1
|
Liu S, Li J, Cheng Q, Duan K, Wang Z, Yan S, Tian S, Wang H, Wu S, Lei X, Yang Y, Ma N. A Single-Step Method for Harvesting Influenza Viral Particles from MDCK Cell Culture Supernatant with High Yield and Effective Impurity Removal. Viruses 2024; 16:768. [PMID: 38793649 PMCID: PMC11125750 DOI: 10.3390/v16050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.
Collapse
Affiliation(s)
- Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- GenScript (Shanghai) Biotech Co., Ltd., Shanghai 200131, China
| | - Qingtian Cheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Kangyi Duan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Zhan Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Shuang Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Hairui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Qilu Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Shaobin Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Xinkui Lei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| |
Collapse
|
2
|
Pang JH, Guo CF, Hao PL, Meng SL, Guo J, Zhang D, Ji YQ, Ming PG. Evaluation of the Robustness Verification of Downstream Production Process for Inactivated SARS-CoV-2 Vaccine and Different Chromatography Medium Purification Effects. Vaccines (Basel) 2024; 12:56. [PMID: 38250869 PMCID: PMC10818994 DOI: 10.3390/vaccines12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Large-scale vaccine production requires downstream processing that focuses on robustness, efficiency, and cost-effectiveness. METHODS To assess the robustness of the current vaccine production process, three batches of COVID-19 Omicron BA.1 strain hydrolytic concentrated solutions were selected. Four gel filtration chromatography media (Chromstar 6FF, Singarose FF, Bestarose 6B, and Focurose 6FF) and four ion exchange chromatography media (Maxtar Q, Q Singarose, Diamond Q, and Q Focurose) were used to evaluate their impact on vaccine purification. The quality of the vaccine was assessed by analyzing total protein content, antigen content, residual Vero cell DNA, residual Vero cell protein, and residual bovine serum albumin (BSA). Antigen recovery rate and specific activity were also calculated. Statistical analysis was conducted to evaluate process robustness and the purification effects of the chromatography media. RESULTS The statistical analysis revealed no significant differences in antigen recovery (p = 0.10), Vero HCP residue (p = 0.59), Vero DNA residue (p = 0.28), and BSA residue (p = 0.97) among the three batches of hydrolytic concentrated solutions processed according to the current method. However, a significant difference (p < 0.001) was observed in antigen content. CONCLUSIONS The study demonstrated the remarkable robustness of the current downstream process for producing WIBP-CorV vaccines. This process can adapt to different batches of hydrolytic concentrated solutions and various chromatography media. The research is crucial for the production of inactivated SARS-CoV-2 vaccines and provides a potential template for purifying other viruses.
Collapse
Affiliation(s)
- Jia-Hui Pang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Chang-Fu Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Peng-Liang Hao
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Sheng-Li Meng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jing Guo
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Dou Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ya-Qi Ji
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ping-Gang Ming
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| |
Collapse
|
3
|
Barroso SPC, Vicente Dos Santos AC, Souza Dos Santos P, Dos Santos Silva Couceiro JN, Fernandes Ferreira D, Nico D, Morrot A, Lima Silva J, Cheble de Oliveira A. Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach. Access Microbiol 2021; 3:000220. [PMID: 34151171 PMCID: PMC8208760 DOI: 10.1099/acmi.0.000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.
Collapse
Affiliation(s)
- Shana Priscila Coutinho Barroso
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Ana Clara Vicente Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Centro Universitário IBMR, Rio de Janeiro, RJ, Brazil
| | | | - Davis Fernandes Ferreira
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dirlei Nico
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Faculdade de Medicina, Departamento de Clínica Médica, Centro de Pesquisa em Tuberculose,, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andrea Cheble de Oliveira
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| |
Collapse
|
4
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
A new and simplified anion exchange chromatographic process for the purification of cell-grown influenza A H1N1 virus. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
7
|
Zhang F, Luo J, Teng M, Xing G, Guo J, Zhang Y. Purification of cell-derived Japanese encephalitis virus by dual-mode chromatography. Biotechnol Appl Biochem 2020; 68:547-553. [PMID: 32458417 DOI: 10.1002/bab.1960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Abstract
Purification of the enveloped virus poses a challenge as one must retain viral infectivity to preserve immunogenicity. The traditional process of virus purification is time-consuming, laborious and hard to scale up. Here, a rapid, simple and extensible laboratory program for the purification of Japanese encephalitis virus (JEV) was developed by using differential centrifugation, ultrafiltration, Sepharose 4 fast flow gel chromatography, and CaptoTM Core 700 chromatography. The entire process recovered 61.64% of the original virus, and the purified virus particles maintained good activity and immunogenicity. The purification process described has potential application in large-scale production of high-purity JEV.
