1
|
Saini A, Sharma M, Singh I, Swami R. From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. Curr Drug Deliv 2025; 22:140-159. [PMID: 38213158 DOI: 10.2174/0115672018270396231213074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage etc. While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.
Collapse
Affiliation(s)
- Ankush Saini
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, India
| | - Mohit Sharma
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
2
|
Teixeira J, Lumack do Monte Z, Tenreiro S, Salema-Oom M, Silva DC, Saramago B, Paula Serro A. Citicoline eluting hydrogels for therapeutic contact lenses intended to treat neurodegenerative diabetic ocular diseases. Int J Pharm 2024; 667:124908. [PMID: 39505241 DOI: 10.1016/j.ijpharm.2024.124908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Ophthalmic neurodegenerative diseases related to diabetes, such as glaucoma and retinopathy, are among the major causes of blindness in the world. Citicoline (CIT) in the form of eye drops is currently used for the treatment/prevention of these diseases, which affect the posterior segment of the eye. To ensure the drug penetration into the back of the eye, frequent instillations of highly concentrated drug solutions are required with potential side effects. Drug-loaded soft contact lenses (SCLs) may be an effective alternative to the conventional eye drop treatment, since they may enable a sustained drug release during daily wear, ensuring a higher drug bioavailability, and avoiding drug waste. In this work, one 2-hydroxyethyl methacrylate (HEMA) based hydrogel was functionalised with N-(3-aminopropyl) methacrylamide hydrochloride (APMA), molecularly imprinted with CIT and loaded with the same drug. The material was extensively characterised, in terms of morphology, optical, mechanical, and physical-chemical properties, namely, equilibrium water content, wettability, oxygen and ionic permeability, Young's modulus, shear deformation, transmittance and refractive index, before and after steam sterilisation. Additionally, the tendency of the material to adsorb proteins of the lachrymal fluid was evaluated and its biocompatibility was assessed by irritation and cytotoxicity assays. Comparison with the non-functionalised and non-imprinted hydrogel showed that the modified hydrogel led to a sustained in vitro release of a much higher amount of CIT than the original one, while keeping typical values for physical-chemical properties of SCLs. The drug-loaded material resisted steam sterilisation and proved to be biocompatible, demonstrating adequate properties to be used in therapeutic SCLs for the prophylaxis/treatment of neurodegenerative diabetic ocular diseases. The neuroprotective effect of the released drug was confirmed with tests using porcine retinal explants.
Collapse
Affiliation(s)
- João Teixeira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| | - Zélia Lumack do Monte
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| | - Diana C Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Caparica, Almada, Portugal.
| | - Benilde Saramago
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| |
Collapse
|
3
|
Chopra S, Balkhandia M, Khatak M, Sagar N, Agrawal VV. Molecularly imprinted electrochemical sensor based on APTES-functionalized indium tin oxide electrode for the determination of sulfadiazine. Mikrochim Acta 2024; 191:727. [PMID: 39499340 DOI: 10.1007/s00604-024-06781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
An electrochemical sensor was developed for the sensitive and selective detection of sulfadiazine (SDZ), based on a molecularly imprinted polymer (MIP) film formed on an indium tin oxide (ITO) electrode through a self-assembly process. The SDZ-imprinted ITO electrode (SDZ-MIP/APTES-ITO) was prepared through in situ polymerization using sulfadiazine, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2'-azobisisobutyronitrile (AIBN) as the template, functional monomer, cross-linker, and initiator respectively. Before polymerization, the ITO electrode was functionalized with 3-aminopropyltriethoxysilane (APTES) to promote covalent attachment of the polymer to the electrode. After polymerization, the template molecule SDZ was removed to create selective recognition sites, forming the molecularly imprinted polymer electrode (MIP/APTES-ITO), which facilitates sulfadiazine detection. The sensor's performance was evaluated using cyclic and differential pulse voltammetry, demonstrating a linear response in the sulfadiazine concentration range 0.1 to 300 μM, with a detection limit of 0.11 μM. The MIP-based sensor exhibited good reproducibility, repeatability, selectivity, and stability in sulfadiazine detection. Its practical applicability was confirmed by the successful quantification of sulfadiazine in spiked milk samples.
Collapse
Affiliation(s)
- Samridhi Chopra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Manisha Balkhandia
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Manisha Khatak
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Navya Sagar
- Amity University, Sector 125, Noida, Uttar Pradesh, 201301, India
| | - Ved Varun Agrawal
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.
| |
Collapse
|
4
|
Singh D. Beyond the Maze: Recent Advancements in Molecular and Cellular Tethered Drug Delivery Systems. Assay Drug Dev Technol 2024; 22:203-215. [PMID: 38717194 DOI: 10.1089/adt.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2024] Open
Abstract
The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, India
- University Centre for Research and Development, Chandigarh University, Gharuan, India
| |
Collapse
|
5
|
Majidi M, Pakzad S, Salimi M, Azadbakht A, Hajighasemlou S, Amoupour M, Nokhbedehghan Z, Bonakdar S, Sineh Sepehr K, Pal Singh Chauhan N, Gholipourmalekabadi M. Macrophage cell morphology-imprinted substrates can modulate mesenchymal stem cell behaviors and macrophage M1/M2 polarization for wound healing applications. Biotechnol Bioeng 2023; 120:3638-3654. [PMID: 37668186 DOI: 10.1002/bit.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.
