1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Kenney HM, Yoshida T, Berdyshev E, Calatroni A, Gill SR, Simpson EL, Lussier S, Boguniewicz M, Hata T, Chiesa Fuxench ZC, De Benedetto A, Ong PY, Ko J, Davidson W, David G, Schlievert PM, Leung DYM, Beck LA. CERS1 is a biomarker of Staphylococcus aureus abundance and atopic dermatitis severity. J Allergy Clin Immunol 2024:S0091-6749(24)00991-6. [PMID: 39343173 DOI: 10.1016/j.jaci.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory skin condition characterized by widely variable cutaneous Staphylococcus aureus abundance that contributes to disease severity and rapidly responds to type 2 immune blockade (ie, dupilumab). The molecular mechanisms regulating S aureus levels between AD subjects remain poorly understood. OBJECTIVE We investigated host genes that may be predictive of S aureus abundance and correspond with AD severity. METHODS We studied data derived from the National Institutes of Health/National Institute of Allergy and Infectious Diseases-funded (NCT03389893 [ADRN-09]) randomized, double-blind, placebo-controlled multicenter study of dupilumab in adults (n = 71 subjects) with moderate-to-severe AD. Bulk RNA sequencing of skin biopsy samples (n = 57 lesional, 55 nonlesional) was compared to epidermal S aureus abundance, lipidomic, and AD clinical measures. RESULTS S aureus abundance and ceramide synthase 1 (CERS1) expression positively correlated at baseline across both nonlesional (r = 0.29, P = .030) and lesional (r = 0.41, P = .0015) skin. Lesional CERS1 expression also positively correlated with AD severity (ie, SCORAD r = 0.44, P = .0006) and skin barrier dysfunction (transepidermal water loss area under the curve r = 0.31, P = .025) at baseline. CERS1 expression (forms C18:0 sphingolipids) was negatively associated with elongation of very long-chain fatty acids (ELOVL6; C16:0→C18:0) expression and corresponded with a shorter chain length sphingolipid composition. Dupilumab rapidly reduced CERS1 expression (day 7) and ablated the relationship with S aureus abundance and ELOVL6 expression by day 21. CONCLUSION CERS1 is a unique molecular biomarker of S aureus abundance and AD severity that may contribute to dysfunctional skin barrier and shorter-chain sphingolipid composition through fatty acid sequestration as a maladaptive compensatory response to reduced ELOVL6.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | | | - Steven R Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY
| | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | | | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University of Southern California, Division of Clinical Immunology and Allergy Children's Hospital Los Angeles, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | - Wendy Davidson
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Lisa A Beck
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; Department of Dermatology, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
3
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Zhu F, Zhao B, Hu B, Zhang Y, Xue B, Wang H, Chen Q. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68022-68053. [PMID: 37147548 DOI: 10.1007/s11356-023-26900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Natural ceramide, a biologically active compound present in plants, has been used widely in food, cosmetics, and pharmaceutical industries. Abundant ceramide has been detected in sewage sludge, which has inspired the idea to recycle ceramide from it. Therefore, the methods of extracting, purifying, and detecting ceramides from plants were reviewed, with the aim to establish methods to get condensed ceramide from sludge. Ceramide extraction methods include traditional methods (maceration, reflux, and Soxhlet extraction) and green technologies (ultrasound-assisted, microwave-assisted, and supercritical fluid extraction). In the past two decades, more than 70% of the articles have used traditional methods. However, green extraction methods are gradually improved and showed high extraction efficiency with lower solvent consumed. The preferred technique for ceramide purification is chromatography. Common solvent systems include chloroform-methanol, n-hexane-ethyl acetate, petroleum ether-ethyl acetate, and petroleum ether-acetone. For structural determination of ceramide, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry are used in combination. Among quantitative analysis methods for ceramide, liquid chromatography-mass spectrometry was the most accurate. This review concludes that with our prilemenary experiment results it is feasible to apply the plant "extraction + purification" process of ceramide to sludge, but more optimization need to be performed to get better results.