Collapse
Affiliation(s)
- Fuliang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, People's Republic of China
| | - Jun Luo
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Man Teng
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
8
|
Loewe D, Dieken H, Grein TA, Weidner T, Salzig D, Czermak P. Opportunities to debottleneck the downstream processing of the oncolytic measles virus. Crit Rev Biotechnol 2020; 40:247-264. [PMID: 31918573 DOI: 10.1080/07388551.2019.1709794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses (including measles virus) offer an alternative approach to reduce the high mortality rate of late-stage cancer. Several measles virus strains infect and lyse cancer cells efficiently, but the broad application of this therapeutic concept is hindered by the large number of infectious particles required (108-1012 TCID50 per dose). The manufacturing process must, therefore, achieve high titers of oncolytic measles virus (OMV) during upstream production and ensure that the virus product is not damaged during purification by applying appropriate downstream processing (DSP) unit operations. DSP is currently a production bottleneck because there are no specific platforms for OMV. Infectious OMV must be recovered as intact, enveloped particles, and host cell proteins and DNA must be reduced to acceptable levels to meet regulatory guidelines that were developed for virus-based vaccines and gene therapy vectors. Handling such high viral titers and process volumes is technologically challenging and expensive. This review considers the state of the art in OMV purification and looks at promising DSP technologies. We discuss here the purification of other enveloped viruses where such technologies could also be applied to OMV. The development of DSP technologies tailored for enveloped viruses is necessary to produce sufficient titers for virotherapy, which could offer hope to millions of patients suffering from incurable cancer.
Collapse
Affiliation(s)
- Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tanja A Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany.,Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
9
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
10
|
Loewe D, Grein TA, Dieken H, Weidner T, Salzig D, Czermak P. Tangential Flow Filtration for the Concentration of Oncolytic Measles Virus: The Influence of Filter Properties and the Cell Culture Medium. MEMBRANES 2019; 9:membranes9120160. [PMID: 31795406 PMCID: PMC6950090 DOI: 10.3390/membranes9120160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
The therapeutic use of oncolytic measles virus (MV) for cancer treatment requires >108 infectious MV particles per dose in a highly pure form. The concentration/purification of viruses is typically achieved by tangential flow filtration (TFF) but the efficiency of this process for the preparation of MV has not been tested in detail. We therefore investigated the influence of membrane material, feed composition, and pore size or molecular weight cut-off (MWCO) on the recovery of MV by TFF in concentration mode. We achieved the recovery of infectious MV particles using membranes with a MWCO ≤ 300 kDa regardless of the membrane material and whether or not serum was present in the feed. However, serum proteins in the medium affected membrane flux and promoted fouling. The severity of fouling was dependent on the membrane material, with the cellulose-based membrane showing the lowest susceptibility. We found that impurities such as proteins and host cell DNA were best depleted using membranes with a MWCO ≥ 300 kDa. We conclude that TFF in concentration mode is a robust unit operation to concentrate infectious MV particles while depleting impurities such as non-infectious MV particles, proteins, and host cell DNA.
Collapse
Affiliation(s)
- Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
- Faculty of Biology and Chemistry, University of Giessen, 35390 Giessen, Germany
| | - Tanja A. Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
- Faculty of Biology and Chemistry, University of Giessen, 35390 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
- Correspondence: ; Tel.: +49-641-309-2551
| |
Collapse
|
11
|
Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus. Arch Virol 2016; 161:1455-67. [PMID: 26935920 DOI: 10.1007/s00705-016-2801-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.