Collapse
Affiliation(s)
- Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saieh Hajighasemlou
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Salahshoor Z, Ho KV, Hsu SY, Lin CH, Fidalgo de Cortalezzi M. Detection of Atrazine and its metabolites by photonic molecularly imprinted polymers in aqueous solutions. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
|
7
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
8
|
De Carvalho Gomes P, Hardy M, Tagger Y, Rickard JJ, Mendes P, Oppenheimer PG. Optimization of Nanosubstrates toward Molecularly Surface-Functionalized Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13774-13784. [PMID: 36017358 PMCID: PMC9393890 DOI: 10.1021/acs.jpcc.2c03524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Diagnostic advancements require continuous developments of reliable analytical sensors, which can simultaneously fulfill many criteria, including high sensitivity and specificity for a broad range of target analytes. Incorporating the highly sensitive attributes of surface-enhanced Raman spectroscopy (SERS) combined with highly specific analyte recognition capabilities via molecular surface functionalization could address major challenges in molecular diagnostics and analytical spectroscopy fields. Herein, we have established a controllable molecular surface functionalization process for a series of textured gold surfaces. To create the molecularly surface-functionalized SERS platforms, self-assembled benzyl-terminated and benzoboroxole-terminated monolayers were used to compare which thicknesses and root-mean-square (RMS) roughness of planar gold produced the most sensitive and specific surfaces. Optimal functionalization was identified at 80 ± 8 nm thickness and 7.2 ± 1.0 nm RMS. These exhibited a considerably higher SERS signal (70-fold) and improved sensitivity for polysaccharides when analyzed using principal component analysis (PCA) and self-organizing maps (SOM). These findings lay the procedure for establishing the optimal substrate specifications as an essential prerequisite for future studies aiming at developing the feasibility of molecular imprinting for SERS diagnostic applications and the subsequent delivery of advanced, highly selective, and sensitive sensing devices and analytical platforms.
Collapse
Affiliation(s)
- Paulo De Carvalho Gomes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Mike Hardy
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Yazmin Tagger
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Paula Mendes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Healthcare
Technologies Institute, Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K.
| |
Collapse
|
9
|
Yu X, Liao J, Zeng H, Wan J, Cao X. Synthesis of water-compatible noncovalent imprinted microspheres for acidic or basic biomolecules designed based on molecular dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
10
|
Fan J, Huang C, Cheng Y, Xie C, Chen H, Peng H. Silk fibroin/calcium alginate composite modifying supermacroporous molecularly imprinted membrane synthesis for high performance on recognizing bovine hemoglobin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie‐Ping Fan
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Cong‐Bo Huang
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Yu‐Tong Cheng
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Chun‐Fang Xie
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hui‐Ping Chen
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hai‐Long Peng
- Department of Chemical Engineering Nanchang University Nanchang China
| |
Collapse
|
11
|
Polymeric Drug Delivery Devices: Role in Cornea and External Disease. Eye Contact Lens 2022; 48:119-126. [PMID: 35192566 DOI: 10.1097/icl.0000000000000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The field of ophthalmic drug delivery is undergoing rapid changes not only in the evolution of pharmacologic agents but also in the novel drug delivery vehicles. The ocular surface has limitations to drug penetration because of the presence of tight junctions between basal epithelial cells, which limits the amount of drug that can be absorbed after topical instillation. In addition, nasolacrimal drainage reduces the precorneal residence time significantly. Contact lenses (CLs) have been considered as possible carriers for topical medications because they reside on the ocular surface for a sufficient length of time, and pharmacologic agents may be copolymerized with hydrogels allowing controlled drug diffusion. This strategy reduces the frequency of dosage while improving compliance. Modification of drug delivery vehicles is essential to allow sustained release of the drug from a polymeric complex, facilitate stability and residence time of the drug on the precorneal tear film, and improve penetration into biologic membranes. This review focuses on updates in CL-based and non-CL-based strategies in ophthalmic drug delivery.
Collapse
|
12
|
Shevchenko KG, Garkushina IS, Canfarotta F, Piletsky SA, Barlev NA. Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine. RSC Adv 2022; 12:3957-3968. [PMID: 35425427 PMCID: PMC8981171 DOI: 10.1039/d1ra08385f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Molecularly imprinted polymers - MIPs - denote synthetic polymeric structures that selectively recognize the molecule of interest against which MIPs are templated. A number of works have demonstrated that MIPs can exceed the affinity and selectivity of natural antibodies, yet operating by the same principle of "lock and key". In contrast to antibodies, which have certain limitations related to the minimal size of the antigen, nanoMIPs can be fabricated against almost any target molecule irrespective of its size and low immunogenicity. Furthermore, the cost of MIP production is much lower compared to the cost of antibody production. Excitingly, MIPs can be used as nanocontainers for specific delivery of therapeutics both in vitro and in vivo. The adoption of the solid phase synthesis rendered MIPs precise reproducible characteristics and, as a consequence, improved the controlled release of therapeutic payloads. These major breakthroughs paved the way for applicability of MIPs in medicine as a novel class of therapeutics. In this review, we highlight recent advances in the fabrication of MIPs, mechanisms of controlled release from the MIPs, and their applicability in biomedical research.
