapse
Affiliation(s)
- Richard L. Verrier
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Cardiovascular Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Richard L. Verrier, , orcid.org/0000-0001-5602-6793
| | - Imad Libbus
- LivaNova USA, Inc., Houston, TX, United States
| | - Bruce D. Nearing
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Cardiovascular Medicine, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
10
|
Berlier C, Saxer S, Lichtblau M, Schneider SR, Schwarz EI, Furian M, Bloch KE, Carta AF, Ulrich S. Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension. J Am Heart Assoc 2022; 11:e023839. [PMID: 35156392 PMCID: PMC9245795 DOI: 10.1161/jaha.121.023839] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH).
Methods and Results
Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016–2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m
2
, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood
P
<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end‐exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg,
P
=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units,
P
=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units,
P
=0.001).
Conclusions
Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end‐exercise, and should be considered and reported when assessing PH.
Collapse
Affiliation(s)
- Charlotte Berlier
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
| | - Stéphanie Saxer
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
| | - Mona Lichtblau
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
| | | | - Esther I. Schwarz
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
| | - Michael Furian
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
| | - Konrad E. Bloch
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
- Centre for Integrative Human PhysiologyUniversity of Zürich Zürich Switzerland
| | | | - Silvia Ulrich
- Department of Pulmonology University Hospital Zürich Zürich Switzerland
- Centre for Integrative Human PhysiologyUniversity of Zürich Zürich Switzerland
| |
Collapse
|
11
|
Autonomic Testing Optimizes Therapy for Heart Failure and Related Cardiovascular Disorders. Curr Cardiol Rep 2022; 24:1699-1709. [PMID: 36063349 PMCID: PMC9442559 DOI: 10.1007/s11886-022-01781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular autonomic control is an intricately balanced dynamic process. Autonomic dysfunction, regardless of origin, promotes and sustains the disease processes, including in patients with heart failure (HF). Autonomic control is mediated through the two autonomic branches: parasympathetic and sympathetic (P&S). HF is arguably the disease that stands to most benefit from P&S manipulation to reduce mortality risk. This review article briefly summarizes some of the more common types of autonomic dysfunction (AD) that are found in heart failure, suggests a mechanism by which AD may contribute to HF, reviews AD involvement in common HF co-morbidities (e.g., ventricular arrhythmias, AFib, hypertension, and Cardiovascular Autonomic Neuropathy), and summarizes possible therapy options for treating AD in HF. RECENT FINDINGS Autonomic assessment is important in diagnosing and treating CHF, and its possible co-morbidities. Autonomic assessment may also have importance in predicting which patients may be susceptible to sudden cardiac death. This is important since most CHF patients with sudden cardiac death have preserved left ventricular ejection fraction and better discriminators are needed. Many life-threatening cardiovascular disorders will require invasive testing for precise diagnoses and therapy planning when modulating the ANS is important. In cases of non-life-threatening disorders, non-invasive ANS testing techniques, especially those that individually assess both ANS branches simultaneously and independently, are sufficient to diagnose and treat serially.
Collapse
|
12
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
13
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Sharif ZI, Galand V, Hucker WJ, Singh JP. Evolving Cardiac Electrical Therapies for Advanced Heart Failure Patients. Circ Arrhythm Electrophysiol 2021; 14:e009668. [PMID: 33858178 DOI: 10.1161/circep.120.009668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Symptomatic heart failure (HF) patients despite optimal medical therapy and advances such as invasive hemodynamic monitoring remain challenging to manage. While cardiac resynchronization therapy remains a highly effective therapy for a subset of HF patients with wide QRS, a majority of symptomatic HF patients are poor candidates for such. Recently, cardiac contractility modulation, neuromodulation based on carotid baroreceptor stimulation, and phrenic nerve stimulation have been approved by the US Food and Drug Administration and are emerging as therapeutic options for symptomatic HF patients. This state-of-the-art review examines the role of these evolving electrical therapies in advanced HF.