Collapse
Affiliation(s)
- Fenfen Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bing Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bo Hu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Yuhui Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qian Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
5
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
6
|
Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J Lipid Res 2022; 63:100235. [PMID: 35654151 PMCID: PMC9240646 DOI: 10.1016/j.jlr.2022.100235] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Madoka Suzuki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Petracca B, Nădăban A, Eeman M, Gooris GS, Bouwstra JA. Effects of ozone on stratum corneum lipid integrity and assembly. Chem Phys Lipids 2021; 240:105121. [PMID: 34352254 DOI: 10.1016/j.chemphyslip.2021.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately the barrier properties of the SCS were examined. Our studies reveal that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, the modifications improved the barrier function of the SCS.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Marc Eeman
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium.
| | - Gert S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
8
|
Begou OA, Deda O, Karagiannidis E, Sianos G, Theodoridis G, Gika HG. Development and validation of a RPLC-MS/MS method for the quantification of ceramides in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122734. [PMID: 33991953 DOI: 10.1016/j.jchromb.2021.122734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Ceramides are key-role lipids involved in numerous central cellular processes. A plethora of studies have demonstrated that the levels of ceramides in blood circulation are related to different disease states, such as type 2 diabetes, cardiovascular diseases, ovarian cancer, multiple sclerosis and others. Herein, a RPLC-MS/MS method for the rapid quantification of ceramides Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1) in human blood serum was developed and validated. Different sample preparation strategies including SLE, LLE and QuECheRS were tested with the aim to attain effective, accurate and reproducible determination of ceramides in serum samples. Intra and inter-day accuracy were found to be between 80.0-111% and 87.8-106%, respectively, for all ceramides, while intra and inter-day precision were found to vary from 0.05% to 10.2% %RSD and 2.2% to 14.0% %RSD, respectively. The lower limits of quantification were 2.3 ng/mL for Cer(d18:1/16:0) and Cer(d18:1/18:0) and 1.4 ng/mL for Cer(d18:1/24:0) and Cer(d18:1/24:1). The method was evaluated in accordance to bioanalytical method guidelines and was used for the determination of serum ceramides of patients with coronary artery disease to evaluate its utility in clinical analyses.
Collapse
Affiliation(s)
- Olga Angeliki Begou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.
| | - Olga Deda
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece.
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece.
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.
| | - Helen G Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
9
|
Boiten W, van Smeden J, Bouwstra J. The Cornified Envelope-Bound Ceramide Fraction Is Altered in Patients with Atopic Dermatitis. J Invest Dermatol 2019; 140:1097-1100.e4. [PMID: 31629701 DOI: 10.1016/j.jid.2019.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Walter Boiten
- Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen van Smeden
- Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Joke Bouwstra
- Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
Jamin EL, Jacques C, Jourdes L, Tabet JC, Borotra N, Bessou-Touya S, Debrauwer L, Duplan H. Identification of lipids of the stratum corneum by high performance thin layer chromatography and mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:278-290. [PMID: 30545248 DOI: 10.1177/1469066718815380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The stratum corneum, the outermost layer of the epidermis, is the most important skin barrier against exogenous physical and chemical effects, in addition to protecting against dehydration. Ceramides are integral parts of the intercellular lipid lamellae of the stratum corneum and play an important role in the barrier function of mammalian skin. Ceramides are sphingolipids consisting of sphingoid bases linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine, sphingosine, phytosphingosine, and 6-hydroxysphingosine, and the fatty acid acyl chains are composed of non-hydroxy fatty acid, α-hydroxy fatty acid, ω-hydroxy fatty acid, and esterified ω-hydroxy fatty acid. Analytical methods, such as gas chromatography/mass spectrometry, high performance thin layer chromatography with UV detection, and liquid chromatography/mass spectrometry, have been developed for the identification and quantification of ceramides in the stratum corneum. However, only a few publications relate to the mass fragmentation patterns specific to ceramide types to determine the structure of skin ceramides. Moreover, these studies provide very limited structural information and only for some ceramides. Therefore, the aim of our study was to develop a quick and easy method of quantification of ceramides, cholesterol, and free fatty acids by high performance thin layer chromatography with ultraviolet detection. High performance thin layer chromatography with ultraviolet detection was also coupled with mass spectrometry using negative ionization by electrospray and tandem mass spectrometry (MS/MS) for identification of ceramides' structure.