Collapse
Affiliation(s)
- Konstantin G Shevchenko
- Institute of Cytology RAS St. Petersburg Russia
- Institute of Biomedical Chemistry RAS Moscow Russia
| | | | | | | | - Nickolai A Barlev
- Institute of Cytology RAS St. Petersburg Russia
- Institute of Biomedical Chemistry RAS Moscow Russia
| |
Collapse
|
13
|
Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic‐Resistant Bacteria: Promising Strategies Orchestrated by Molecularly Imprinted Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202106493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bernadette Tse Sum Bui
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Tiffany Auroy
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Karsten Haupt
- CNRS Laboratory for Enzyme and Cell Engineering Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| |
Collapse
|
14
|
Toyoshima Y, Kawamura A, Takashima Y, Miyata T. Design of Molecularly Imprinted Hydrogels with Thermoresponsive Drug Binding Sites. J Mater Chem B 2022; 10:6644-6654. [DOI: 10.1039/d2tb00325b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Drug delivery systems (DDS) regulate the spatiotemporal distribution of drugs in vivo to maximize efficacy and minimize side effects. Stimuli-responsive hydrogels, which exhibit a drastic change in volume in response...
Collapse
|
15
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022] Open
|
16
|
Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic-Resistant Bacteria : Promising Strategies Orchestrated by Molecularly Imprinted Polymers. Angew Chem Int Ed Engl 2021; 61:e202106493. [PMID: 34779567 DOI: 10.1002/anie.202106493] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. We highlight how one unique material , molecularly imprinted polymers (MIPs), can orchestrate several strategies to fight this major societal issue. MIPs are tailor-made biomimetic supramolecular receptors that recognize and bind target molecules with a high affinity and selectivity, comparable to those of antibodies. While research on MIPs for combatting cancer has been constantly flourishing, comprehensive work on their involvement in combatting resistant superbugs has been rather scarce. This review aims at filling this gap. We will describe what are the causes of bacterial resistance and at which level MIPs can deploy their weapons. MIPs' targets can be biofilm constituents, quorum sensing messengers, bacterial surface proteins and antibiotic-deactivating enzymes, among others. We will conclude on the current challenges and future developments in this field.
Collapse
Affiliation(s)
- Bernadette Tse Sum Bui
- BUTC: Universite de Technologie de Compiegne Bibliotheques de l'Universite de Technologie de Compiegne, GEC, Rue du Docteur Schweitzer, 60203, Compiègne, FRANCE
| | - Tiffany Auroy
- Universite de Technologie de Compiegne, CNRS Laboratory for Enzyme and Cell Engineering, FRANCE
| | - Karsten Haupt
- Universite de Technologie de Compiegne, CNRS Laboratory for Enzyme and Cell Engineering, FRANCE
| |
Collapse
|
17
|
Nguyen HT, Vuong Bui NT, Kanhounnon WG, Vu Huynh KL, Nguyen TVA, Nguyen HM, Do MH, Badawi M, Thach UD. Co-precipitation polymerization of dual functional monomers and polystyrene- co-divinylbenzene for ciprofloxacin imprinted polymer preparation. RSC Adv 2021; 11:34281-34290. [PMID: 35497320 PMCID: PMC9042346 DOI: 10.1039/d1ra05505d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Novel ciprofloxacin composite imprinted materials are synthesized by using co-precipitation polymerization of dual functional monomers (methacrylic acid and 2-vinylpyridine) and polystyrene-co-divinylbenzene. The intermolecular interactions between monomers and template are evaluated by molecular modeling analysis. The physicochemical properties of the obtained polymers are characterized using FT-IR, TGA, and SEM. Batch adsorption experiments are used to investigate adsorption properties (kinetic, pH, and isotherm). These polymers are employed to prepare the solid phase extraction cartridges, and their extraction performances are analyzed by the HPLC-UV method. DFT calculations indicate that hydrogen bonding and π−π stacking are the driving forces for the formation of selective rebinding sites. The obtained polymers exhibit excellent adsorption properties, including fast kinetics and high adsorption capacity (up to 10.28 mg g−1) with an imprinted factor of 2.55. The Scatchard analysis indicates the presence of specific high-affinity adsorption sites on the imprinted polymer. These absorbents are employed to extract CIP in river water with recoveries in the range of 65.97–119.26% and the relative standard deviation of 3.59–14.01%. Furthermore, the used cartridges could be reused at least eight times without decreasing their initial adsorption capacity. Ciprofloxacin imprinted polymers were prepared using co-precipitation polymerization of methacrylic acid, 2-vinylpyridine and polystyrene-co-divinylbenzene.![]()
Collapse
Affiliation(s)
- Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Nhat Thao Vuong Bui
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Wilfried G Kanhounnon
- Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d'Abomey-Calavi Benin
| | - Kim Long Vu Huynh
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Tran-Van-Anh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Minh Huy Do
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine France
| | - Ut Dong Thach
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| |
Collapse
|
18
|
Nahhas AF, Webster TJ. The promising use of nano-molecular imprinted templates for improved SARS-CoV-2 detection, drug delivery and research. J Nanobiotechnology 2021; 19:305. [PMID: 34615526 PMCID: PMC8492821 DOI: 10.1186/s12951-021-01032-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