Collapse
|
12
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
13
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
14
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
15
|
He C, Yang Z, Tong K. Downstream processing of Vero cell-derived human influenza A virus (H1N1) grown in serum-free medium. J Chromatogr A 2011; 1218:5279-85. [DOI: 10.1016/j.chroma.2011.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
|
16
|
Urbas L, Košir B, Peterka M, Pihlar B, Štrancar A, Barut M. Reversed phase monolithic analytical columns for the determination of HA1 subunit of influenza virus haemagglutinin. J Chromatogr A 2011; 1218:2432-7. [DOI: 10.1016/j.chroma.2010.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 11/16/2022]
|
17
|
Kröber T, Knöchlein A, Eisold K, Kalbfuß-Zimmermann B, Reichl U. DNA Depletion by Precipitation in the Purification of Cell Culture-Derived Influenza Vaccines. Chem Eng Technol 2010. [DOI: 10.1002/ceat.200900534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Kalbfuss B, Flockerzi D, Seidel-Morgenstern A, Reichl U. Size-exclusion chromatography as a linear transfer system: Purification of human influenza virus as an example. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:102-12. [DOI: 10.1016/j.jchromb.2008.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/08/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
19
|
Wolff MW, Reichl U. Downstream Processing: From Egg to Cell Culture-Derived Influenza Virus Particles. Chem Eng Technol 2008; 31:846-857. [PMID: 32313385 PMCID: PMC7162065 DOI: 10.1002/ceat.200800118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 12/11/2022]
Abstract
The establishment of cell culture-derived vaccine production requires the development of appropriate downstream processes. Until today, many of the downstream methods applied originate from egg-derived production processes. These methods have often been slightly modified in order to account for the new demands. However, efforts are currently underway to optimize these processes focusing, for example, on ion exchange or affinity based membrane adsorption chromatography. This review covers the main aspects relevant for the downstream processing of egg and mammalian cell culture-derived whole influenza viruses.
Collapse
Affiliation(s)
- M W Wolff
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - U Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Monitoring influenza virus content in vaccine production: Precise assays for the quantitation of hemagglutination and neuraminidase activity. Biologicals 2008; 36:145-61. [DOI: 10.1016/j.biologicals.2007.10.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Kalbfuss B, Wolff M, Geisler L, Tappe A, Wickramasinghe R, Thom V, Reichl U. Direct capture of influenza A virus from cell culture supernatant with Sartobind anion-exchange membrane adsorbers. J Memb Sci 2007. [DOI: 10.1016/j.memsci.2007.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Kalbfuss B, Wolff M, Morenweiser R, Reichl U. Purification of cell culture-derived human influenza A virus by size-exclusion and anion-exchange chromatography. Biotechnol Bioeng 2007; 96:932-44. [PMID: 16937411 PMCID: PMC7161795 DOI: 10.1002/bit.21109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A process comprising of size-exclusion chromatography (SEC) and anion-exchange chromatography (AEC) was investigated for downstream processing of cell culture-derived influenza A virus. Human influenza virus A/PR/8/34 (H1N1) was propagated in serum-free medium using MDCK cells as a host. Concentrates of the virus were prepared from clarified and inactivated cell culture supernatants by cross-flow ultrafiltration as described before. SEC on Sepharose 4 FF resulted in average product yields of 85% based on hemagglutination (HA) activity. Productivity was maximized to 0.15 column volumes (cv) of concentrate per hour yielding a reduction in total protein and host cell DNA (hcDNA) to 35 and 34%, respectively. AEC on Sepharose Q XL was used to separate hcDNA from virus at a salt concentration of 0.65 M sodium chloride. Product yields >80% were achieved for loads >160 kHAU/mL of resin. The reduction in hcDNA was 67-fold. Split peak elution and bimodal particle volume distributions suggested aggregation of virions. Co-elution with hcDNA and constant amounts of hcDNA per dose indiciated association of virions to hcDNA. An overall product yield of 52% was achieved. Total protein was reduced more than 19-fold; hcDNA more than 500-fold by the process. Estimation of the dose volume from HA activity predicted a protein content at the limit for human vaccines. Reduction of hcDNA was found insufficient (about 500 ng per dose) requiring further optimization of AEC or additional purification steps. All operations were selected to be scalable and independent of the virus strain rendering the process suitable for vaccine production.