Collapse
Affiliation(s)
- Zain I Sharif
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - Vincent Galand
- Division of Cardiology, Université de Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, France (V.G.).,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - William J Hucker
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - Jagmeet P Singh
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| |
Collapse
|
15
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
16
|
Soloveva A, Fedorova D, Villevalde S, Zvartau N, Mareev Y, Sitnikova M, Shlyakhto E, Fudim M. Addressing Orthostatic Hypotension in Heart Failure: Pathophysiology, Clinical Implications and Perspectives. J Cardiovasc Transl Res 2020; 13:549-569. [PMID: 32748206 DOI: 10.1007/s12265-020-10044-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF)is a condition at high risk for orthostatic hypotension (OH)given the large proportion of patients at an advanced age and high burden of comorbidities contributing to OH, as well as a high prevalence of medications with neurovascular and volume modulating properties. Early identification of OH in HF seems to be crucial as OH can have an impact on patient symptoms, activity level and independence, be a marker of specific pathophysiological changes or be an indicator of need for personalized treatment. OH might contribute significantly to bad enough prognosis in HF, as, besides a risk of falls and cognitive decline, it was found to be associated with cardiovascular morbidity and mortality. In this review, we aimed to incentivize the routine use of orthostatic testing in HF, as well as stimulate future research in this field, which could lead to significant advances in the treatment and outcomes.
Collapse
Affiliation(s)
- Anzhela Soloveva
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation.
| | - Darya Fedorova
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Svetlana Villevalde
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Nadezhda Zvartau
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Yury Mareev
- National Medical Research Centre for Therapy and Preventive Medicine, Moscow, Russian Federation
| | - Mariya Sitnikova
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
18
|
Jiang Y, Po SS, Amil F, Dasari TW. Non-invasive Low-level Tragus Stimulation in Cardiovascular Diseases. Arrhythm Electrophysiol Rev 2020; 9:40-46. [PMID: 32637119 PMCID: PMC7330730 DOI: 10.15420/aer.2020.01] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low-level tragus stimulation (LLTS) is a non-invasive approach of transcutaneous vagus nerve stimulation. LLTS has applications in diseases of multiple systems, including epilepsy, depression, headache and potentially several cardiovascular diseases. LLTS has shown promising results in suppressing AF, alleviating post-MI ventricular arrhythmias and ischaemia-reperfusion injury along with improving diastolic parameters in heart failure with preserved left ventricular ejection fraction (HFpEF). Preliminary pilot clinical studies in patients with paroxysmal AF, HFpEF, heart failure with reduced ejection fraction and acute MI have demonstrated promising results. The beneficial effects are likely secondary to favourable alteration of the sympathovagal imbalance. On-going exploratory work focused on underlying mechanisms of LLTS in cardiovascular disease states and larger scale clinical trials will shed more light on the non-invasive modulation of the neuro-immune axis.
Collapse
Affiliation(s)
- Yunqiu Jiang
- Cardiac Arrhythmias Section, Heart Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, US
| | - Faris Amil
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, US
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, US
| |
Collapse
|
19
|
Bendary A, Bendary M, Salem M. Autonomic regulation device therapy in heart failure with reduced ejection fraction: a systematic review and meta-analysis of randomized controlled trials. Heart Fail Rev 2020; 24:245-254. [PMID: 30317416 DOI: 10.1007/s10741-018-9745-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure with reduced ejection fraction (HFrEF) represents a significant public health burden associated with incremental health care costs. Given the limitations associated with pharmacological autonomic regulation therapy (ART), device-based autonomic neuromodulation is on the horizon now for ART in those patients. This systematic review aimed primarily to determine the effect of ART by devices on functional status and quality of life (QOL) in patients with HFrEF. We performed a meta-analysis of five randomized controlled trials (1074 patients) comparing ART by devices versus optimal medical therapy (OMT) in HFrEF. We assessed pooled estimates of odds ratio (OR) for improvement in New York Heart Association (NYHA) class and mean differences (MD) in 6-minute hall walk distance (6-MHWD), Minnesota Living with Heart Failure Questionnaire (MLHFQ) score, N-terminal pro b-type natriuretic peptide (NT-proBNP) levels, and left ventricular end-systolic volume index (LVESVi) with their 95% confidence intervals (CIs) at 6-month follow-up. Compared to OMT alone, ART by devices in HFrEF significantly improves NYHA class (OR 2.26, 95% CI 1.33 to 3.83, P = 0.003), increases 6-MHWD (MD 45.53 m, 95% CI 30.61 to 60.45, P < 0.00001), improves MLHFQ score (MD - 10.59, 95% CI - 20.62 to - 0.57, P = 0.04) with neutral effect on NT-proBNP levels (MD - 236.5 pg/ml, 95% CI - 523.86 to 50.87, P = 0.11) and LVESVi (MD - 1.01 ml/m2, 95% CI - 4.49 to 2.47, P = 0.57). We concluded that device-based neuromodulation therapy significantly improves functional status and quality of life in patients with HFrEF.