Molecular imprinting (MI) is a technique that creates a template of a molecule for improving complementary binding sites in terms of size and shape to a peptide, protein, bacteria, mammalian cell, or virus on soft materials (such as polymers, hydrogels, or self-assembled materials). MI has been widely investigated for over 90 years in various industries but is now focused on improved tissue engineering, regenerative medicine, drug delivery, sensors, diagnostics, therapeutics and other medical applications. Molecular targets that have been studied so far in MI include those for the major antigenic determinants of microorganisms (like bacteria or viruses) leading to innovations in disease diagnosis via solid-phase extraction separation and biomimetic sensors. As such, although not widely investigated yet, MI demonstrates much promise for improving the detection of and treatment for the current Coronavirus Disease of 2019 (COVID-2019) pandemic as well as future pandemics. In this manner, this review will introduce the numerous applications of MI polymers, particularly using proteins and peptides, and how these MI polymers can be used as improved diagnostic and therapeutic tools for COVID-19.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
19
|
Rykowska I, Nowak I, Nowak R. Soft Contact Lenses as Drug Delivery Systems: A Review. Molecules 2021; 26:5577. [PMID: 34577045 PMCID: PMC8472272 DOI: 10.3390/molecules26185577] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review describes the role of contact lenses as an innovative drug delivery system in treating eye diseases. Current ophthalmic drug delivery systems are inadequate, particularly eye drops, which allow about 95% of the active substance to be lost through tear drainage. According to the literature, many interdisciplinary studies have been carried out on the ability of contact lenses to increase the penetration of topical therapeutic agents. Contact lenses limit drug loss by releasing the medicine into two layers of tears on either side of the contact lens, eventually extending the time of contact with the ocular surface. Thanks to weighted soft contact lenses, a continuous release of the drug over an extended period is possible. This article reviewed the various techniques to deliver medications through contact lenses, examining their advantages and disadvantages. In addition, the potential of drug delivery systems based on contact lenses has been extensively studied.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Rafał Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
20
|
Torabi SJ, Mohebali A, Abdouss M, Shakiba M, Abdouss H, Ramakrishna S, Teo YS, Jafari I, Rezvani Ghomi E. Synthesis and characterization of a novel molecularly imprinted polymer for the controlled release of rivastigmine tartrate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112273. [PMID: 34474832 DOI: 10.1016/j.msec.2021.112273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
To develop novel imprinted poly (methacrylic acid) nanoparticles for the controlled release of Rivastigmine Tartrate (RVS), the amalgamation of molecular imprinting techniques and polymerization of precipitates were applied in this work. By permuting different concentrations of pentaerythritol triacrylate (PETA) or trimethylolpropane triacrylate (TMPTA) as cross-linkers, ten different samples were synthesized, and their abilities assessed for RVS absorption. Among them, uniform mono-disperse nanoparticles were synthesized in an RVS/PMAA/PETA mole ratio of 1:6:12, named molecularly imprinted polymers 2 (MIP2), which showed the highest RVS absorption. Analytical procedures involving the Fourier transform infrared (FT-IR), Thermogeometric analysis (TGA), Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and absorption/desorption porosimetry (BET) measurements were applied to characterize the morphology and physicochemical properties of the MIP2. In addition, the cytotoxicity of the MIP2 sample was measured by MTT assay on an L929 cell line. Studies pertaining to the in-vitro release of RVS from MIP2 samples showed that the prepared sample had a controlled and sustained release compared, which differed from the results obtained from the non-imprinted polymer (NIP) with the same formulization. Results obtained further reinforced the feasibility of prepared MIPs as a prime candidature for RVS drug delivery to alleviate Alzheimer's and other diseases.
Collapse
Affiliation(s)
- Seyed Javad Torabi
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Mohebali
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | | | - Hamidreza Abdouss
- Department of Polymer, Amirkabir University of Technology, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Ying Shen Teo
- Department of Civil & Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Iman Jafari
- Department of Civil & Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
21
|
Liu R, Poma A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021; 26:3589. [PMID: 34208380 PMCID: PMC8231147 DOI: 10.3390/molecules26123589] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.
Collapse
Affiliation(s)
- Rui Liu
- UCL School of Pharmacy, 29–39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK;
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
22
|
Franco P, De Marco I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers (Basel) 2021; 13:1102. [PMID: 33808363 PMCID: PMC8037676 DOI: 10.3390/polym13071102] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Ophthalmic drugs used for the treatment of various ocular diseases are commonly administered by eye drops. However, due to anatomical and physiological factors, there is a low bioavailability of the active principle. In order to increase the drug residence time on the cornea to adequate levels, therapeutic contact lenses have recently been proposed. The polymeric support that constitutes the contact lens is loaded with the drug; in this way, there is a direct and effective pharmacological action on the target organ, promoting a prolonged release of the active principle. The incorporation of ophthalmic drugs into contact lenses can be performed by different techniques; nowadays, the soaking method is mainly employed. To improve the therapeutic performance of drug-loaded contact lenses, innovative methods have recently been proposed, including the impregnation with supercritical carbon dioxide. This updated review of therapeutic contact lenses production and application provides useful information on the most effective preparation methodologies, recent achievements and future perspectives.