Collapse
Affiliation(s)
- Emilien L Jamin
- 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- 2 Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Carine Jacques
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | - Laëtitia Jourdes
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | - Jean-Claude Tabet
- 4 Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
- 5 Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, France
| | - Nathalie Borotra
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | | | - Laurent Debrauwer
- 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- 2 Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Hélène Duplan
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| |
Collapse
|
11
|
Boiten W, Helder R, van Smeden J, Bouwstra J. Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1206-1213. [PMID: 31112754 DOI: 10.1016/j.bbalip.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
The cornified lipid envelope (CLE) is a lipid monolayer covalently bound to the outside of corneocytes and is part of the stratum corneum (SC). The CLE is suggested to act as a scaffold for the unbound SC lipids. By profiling the bound CLE ceramides, a new subclass was discovered and identified as an omega-hydroxylated dihydrosphingosine (OdS) ceramide. Bound glucosylceramides were observed in superficial SC layers of healthy human skin. To investigate the relation between bound and unbound SC ceramides, the composition of both fractions was analyzed and compared. Selectivity in ceramide binding towards unsaturated ceramides and ceramides with a shorter chain length was observed. The selectivity in ceramide species bound to the cornified envelope is thought to have a physiological function in corneocyte flexibility. Next, it was examined if skin models exhibit an altered bound ceramide composition and if the composition was dependent on liver X-receptor (LXR) activation. The effects of an LXR agonist and antagonist on the bound ceramides composition of a full thickness model (FTM) were analyzed. In FTMs, a decreased amount of bound ceramides was observed compared to native human skin. Furthermore, FTMs had a bound ceramide fraction which consisted mostly of unsaturated and shorter ceramides. The LXR antagonist had a normalizing effect on the FTM bound ceramide composition. The agonist exhibited minimal effects. We show that ceramide binding is a selective process, yet, still is contingent on lipid synthesized.
Collapse
Affiliation(s)
- Walter Boiten
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Richard Helder
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Joke Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
12
|
Harazim E, Vrkoslav V, Buděšínský M, Harazim P, Svoboda M, Plavka R, Bosáková Z, Cvačka J. Nonhydroxylated 1- O-acylceramides in vernix caseosa. J Lipid Res 2018; 59:2164-2173. [PMID: 30254076 PMCID: PMC6210899 DOI: 10.1194/jlr.m088864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Vernix caseosa, the waxy substance that coats the skin of newborn babies, has an extremely complex lipid composition. We have explored these lipids and identified nonhydroxylated 1-O-acylceramides (1-O-ENSs) as a new class of lipids in vernix caseosa. These ceramides mostly contain saturated C11-C38 ester-linked (1-O) acyls, saturated C12-C39 amide-linked acyls, and C16-C24 sphingoid bases. Because their fatty acyl chains are frequently branched, numerous molecular species were separable and detectable by HPLC/MS: we found more than 2,300 molecular species, 972 of which were structurally characterized. The most abundant 1-O-ENSs contained straight-chain and branched fatty acyls with 20, 22, 24, or 26 carbons in the 1-O position, 24 or 26 carbons in the N position, and sphingosine. The 1-O-ENSs were isolated using multistep TLC and HPLC and they accounted for 1% of the total lipid extract. The molecular species of 1-O-ENSs were separated on a C18 HPLC column using an acetonitrile/propan-2-ol gradient and detected by APCI-MS, and the structures were elucidated by high-resolution and tandem MS. Medium-polarity 1-O-ENSs likely contribute to the cohesiveness and to the waterproofing and moisturizing properties of vernix caseosa.