Collapse
Affiliation(s)
- Ahmed Bendary
- Cardiology Department, Benha Faculty of Medicine, Benha University, Benha, 13518, Egypt.
| | - Mohamed Bendary
- Department of Biostatistics, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mohamed Salem
- Cardiology Department, Benha Faculty of Medicine, Benha University, Benha, 13518, Egypt
| |
Collapse
|
20
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
21
|
Device therapy in heart failure with reduced ejection fraction-cardiac resynchronization therapy and more. Herz 2019; 43:415-422. [PMID: 29744528 DOI: 10.1007/s00059-018-4710-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In patients with heart failure with reduced ejection fraction (HFrEF), optimal medical treatment includes beta-blockers, ACE inhibitors/angiotensinreceptor-neprilysin inhibitors (ARNI), mineralocorticoid receptor antagonists, and ivabradine when indicated. In device therapy of HFrEF, implantable cardioverter-defibrillators and cardiac resynchronization therapy (CRT) have been established for many years. CRT is the therapy of choice (class I indication) in symptomatic patients with HFrEF and a broad QRS complex with a left bundle branch block (LBBB) morphology. However, the vast majority of heart failure patients show a narrow QRS complex or a non-LBBB morphology. These patients are not candidates for CRT and alternative electrical therapies such as baroreflex activation therapy (BAT) and cardiac contractility modulation (CCM) may be considered. BAT modulates vegetative dysregulation in heart failure. CCM improves contractility, functional capacity, and symptoms. Although a broad data set is available for BAT and CCM, mortality data are still lacking for both methods. This article provides an overview of the device-based therapeutic options for patients with HFrEF.
Collapse
|
22
|
Martinez C, Sugimoto T, Tsugu T, Oury C, Lancellotti P. Novel non-pharmacological therapy to modulate the autonomic tone in patients with heart failure with pulmonary hypertension. J Thorac Dis 2019; 11:S1325-S1328. [PMID: 31245123 DOI: 10.21037/jtd.2019.04.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christophe Martinez
- University of Liège Hospital, GIGA Cardiovascular Sciences Department of cardiology, CHU Sart Tilman Liège, Liège, Belgium
| | - Tadafumi Sugimoto
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Toshimitsu Tsugu
- Department of Cardiology, Federation of National Public Service Personnel Mutual Aid Association Tachikawa Hospital, Tachikawa, Japan.,Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| | - Cécile Oury
- University of Liège Hospital, GIGA Cardiovascular Sciences Department of cardiology, CHU Sart Tilman Liège, Liège, Belgium
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences Department of cardiology, CHU Sart Tilman Liège, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| |
Collapse
|
23
|
Cao Q, Zhang J, Yu Q, Wang J, Dai M, Zhang Y, Luo Q, Bao M. Carotid baroreceptor stimulation in obese rats affects white and brown adipose tissues differently in metabolic protection. J Lipid Res 2019; 60:1212-1224. [PMID: 31126973 DOI: 10.1194/jlr.m091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates the functions of white adipose tissue (WAT) and brown adipose tissue (BAT) tightly. Carotid baroreceptor stimulation (CBS) efficiently inhibits SNS activation. We hypothesized that CBS would protect against obesity. We administered CBS to obese rats and measured sympathetic and AMP-activated protein kinase (AMPK)/ PPAR pathway responses as well as changes in perirenal WAT (PWAT), epididymal WAT (EWAT), and interscapular BAT (IBAT). CBS alleviated obesity-related metabolic changes, improving insulin resistance; reducing adipocyte hypertrophy, body weight, and adipose tissue weights; and decreasing norepinephrine but increasing acetylcholine in plasma, PWAT, EWAT, and IBAT. CBS also downregulated fatty acid translocase (CD36), fatty acid transport protein (FATP), phosphorylated and total hormone sensitive lipase, phosphorylated and total protein kinase A, and PPARγ in obese rats. Simultaneously, CBS upregulated phosphorylated adipose triglyceride lipase, phosphorylated and total AMPK, and PPARα in PWAT, EWAT, and IBAT. However, BAT and WAT responses differed; although many responses were more sensitive in IBAT, responses of CD36, FATP, and PPARγ were more sensitive in PWAT and EWAT. Overall, CBS decreased chronically activated SNS and ameliorated obesity-related metabolic disorders by regulating the AMPK/PPARα/γ pathway.