Collapse
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
23
|
Jones L, Hui A, Phan CM, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M. CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021; 44:398-430. [PMID: 33775384 DOI: 10.1016/j.clae.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Michael L Read
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dimitri Azar
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA; Verily Life Sciences, San Francisco, CA, USA
| | - John Buch
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Brian Pall
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Kathleen Romond
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia; Brien Holden Vision Institute, Sydney, Australia
| | | | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, UK
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Üzek R, Sari E, Denizli A. Detection of Melamine by Using Fluorescent Nanocomposites with Specific Recognition Sites. ChemistrySelect 2021. [DOI: 10.1002/slct.202100130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Recep Üzek
- Hacettepe University, Faculty of Science, Department of Chemistry 06800 Ankara Turkey
| | - Esma Sari
- Hacettepe University, Faculty of Science, Department of Chemistry 06800 Ankara Turkey
- Vocational School of Health Services, Medical Laboratory Techniques Yüksek İhtisas University Ankara Turkey
| | - Adil Denizli
- Hacettepe University, Faculty of Science, Department of Chemistry 06800 Ankara Turkey
| |
Collapse
|
25
|
Ullah B, Khan SR, Ali S, Jamil S. Synthesis, parameters, properties and applications of responsive molecularly imprinted microgels: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
Responsive molecularly imprinted microgels (MIGs) have gained a lot of interest due to their responsive specificity and selectivity for target compounds. Study on MIGs is rapidly increasing due to their quick responsive behavior in various stimuli like pH and temperature. MIGs show unique property of morphology control on in-situ synthesis of nanoparticles in response of variation in reactant concentration. Literature related to synthesis, parameters, characterization, applications and prospects of MIGs are critically reviewed here. Range of templates, monomers, initiators and crosslinkers are summarized for designing of desired MIGs. This review article describes effect of variation in reactants combination and composition on morphology, imprinting factor and percentage yield of MIGs. Hydrolysis of similar templates using MIGs is also described. Relation between percentage hydrolysis and hydrolysis time of targets at different temperatures and template:monomer ratio is also analyzed. Possible imprinting modes of ionic/non-ionic templates and its series are also generalized on the basis of previous literature. MIGs are investigated as efficient anchoring vehicles for adsorption, catalysis, bio-sensing, drug delivery, inhibition and detection.
Collapse
Affiliation(s)
- Burhan Ullah
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Sarmed Ali
- Department of Physics , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Saba Jamil
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , USA
| |
Collapse
|
26
|
|
27
|
Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
28
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
29
|
Bravo MF, Lema MA, Marianski M, Braunschweig AB. Flexible Synthetic Carbohydrate Receptors as Inhibitors of Viral Attachment. Biochemistry 2020; 60:999-1018. [PMID: 33094998 DOI: 10.1021/acs.biochem.0c00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.
Collapse
Affiliation(s)
- M Fernando Bravo
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Manuel A Lema
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Adam B Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
30
|
Parisa Jaoshani, Ameneh Porgham Daryasari. Synthesis of Molecularly Imprinted Polymer and Its Application as Solid-Phase Extraction Sorbent for Ceftazidime Determination in Human Serum and Urine Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820090129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
31
|
Applications of Chitosan in Molecularly and Ion Imprinted Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00177-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
|
32
|
Abstract
Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.
Collapse
|
33
|
|
34
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
35
|
van Gelder MK, Jong JAW, Folkertsma L, Guo Y, Blüchel C, Verhaar MC, Odijk M, Van Nostrum CF, Hennink WE, Gerritsen KGF. Urea removal strategies for dialysate regeneration in a wearable artificial kidney. Biomaterials 2020; 234:119735. [PMID: 31958714 DOI: 10.1016/j.biomaterials.2019.119735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Revised: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 12/31/2022]
Abstract
The availability of a wearable artificial kidney (WAK) that provides dialysis outside the hospital would be an important advancement for dialysis patients. The concept of a WAK is based on regeneration of a small volume of dialysate in a closed-loop. Removal of urea, the primary waste product of nitrogen metabolism, is the major challenge for the realization of a WAK since it is a molecule with low reactivity that is difficult to adsorb while it is the waste solute with the highest daily molar production. Currently, no efficient urea removal technology is available that allows for miniaturization of the WAK to a size and weight that is acceptable for patients to carry. Several urea removal strategies have been explored, including enzymatic hydrolysis by urease, electro-oxidation and sorbent systems. However, thus far, these methods have toxic side effects, limited removal capacity or slow removal kinetics. This review discusses different urea removal strategies for application in a wearable dialysis device, from both a chemical and a medical perspective.
Collapse
Affiliation(s)
- Maaike K van Gelder
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Jacobus A W Jong
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Laura Folkertsma
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; BIOS-Lab on a Chip Group, MESA+ Institute of Nanotechnology, Technical Medical Center, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NH, Enschede, the Netherlands
| | - Yong Guo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Mathieu Odijk
- BIOS-Lab on a Chip Group, MESA+ Institute of Nanotechnology, Technical Medical Center, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NH, Enschede, the Netherlands
| | - Cornelus F Van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Development of Water-Compatible Molecularly Imprinted Polymers Based on Functionalized β-Cyclodextrin for Controlled Release of Atropine. Polymers (Basel) 2020; 12:polym12010130. [PMID: 31935897 PMCID: PMC7022701 DOI: 10.3390/polym12010130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
Herein, a novel method for molecularly imprinted polymers (MIPs) using methacrylic acid functionalized beta-cyclodextrin (MAA-β-CD) monomer is presented, which was designed as a potential water-compatible composite for the controlled release of atropine (ATP). The molecularly imprinted microspheres with pH-sensitive characteristics were fabricated using thermally-initiated precipitation polymerization, employing ATP as a template molecule. The effects of different compounds and concentrations of cross-linking agents were systematically investigated. Uniform microspheres were obtained when the ratio between ATP, MAA-β-CD, and trimethylolpropane trimethacrylate (TRIM) was 1:4:20 (mol/mol/mol) in polymerization system. The ATP loading equilibrium data was best suited to the Freundlich and Langmuir isotherm models. The in vitro drug release study was assessed under simulated oral administration conditions (pH 1.5 and 7.4). The potential usefulness of MIPs as drug delivery devices are much better than non-molecularly imprinted polymers (NIPs). The study shows that the prepared polymers are a pH stimuli-responsive system, which controlled the release of ATP, indicating the potential applications in the field of drug delivery.