Collapse
Affiliation(s)
- Eva Harazim
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Petr Harazim
- Department of Concrete and Masonry Structures, Faculty of Civil Engineering, Czech Technical University in Prague, CZ-166 29 Praha 6, Czech Republic
| | - Martin Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Richard Plavka
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-128 00 Praha 2, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| |
Collapse
|
13
|
B Gowda SG, Ikeda K, Arita M. Facile determination of sphingolipids under alkali condition using metal-free column by LC-MS/MS. Anal Bioanal Chem 2018; 410:4793-4803. [PMID: 29740670 DOI: 10.1007/s00216-018-1116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
Abstract
Extraction and analysis of sphingolipids from biological samples is a critical step in lipidomics, especially for minor species such as sphingoid bases and sphingosine-1-phosphate. Although several liquid chromatography-mass spectrometry methods enabling the determination of sphingolipid molecular species have been reported, they were limited in analytical sensitivity and reproducibility by causing significant peak tailing, especially by the presence of phosphate groups, and most of the extraction techniques are laborious and do not cover a broad range of sphingolipid metabolites. In this study, we developed a rapid single-phase extraction and highly sensitive analytical method for the detection and quantification of sphingolipids (including phosphates) comprehensively using liquid chromatography-triple quadruple mass spectrometry. After validating the reliability of the method, we analyzed the intestinal tissue sphingolipids of germ-free (GF) and specific pathogen-free (SPF) mice and found significantly higher levels of free sphingoid bases and sphingosine-1-phosphate in the GF condition as compared to the SPF condition. This method enables a rapid extraction and highly sensitive determination of sphingolipids comprehensively at low femtomolar ranges. Graphical abstract Diagrammatic comparision of sphingolipid (phosphates) analysis between conventional and this method.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan. .,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. .,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-0011, Japan.
| |
Collapse
|
14
|
Laffet GP, Genette A, Gamboa B, Auroy V, Voegel JJ. Determination of fatty acid and sphingoid base composition of eleven ceramide subclasses in stratum corneum by UHPLC/scheduled-MRM. Metabolomics 2018; 14:69. [PMID: 30830395 DOI: 10.1007/s11306-018-1366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Ceramides play a key role in skin barrier function in homeostatic and pathological conditions and can be sampled non-invasively through stratum corneum collection. OBJECTIVES To develop a novel UHPLC/Scheduled MRM method for the identification and relative distribution of eleven classes of ceramides, which are separated by UHPLC and determined by their specific retention times. The precise composition of the fatty acid and sphingoid base parts of each individual ceramide is determined via mass fragmentation. METHODS More than 1000 human and pig ceramides were identified. Three human and minipig ceramide classes, CER[AS], CER[NS] and CER[EOS] have been investigated in depth. RESULTS Sphingoid bases were characterized by a prevalence of chain lengths with sizes from C16 to C22, whereas fatty acids were mainly observed in the range of C22-C26. Overall, the ceramide profiles between human and minipig stratum corneum were similar. Differences in the CER[AS] and CER[NS] classes included a more homogeneous distribution of fatty acids (16-30 carbon atoms) in minipig, whereas in human longer fatty acid chains (> 24 carbon atoms) predominated. CONCLUSION The method will be useful for the analysis of healthy and pathological skin in various specie, and the measurement of the relative distribution of ceramides as biomarkers for pharmacodynamic studies.
Collapse
Affiliation(s)
- Gilbert P Laffet
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| | - Alexandre Genette
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Bastien Gamboa
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Virginie Auroy
- Albhades Provence, 940 avenue de Traversetolo, 04700, Oraison, France
| | - Johannes J Voegel
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| |
Collapse
|
15
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
16
|
Hsu FF. Complete structural characterization of ceramides as [M-H] - ions by multiple-stage linear ion trap mass spectrometry. Biochimie 2016; 130:63-75. [PMID: 27523779 DOI: 10.1016/j.biochi.2016.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MSn) towards complete structural determination of ceramides in ten major families characterized as the [M-H]- ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS2 spectrum, while the sequential MS3 and MS4 spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
17
|
Maula T, Al Sazzad MA, Slotte JP. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophys J 2016; 109:1639-51. [PMID: 26488655 DOI: 10.1016/j.bpj.2015.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022] Open
Abstract
Mammalian ceramides constitute a family of at least a few hundred closely related molecules distinguished by small structural differences, giving rise to individual molecular species that are expressed in distinct cellular compartments, or tissue types, in which they are believed to execute distinct functions. We have examined how specific structural details influence the bilayer properties of a selection of biologically relevant ceramides in mixed bilayers together with sphingomyelin, phosphatidylcholine, and cholesterol. The ceramide structure varied with regard to interfacial hydroxylation, the identity of the headgroup, the length of the N-acyl chain, and the position of cis-double bonds in the acyl chains. The interactions of the ceramides with sphingomyelin, their lateral segregation into ceramide-rich domains in phosphatidylcholine bilayers, and the effect of cholesterol on such domains were studied with DSC and various fluorescence-based approaches. The largest differences arose from the presence and relative position of cis-double bonds, causing destabilization of the ceramide's interactions and lateral packing relative to common saturated and hydroxylated species. Less variation was observed as a consequence of interfacial hydroxylation and the N-acyl chain length, although an additional hydroxyl in the sphingoid long-chain base slightly destabilized the ceramide's interactions and packing relative to a nonhydroxyceramide, whereas an additional hydroxyl in the N-acyl chain had the opposite effect. In conclusion, small structural details conferred variance in the bilayer behavior of ceramides, some causing more dramatic changes in the bilayer properties, whereas others imposed only fine adjustments in the interactions of ceramides with other membrane lipids, reflecting possible functional implications in distinct cell or tissue types.