Collapse
Affiliation(s)
- Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University .,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| |
Collapse
|
24
|
Yoshida K, Saku K, Kamada K, Abe K, Tanaka-Ishikawa M, Tohyama T, Nishikawa T, Kishi T, Sunagawa K, Tsutsui H. Electrical Vagal Nerve Stimulation Ameliorates Pulmonary Vascular Remodeling and Improves Survival in Rats With Severe Pulmonary Arterial Hypertension. ACTA ACUST UNITED AC 2018; 3:657-671. [PMID: 30456337 PMCID: PMC6234524 DOI: 10.1016/j.jacbts.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
Autonomic imbalance has been documented in patients with PAH. Electrical VNS is known to restore autonomic balance and improve heart failure. This study aimed to elucidate the therapeutic effects of VNS on severe PAH in a rat model. VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In addition, VNS markedly improved the survival of rats with PAH. Our findings may contribute greatly to the development of device therapy for PAH and widen the clinical applicability of VNS.
This study aimed to elucidate the therapeutic effects of electrical vagal nerve stimulation (VNS) on severe pulmonary arterial hypertension in a rat model. In a pathophysiological study, VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In a survival study, VNS significantly improved the survival rate in both the prevention (VNS from 0 to 5 weeks after a SU5416 injection) and treatment (VNS from 5 to 10 weeks) protocols. Thus, VNS may serve as a novel therapeutic strategy for pulmonary arterial hypertension.
Collapse
Key Words
- BNP, brain natriuretic peptide
- HF, high-frequency
- HRV, heart rate variability
- IL, interleukin
- MCP, monocyte chemotactic protein
- NE, norepinephrine
- NO, nitric oxide
- PA, pulmonary artery
- PAH, pulmonary arterial hypertension
- PAP, pulmonary arterial pressure
- PVR, pulmonary vascular resistance
- RV, right ventricular
- RVEDP, right ventricular end-diastolic pressure
- SS, sham-stimulated
- VNS, vagal nerve stimulation
- autonomic imbalance
- eNOS, endothelial nitric oxide synthase
- mRNA, messenger ribonucleic acid
- pulmonary arterial hypertension
- pulmonary vascular remodeling
- vagal nerve stimulation
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
- Address for correspondence: Dr. Keita Saku, Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kazuhiro Kamada
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
25
|
The Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in a Heterogeneous Group of Human Subjects. JOURNAL OF SPORTS MEDICINE 2018; 2018:4340925. [PMID: 30402499 PMCID: PMC6191954 DOI: 10.1155/2018/4340925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Background Heart rate variability (HRV) reflects neural balance between sympathetic and parasympathetic autonomic nervous systems (ANS). Reduced HRV occurs in several chronic diseases and physical inactivity. External addition of pulses to the circulation restores HRV. A new method to add pulses to the circulation can be accomplished with a passive simulated jogging device (JD). We hypothesized that application of JD might increase HRV in seated and supine postures in a heterogeneous group of volunteer subjects. Methods Twenty ambulatory persons (age range 31-88) were recruited. The physical activity intervention (JD) moved the feet in a repetitive and alternating manner; upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate tapping of feet against the ground during jogging. Each subject underwent four, 30 min sessions in seated and supine postures with the active JD and same with Sham. HRV was assessed at baseline (BL), and Recovery (REC) from analysis of an electrocardiogram. Time domain variables were computed, namely, standard deviation of all normal RR intervals (SDNN) and square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as parameters of Poincaré plots. Results Thirty minutes of JD significantly increased time domain measures and Poincaré parameters of HRV in both seated and supine postures. Frequency domain parameters showed no change. The effects of JD on HRV measures were not affected by age, gender, or posture. Conclusion The passive simulated jogging device increased HRV in both seated and supine postures. This intervention that provided effortless physical activity is a novel method to harness the beneficial effects of increasing HRV.