Collapse
|
37
|
Wu JH, Wang XJ, Li SJ, Ying XY, Hu JB, Xu XL, Kang XQ, You J, Du YZ. Preparation of Ethyl Cellulose Microspheres for Sustained Release of Sodium Bicarbonate. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:556-568. [PMID: 31531041 PMCID: PMC6706755 DOI: 10.22037/ijpr.2019.1100651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Sustained release of thermal-instable and water-soluble drugs with low molecule weight is a challenge. In this study, sodium bicarbonate was encapsulated in ethyl cellulose microspheres by a novel solid-in-oil-in-oil (S/O/O) emulsification method using acetonitrile/soybean oil as new solvent pairs. Properties of the microspheres such as size, recovery rate, morphology, drug content, and drug release behavior were evaluated to investigate the suitable preparation techniques. In the case of that the ratio of the internal and external oil phase was 1: 9, Tween 80 as a stabilizer resulted in the highest drug content (2.68%) and a good spherical shape of microspheres. After the ratio increased to 1: 4, the microspheres using Tween 80 as the stabilizer also had high drug content (1.96%) and exhibited a sustained release behavior, with 70% of drug released within 12 h and a sustained release of more than 40 h. Otherwise, different emulsification temperatures at which acetonitrile was evaporated could influence the drug release behaviour of microspheres obtained. This novel method is a potential and effective method to achieve the encapsulation and the sustained release of thermal-instable and water-soluble drugs with low molecule weight.
Collapse
Affiliation(s)
- Jia-Hui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Shu-Juan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| |
Collapse
|
38
|
Xie W, Wang H, Tong YW, Sankarakumar N, Yin M, Wu D, Duan X. Specific purification of a single protein from a cell broth mixture using molecularly imprinted membranes for the biopharmaceutical industry. RSC Adv 2019; 9:23425-23434. [PMID: 35530613 PMCID: PMC9069334 DOI: 10.1039/c9ra02805f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023] Open
Abstract
A surface imprinting method is presented herein for the development of a highly selective yet highly permeable molecularly imprinted membrane for protein separation and purification. The resultant protein imprinted membrane was shown to exhibit great potential for the efficient separation of the template protein from a binary mixture and a cell lysate solution, while maintaining high transport flux for complementary molecules. Bovine Serum Albumin (BSA) and Lysozyme (Lys) were individually immobilized on a cellulose acetate membrane as template molecules. In situ surface crosslinking polymerization was then used for protein imprinting on the membrane for a controlled duration. Both membranes showed high adsorption capacity towards template proteins in the competitive batch rebinding tests. In addition, the adsorption capacity could be greatly enhanced in a continuous permeation procedure, where the resultant membrane specifically adsorbed the template protein for more than 40 h. Moreover, this is the first report of purification of a specific protein from the cell broth mixture using a molecularly imprinted membrane. The protein imprinted membrane enables the transport of multiple non-template proteins with high permeation rate in a complex system, thus opening the way for high efficiency protein separation at a low cost for the industry.
Collapse
Affiliation(s)
- Wenyuan Xie
- Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Honglei Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
- Yangzhou Zhongcheng Nanotech Co, Ltd. 7# Chuangye Road, Guangling District Yangzhou 225000 Jiangsu China
| | - Niranjani Sankarakumar
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming Yin
- Yangzhou Zhongcheng Nanotech Co, Ltd. 7# Chuangye Road, Guangling District Yangzhou 225000 Jiangsu China
| | - Defeng Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Xiaoli Duan
- School of Chemistry and Materials Science, Ludong University Yantai 264025 People's Republic of China
| |
Collapse
|
39
|
Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109965. [PMID: 31499965 DOI: 10.1016/j.msec.2019.109965] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
The paper presents the results of studies of biocompatibility and antibacterial properties of multiphase nanocomposite materials based on HA-Alg-ZnO (hydroxyapatite‑sodium alginate-biphasic zinc oxide) and HA-ZnO (hydroxyapatite‑zinc oxide), which were synthesized from the analytically pure calcium nitrate tetrahydrate, ammonium hydrophosphate, hydrous ammonia, zinc nitrate hexahydrate and calcium chloride. The samples' antimicrobial activity assessment was carried out on Gram-negative (E. coli, P. aeruginosa) and Gram-positive bacteria (S. aureus and S. epidermidis) test cultures by the co-incubation and modified "agar diffusion" methods. The murine fibroblast cells were used for the biocompatibility tests and cytotoxicity evaluation. It was shown that synthesized nanocomposite material has a multiphase nanoscale architecture, where ZnO nanocrystals are represented by two lattices: cubic and hexagonal. The possible explanation of ZnO nanocrystals' phase transition is given. At the same time, a partial replacement of Ca2+ ions by Zn2+ ions in the HA lattice possibly occurs due to processing of composite by US radiation. The replacement was evidenced by the non-stoichiometric Ca/P ratio < 2.16, OPO lines' shifting on FTIR spectrum and TEM analysis. The studied composite demonstrate a pronounced antibacterial activity due to the incorporation of ZnO particles into sodium alginate and moistened powder of hydroxyapatite. Both forms of HA-ZnO (suspension) and HA-Alg-ZnO (beads) are biocompatible. An interpretation of the process of Zn ions' embedding into hydroxyapatite and alginate matrix is given, as well as their influence on the biomimetic composite properties is discussed in details. STATEMENT OF SIGNIFICANCE: A number of studies have shown that Zn effectively inhibits the growth and development of bacteria and yeast fungi. Zinc plays an important role in the creation of new antimicrobial agents, and zinc-doped hydroxyapatite will find further application in biomedicine. In this regard, the phase states of zinc oxide, as well as the processes of calcium replacement by zinc in calcium apatite and in alginate should be explored fully. Nowadays we have lack of information and the study's results about those interactions. The present study provides data of the multiphase morphology, antimicrobial activity, biocompatibility and cytotoxicity of the biomimetic nanostructured composite materials, such as sodium alginate/hydroxyapatite/ZnO based granules and hydroxyapatite/ZnO based hydrogel, and the establishing Zn ions' behavior patterns with another composite components.