Collapse
Affiliation(s)
- Bernd Kalbfuss
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | | | | | |
Collapse
|
23
|
Kalbfuss B, Genzel Y, Wolff M, Zimmermann A, Morenweiser R, Reichl U. Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines. Biotechnol Bioeng 2007; 97:73-85. [PMID: 16921531 DOI: 10.1002/bit.21139] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A process scheme for the harvesting and concentration of cell culture-derived human influenza A virus is presented. The scheme comprises two static filtration steps, chemical inactivation by beta-propiolactone and cross-flow ultrafiltration. Human influenza A virus A/PR/8/34 (H1N1) was produced in roller bottles with serum-free medium using MDCK cells as a host. Cultivations resulted in specific hemagglutination (HA) activities of 393 HAU (100 microL)(-1) and turbidities of 0.479 OD measured as the extinction of light at 700 nm (mean values are presented). The concentrations of soluble protein and DNA in the harvests were 72 microg/mL and 5.73 microg/mL, respectively. An average product yield of 79% based on HA activity was achieved after clarification by depth (85%) and microfiltration (93%). The turbidities of cell culture supernatants were reduced to 2% of their initial value. Concentration with 750 kDa hollow-fiber modules by a factor of 20 resulted in 97% recovery of the product when operated at a constant flux of 28 L/(m(2) h) and a wall shear rate of 9,500 s(-1). The amount of protein and DNA could be reduced to 16% and 33% of their initial amount, respectively. An overall product yield of 77% was achieved. Clarified supernatants and concentrates were further analyzed by non-reducing SDS-PAGE and agarose gel electrophoresis. Particle volume distributions of concentrates were obtained by dynamic light scattering analysis. From the results it can be concluded that the suggested process scheme is well suited for the harvesting and concentration of cell culture-derived influenza A virus.
Collapse
Affiliation(s)
- Bernd Kalbfuss
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg 39106, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Genzel Y, Olmer RM, Schäfer B, Reichl U. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 2006; 24:6074-87. [PMID: 16781022 DOI: 10.1016/j.vaccine.2006.05.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/09/2006] [Accepted: 05/16/2006] [Indexed: 02/06/2023]
Abstract
A process for equine influenza virus vaccine production using a microcarrier system (Cytodex 1) in a 2 L Wave bioreactor is described. Growth of Madin Darby canine kidney (MDCK) cells in serum containing GMEM medium (SC) is compared to growth in serum-free Ex-Cell MDCK medium (SF) without washing steps and medium exchange before infection. Cultivations with microcarrier concentrations of 2 and 4 g/L for both media are shown. Metabolic data from carbon and amino acid metabolism are discussed. Additionally, in roller bottle experiments the influence of multiplicity of infection (moi) and trypsin concentration on the HA value was investigated. Analysis of HA and TCID(50) at 37 degrees C showed a stable HA of maximum 2.6 log HA/100 microL for 2 weeks. Peak TCID(50) titers of 10(7.7) viruses/mL were achieved 20h post infection, but infectivity was below detection limit after 150 h. Cell attachment onto microcarriers under serum-free conditions was improved by Ca(2+) addition and by cell harvesting without trypsin using only an EDTA/PBS solution. For the wave cultivation maximum virus titers of 2.3-2.6 log HA units/100 microL were reached from infection with a moi of 0.05. However, in SF medium pH dropped to less than pH 6.8 which resulted in lower HA titers of 1.7 log HA units/100 microL. For the higher microcarrier concentration (4 g/L) medium exchange steps (500 mL) were needed for both media. Omission of the washing step and medium exchange before infection in SF medium clearly simplified the influenza production process; however, for higher virus yields a better pH control of the wave bioreactor would be required. Higher cell densities (2.8 x 10(6) cells/mL for 2 g/L microcarrier) and better attachment compared to stirred tank bioreactors showed, that the wave bioreactor is a good alternative to stirred tank processes for expanding production capacities in case of a pandemic.
Collapse
Affiliation(s)
- Y Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | | | | | |
Collapse
|