Collapse
|
26
|
|
27
|
Delle LE, Pachauri V, Sharma S, Shaforost O, Ma H, Adabi M, Lilischkis R, Wagner P, Thoelen R, Klein N, O’Kennedy R, Ingebrandt S. ScFv-modified graphene-coated IDE-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens Bioelectron 2018; 102:574-581. [DOI: 10.1016/j.bios.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
|
28
|
Huang WA, Boyle NG, Vaseghi M. Cardiac Innervation and the Autonomic Nervous System in Sudden Cardiac Death. Card Electrophysiol Clin 2017; 9:665-679. [PMID: 29173409 PMCID: PMC5777242 DOI: 10.1016/j.ccep.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neural remodeling in the autonomic nervous system contributes to sudden cardiac death. The fabric of cardiac excitability and propagation is controlled by autonomic innervation. Heart disease predisposes to malignant ventricular arrhythmias by causing neural remodeling at the level of the myocardium, the intrinsic cardiac ganglia, extracardiac intrathoracic sympathetic ganglia, extrathoracic ganglia, spinal cord, and the brainstem, as well as the higher centers and the cortex. Therapeutic strategies at each of these levels aim to restore the balance between the sympathetic and parasympathetic branches. Understanding this complex neural network will provide important therapeutic insights into the treatment of sudden cardiac death.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Editorial Commentary: Tuning in to sympathetic activity cutaneously in humans-A bench to bedside saga. Trends Cardiovasc Med 2017; 27:473-474. [PMID: 28709809 DOI: 10.1016/j.tcm.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
|
30
|
Libbus I, Nearing BD, Amurthur B, KenKnight BH, Verrier RL. Quantitative evaluation of heartbeat interval time series using Poincaré analysis reveals distinct patterns of heart rate dynamics during cycles of vagus nerve stimulation in patients with heart failure. J Electrocardiol 2017. [PMID: 28625397 DOI: 10.1016/j.jelectrocard.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimization of stimulation parameters is essential to maximizing therapeutic efficacy and minimizing side effects. METHODS The ANTHEM-HF study enrolled patients with heart failure who received chronic autonomic regulation therapy (ART) with an implantable vagus nerve stimulation (VNS) system on either the right (n=30) or left side (n=29). Acute effects of continuously cycling VNS on R-R interval dynamics were evaluated using post hoc Poincaré analysis of ECG recordings collected during multiple titration sessions over an 8-12week period. During each titration session, VNS intensity associated with maximum tolerable dose was determined. Poincaré plots of R-R interval time series were created for epochs when VNS cycled from OFF to ON at varying intensity levels. RESULTS VNS produced an immediate, relatively small change in beat-to-beat distribution of R-R intervals during the 14-sec ON time, which was correlated with stimulation current amplitude (r=0.85, p=0.05). During titration of right-sided stimulation, there was a strong correlation (r=0.91, p=0.01) between stimulus intensity and the Poincaré parameter of standard deviation, SD1, which is associated with high-frequency heart rate variability. The effect of VNS on instantaneous heart rate was indicated by a shift in the centroid of the beat-to-beat cloud distribution demarcated by the encircling ellipse. As anticipated, left-sided stimulation did not alter any Poincaré parameter except at high stimulation intensities (≥2mA). CONCLUSION Quantitative Poincaré analysis reveals a tight coupling in beat-to-beat dynamics during VNS ON cycles that is directly related to stimulation intensity, providing a useful measurement for confirming autonomic engagement.
Collapse
Affiliation(s)
| | - Bruce D Nearing
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Richard L Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Liao SY, Zhen Z, Liu Y, Au KW, Lai WH, Tsang A, Tse HF. Improvement of Myocardial Function Following Catheter-Based Renal Denervation in Heart Failure. ACTA ACUST UNITED AC 2017; 2:270-281. [PMID: 30062148 PMCID: PMC6034460 DOI: 10.1016/j.jacbts.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/25/2017] [Accepted: 03/05/2017] [Indexed: 01/14/2023]
Abstract
A porcine model of heart failure was induced by myocardial infarction followed by rapid ventricular pacing for 4 weeks. Catheter-based renal denervation was performed using an expandable basket with 4 electrodes to deliver radiofrequency energy. Histological examination showed significant denervation of the renal arteries after the procedure. Compared with the control group, animals that received renal denervation showed significant improvement of cardiac function as determined by LV ejection fraction, maximum rate of LV pressure rise normalized to instantaneous developed pressure, and reduction of myocardial and renal norepinephrine gradient at 10 weeks after procedure.
Renal denervation (RD) is a potential novel nonpharmacological therapy for heart failure (HF). We performed bilateral catheter-based RD in 10 adult pigs and compared them with 10 control subjects after induction of HF to investigate the long-term beneficial effects of RD on left ventricular (LV) function and regional norepinephrine gradient after conventional HF pharmacological therapy. Compared with control subjects, animals treated with RD demonstrated an improvement in LV function and reduction of norepinephrine gradients over the myocardium and kidney at 10-week follow-up. Our results demonstrated that effective bilateral RD decrease regional norepinephrine gradients and improve LV contractile function compared with medical therapy alone.