Collapse
|
40
|
Zhang Z, Liu J. Molecular Imprinting with Functional DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805246. [PMID: 30761744 DOI: 10.1002/smll.201805246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/10/2018] [Revised: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Molecular imprinting refers to templated polymerization with rationally designed monomers, and this is a general method to prepare stable and cost-effective ligands. This attractive concept however suffers from low affinity, low specificity, and limited signaling mechanisms for binding. Acrydite-modified DNA oligonucleotides can be readily copolymerized into acrylic polymers. With molecular recognition and catalytic functions, such functional DNAs are recently shown to enhance the performance of molecularly imprinted polymers (MIPs) in a few ways. First, DNA aptamers are used as macromonomers to enhance binding affinity and specificity of MIPs. Second, DNA can help produce optical signals to follow binding events. Third, imprinting can also improve the performance of catalytic DNA by enhancing its activity and specificity toward the template substrate. Finally, MIP is shown to help aptamer selection. Bulk imprinting, nanoparticle imprinting, and surface imprinting are all demonstrated with DNA. Since both DNA and synthetic polymers are cost effective and stable, their hybrid materials still possess such properties while enhancing the function of each component. This review covers recent developments on the abovementioned aspects of DNA-containing MIPs, a field just emerged in the last five years, and future research directions are discussed toward the end.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
41
|
Yan Q, Liu L, Wang T, Wang H. A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04501-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
42
|
Synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion to controlled release of adenosine 5'‑monophosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:254-263. [PMID: 31029318 DOI: 10.1016/j.msec.2019.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022]
Abstract
Herein, we propose the synthesis of a microspherical imprinted hydrogel meant for the controlled release of a nucleotide, adenosine 5'-monophosphate (5'-AMP). Indeed, molecularly imprinted polymers-based (MIPs) materials possess remarkable selective molecular recognition ability that mimicks biological systems. MIPs have been used in numerous applications and hold great promise for the vectorization and/or controlled release of therapeutics and cosmetics. But, the conception of imprinted hydrogels-based drug delivery systems that are able to release polar bioactive compounds is explored weakly. Herein, the synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion is detailed. Microspheres showed a large 5'-AMP loading capacity, around 300 mg·g-1, and a high binding capacity comparatively to the non-imprinted counterpart. The MIP had a thermo-responsive release behavior providing sustained release of adenosine 5'-monophosphate in an aqueous buffer simulating both human skin pH and temperature.
Collapse
|
43
|
Kavand H, van Lintel H, Bakhshi Sichani S, Bonakdar S, Kavand H, Koohsorkhi J, Renaud P. Cell-Imprint Surface Modification by Contact Photolithography-Based Approaches: Direct-Cell Photolithography and Optical Soft Lithography Using PDMS Cell Imprints. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10559-10566. [PMID: 30790524 DOI: 10.1021/acsami.9b00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
New cell-imprint surface modification techniques based on direct-cell photolithography and optical soft lithography using poly(dimethylsiloxane) (PDMS) cell imprints are presented for enhanced cell-based studies. The core concept of engineering materials for cell-based studies is the material's ability to redesign the physicochemical characteristics of the cellular niche. There is a growing interest in direct molding from cells (cell imprinting). These negative copies of cell surface topographies have been shown to affect cell shape and direct mesenchymal stem cells' differentiation. Analyzing the results is however challenging as cells seeded on these substrates do not always end up in a cell pattern, which leads to decreased effectiveness and biased quantification. To gain control over cell seeding into the patterns and avoid unwanted cell population outside of the patterns, the cell-imprinted surface needs to be modified. From this perspective, the standard optical contact lithography process was modified and cells were introduced to the cleanroom. Direct-cell photolithography was used for a single-step PDMS cell-imprint (chondrocytes as the molding template) surface modification down to single-cell (approximately 5 μm in diameter) resolution. As cells come in a variety of shapes, sizes, and optical profiles, a complementary optical soft lithography-based photomask fabrication technique is also reported. The simplicity of the fabrication process makes this cell-imprint surface modification technique compatible with any adherent cell type and leads to efficient cell-based studies.
Collapse
Affiliation(s)
- Hanie Kavand
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4 , Station 17 , CH-1015 Lausanne , Switzerland
| | - Harald van Lintel
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4 , Station 17 , CH-1015 Lausanne , Switzerland
| | - Soroush Bakhshi Sichani
- Advanced Micro and Nano Devices Laboratory, Faculty of New Sciences and Technologies , University of Tehran , 14395-1561 Tehran , Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran , Pasteur Institute of Iran , 13169-43551 Tehran , Iran
| | - Hamed Kavand
- Advanced Micro and Nano Devices Laboratory, Faculty of New Sciences and Technologies , University of Tehran , 14395-1561 Tehran , Iran
| | - Javad Koohsorkhi
- Advanced Micro and Nano Devices Laboratory, Faculty of New Sciences and Technologies , University of Tehran , 14395-1561 Tehran , Iran
| | - Philippe Renaud
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4 , Station 17 , CH-1015 Lausanne , Switzerland
| |
Collapse
|
44
|
Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1028. [PMID: 30823435 PMCID: PMC6427209 DOI: 10.3390/s19051028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shubhangi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Ryan D Boehm
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
45
|
Wang X, Pei Y, Hou Y, Pei Z. Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin via Click Polymerization. Polymers (Basel) 2019; 11:E313. [PMID: 30960296 PMCID: PMC6419411 DOI: 10.3390/polym11020313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
The core-shell structure molecularly imprinted magnetic nanospheres towards hypericin (Fe₃O₄@MIPs) were prepared by mercapto-alkyne click polymerization. The shape and size of nanospheres were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The nanospheres were analyzed by FTIR spectroscopy to verify the thiol-yne click reaction in the presence or absence of hypericin. The Brunauer⁻Emmet⁻Teller (BET) method was used for measuring the average pore size, pore volume and surface area. The Fe₃O₄@MIPs synthesized displayed a good adsorption capacity (Q = 6.80 µmol·g-1). In addition, so-prepared Fe₃O₄@MIPs showed fast mass transfer rates and good reusability. The method established for fabrication of Fe₃O₄@MIPs showed excellent reproducibility and has broad potential for the fabrication of other core-shell molecularly imprinted polymers (MIPs).
Collapse
Affiliation(s)
- Xinxin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
46
|
Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater 2019; 84:49-62. [PMID: 30448434 DOI: 10.1016/j.actbio.2018.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Efficient ocular drug delivery that can overcome the challenges of topical application has been largely pursued. Contact lenses (CLs) may act as light-transparent cornea/sclera bandages for prolonged drug release towards the post-lens tear fluid, if their composition and inner architecture are fitted to the features of the drug molecules. In this review, first the foundations and advantages of using CLs as ocular drug depots are revisited. Then, pros and cons of common strategies to prepare drug-loaded CLs are analyzed on the basis of recent examples, and finally the main section focuses on bioinspired strategies that can overcome some limitations of current designs. Most bioinspired strategies resemble a reverse engineering process to create artificial receptors for the drug inside the CL network by mimicking the human natural binding site of the drug. Related bioinspired strategies are being also tested for designing CLs that elute comfort ingredients mimicking the blinking-associated renewal of eye mucins. Other bioinspired approaches exploit the natural eye variables as stimuli to trigger drug release or take benefit of bio-glues to specifically bind active components to the CL surface. Overall, biomimicking approaches are being revealed as valuable tools to fit the amounts loaded and the release profiles to the therapeutic demands of each pathology. STATEMENT OF SIGNIFICANCE: Biomimetic and bioinspired strategies are remarkable tools for the optimization of drug delivery systems. Translation of the knowledge about how drugs interact with the natural pharmacological receptor and about components and dynamics of anterior eye segment may shed light on the design criteria for obtaining efficient drug-eluting CLs. Current strategies for endowing CLs with controlled drug release performance still require optimization regarding amount loaded, drug retained in the CL structure during storage, regulation of drug release once applied onto the eye, and maintenance of CL physical properties. All these limitations may be addressed through a variety of recently growing bioinspired approaches, which are expected to pave the way of medicated CLs towards the clinics.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soledad Anguiano-Igea
- HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Angela Varela-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - María Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
47
|
Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
|
48
|
Cazares-Cortes E, Cabana S, Boitard C, Nehlig E, Griffete N, Fresnais J, Wilhelm C, Abou-Hassan A, Ménager C. Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv Drug Deliv Rev 2019; 138:233-246. [PMID: 30414493 DOI: 10.1016/j.addr.2018.10.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2018] [Revised: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect. This magneto-thermal effect can be exploited as a relevant external stimulus to temporally and spatially trigger drug release. In this review, we focus on recent advances in magnetic hyperthermia. Indirect experimental proofs of the local temperature increase are first discussed leading to a good estimation of the temperature at the surface (from 0.5 to 6 nm) of superparamagnetic NPs. Then we highlight recent studies illustrating the hot-spot effect for drug-release. Finally, we present another recent strategy to enhance the efficacity of thermal treatment by combining photothermal therapy with magnetic hyperthermia mediated by magneto-plasmonic nanoplatforms.
Collapse
|
49
|
Abstract
Contact lenses have been a common means of vision correction for more than half a century. Recent developments have raised the possibility that the next few decades will see a considerable broadening of the range of applications for contact lenses, with associated expansions in the number and type of individuals who consider them a valuable option. The novel applications of contact lenses include treatment platforms for myopic progression, biosensors, and ocular drug delivery. Orthokeratology has shown the most consistent treatment for myopia control with the least side effects. Recent work has resulted in commercialization of a device to monitor intraocular pressure for up to 24 hours, and extensive efforts are underway to develop a contact lens sensor capable of continuous glucose tear film monitoring for the management of diabetes. Other studies on drug-eluting contact lenses have focused on increasing the release duration through molecular imprinting, use of vitamin E, and increased drug binding to polymers by sandwiching a poly (lactic-co-glycolic acid) layer in the lens. This review demonstrates the potential for contact lenses to provide novel opportunities for refractive management, diagnosis, and management of diseases.
Collapse
|
50
|
Cegłowski M, Hoogenboom R. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michał Cegłowski
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|