Collapse
Affiliation(s)
- Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Zhe Zhen
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Yuan Liu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Kai-Wing Au
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Anita Tsang
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Shenzhen Institutes of Research and Innovation, University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System. J Cardiovasc Transl Res 2017; 10:411-422. [PMID: 28497301 DOI: 10.1007/s12265-017-9750-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.
Collapse
|
33
|
Abstract
Although substantial improvements have been made in majority of cardiac disorders, heart failure (HF) remains a major health problem, with both increasing incidence and prevalence over the past decades. For that reason, the number of potential biomarkers that could contribute to diagnosis and treatment of HF patients is, almost exponentially, increasing over the recent years. The biomarkers that are, at the moment, more or less ready for use in everyday clinical practice, reflect different pathophysiological processes present in HF. In this review, seven groups of biomarkers associated to myocardial stretch (mid-regional proatrial natriuretic peptide, MR-proANP), myocyte injury (high-sensitive troponins, hs-cTn; heart-type fatty acid-binding protein, H-FABP; glutathione transferase P1, GSTP1), matrix remodeling (galectin-3; soluble isoform of suppression of tumorigenicity 2, sST2), inflammation (growth differentiation factor-15, GDF-15), renal dysfunction (neutrophil gelatinase-associated lipocalin, NGAL; kidney injury molecule-1, KIM-1), neurohumoral activation (adrenomedullin, MR-proADM; copeptin), and oxidative stress (ceruloplasmin; myeloperoxidase, MPO; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; thioredoxin 1, Trx1) in HF will be overviewed. It is important to note that clinical value of individual biomarkers within the single time points in both diagnosis and outcome prediction in HF is limited. Hence, the future of biomarker application in HF lies in the multimarker panel strategy, which would include specific combination of biomarkers that reflect different pathophysiological processes underlying HF.
Collapse
|
34
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
35
|
NEARING BRUCED, LIBBUS IMAD, AMURTHUR BADRI, KENKNIGHT BRUCEH, VERRIER RICHARDL. Acute Autonomic Engagement Assessed by Heart Rate Dynamics During Vagus Nerve Stimulation in Patients With Heart Failure in the ANTHEM‐HF Trial. J Cardiovasc Electrophysiol 2016; 27:1072-7. [DOI: 10.1111/jce.13017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- BRUCE D. NEARING
- Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA
| | | | | | | | - RICHARD L. VERRIER
- Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
36
|
Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016; 6:1239-78. [PMID: 27347892 DOI: 10.1002/cphy.c150037] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Hakan S Orer
- Department of Pharmacology, Koc University School of Medicine, Istanbul, Turkey
| | - Susan M Barman
- Department of Pharmacology &Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
37
|
Mahfoud F, Ewen S, Böhm M. Renal denervation in patients with heart failure with preserved ejection fraction: end of the beginning? Eur J Heart Fail 2016; 18:713-5. [DOI: 10.1002/ejhf.553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/01/2023] Open
Affiliation(s)
- Felix Mahfoud
- Klink für Innere Medizin III Saarland University Hospital Homburg/Saar Germany
| | - Sebastian Ewen
- Klink für Innere Medizin III Saarland University Hospital Homburg/Saar Germany
| | - Michael Böhm
- Klink für Innere Medizin III Saarland University Hospital Homburg/Saar Germany
| |
Collapse
|
38
|
Beaumont E, Wright GL, Southerland EM, Li Y, Chui R, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig. Am J Physiol Heart Circ Physiol 2016; 310:H1349-59. [PMID: 26993230 DOI: 10.1152/ajpheart.00939.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15-20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Elizabeth M Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ying Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ray Chui
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, California
| | | | - J Andrew Armour
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los Angeles, California
| | - Jeffrey L Ardell
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los Angeles, California
| |
Collapse
|
39
|
Alhaj EK. Can unilateral adrenalectomy be an option in modulating autonomic nervous system in heart failure? Int J Cardiol 2016; 207:50-2. [PMID: 26797327 DOI: 10.1016/j.ijcard.2016.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Eyad K Alhaj
- Department of Medicine, Division of Cardiology, MSB, Room: I-538, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States.
| |
Collapse
|
40
|
Capítulo 13. Novedades en el tratamiento de la falla cardiaca. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2016.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
41
|
Imamura T, Kinugawa K, Nitta D, Komuro I. Real-Time Assessment of Autonomic Nerve Activity During Adaptive Servo-Ventilation Support or Waon Therapy. Int Heart J 2016; 57:511-4. [DOI: 10.1536/ihj.16-014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Teruhiko Imamura
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo
| | | | - Daisuke Nitta
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|