Collapse
Affiliation(s)
- Terhi Maula
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
18
|
Profile and quantification of human stratum corneum ceramides by normal-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: development of targeted lipidomic method and application to human stratum corneum of different age groups. Anal Bioanal Chem 2016; 408:6623-36. [DOI: 10.1007/s00216-016-9775-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
19
|
Structural identification of skin ceramides containing ω-hydroxy acyl chains using mass spectrometry. Arch Pharm Res 2016; 39:1426-1432. [PMID: 27432202 DOI: 10.1007/s12272-016-0794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
The stratum corneum (SC) acts as a barrier that protects organisms against the environment and from transepidermal water loss. It consists of corneocytes embedded in a matrix of lipid metabolites (ceramides, cholesterol, and free fatty acids). Of these lipids, ceramides are sphingolipids consisting of sphingoid bases, linked to fatty acyl chains. Typical fatty acid acyl chains are composed of α-hydroxy fatty acids (A), esterified ω-hydroxy fatty acids (EO), non-hydroxy fatty acids (N), and ω-hydroxy fatty acids (O). Of these, O-type ceramides are ester-linked via their ω-hydroxyl group to proteins in the cornified envelope and can be released and extracted following mild alkaline hydrolysis. Tandem mass spectrometry (MS/MS) analysis of O-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, suggesting that this method could be applied to the structural identification of O-type ceramides. Based on the MS/MS fragmentation patterns of O-type ceramides, comprehensive fragmentation schemes are proposed. In addition, we have also developed a method for identifying and profiling O-type ceramides in the mouse and guinea pig SC. This information may be used to identify O-type ceramides in the SC of animal skin.
Collapse
|
20
|
CHA HWAJUN, HE CONGFEN, ZHAO HUA, DONG YINMAO, AN INSOOK, AN SUNGKWAN. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int J Mol Med 2016; 38:16-22. [DOI: 10.3892/ijmm.2016.2600] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/06/2016] [Indexed: 11/06/2022] Open
|
21
|
Wu Z, Shon JC, Lee D, Park KT, Park CS, Lee T, Lee HS, Liu KH. Lipidomic platform for structural identification of skin ceramides with α-hydroxyacyl chains. Anal Bioanal Chem 2016; 408:2069-82. [PMID: 26815554 DOI: 10.1007/s00216-015-9239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Skin ceramides are sphingolipids consisting of sphingoid bases, which are linked to fatty acids via an amide bond. Typical fatty acid acyl chains are composed of α-hydroxy fatty acid (A), esterified ω-hydroxy fatty acid (EO), non-hydroxy fatty acid (N), and ω-hydroxy fatty acid (O). We recently established a lipidomic platform to identify skin ceramides with non-hydroxyacyl chains using tandem mass spectrometry. We expanded our study to establish a lipidomic platform to identify skin ceramides with α-hydroxyacyl chains. Tandem mass spectrometry analysis of A-type ceramides using chip-based direct infusion nanoelectrospray-mass spectrometry showed the characteristic fragmentation pattern of both acyl and sphingoid units, which can be applied for structural identification of ceramides. Based on the tandem mass spectrometry fragmentation patterns of A-type ceramides, comprehensive fragmentation schemes were proposed. Our results may be useful for identifying A-type ceramides in the stratum corneum of human skin.
Collapse
Affiliation(s)
- Zhexue Wu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Doohyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Kab-Tae Park
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Chang Seo Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul, 100-715, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, 420-743, Republic of Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
22
|
Školová B, Janůšová B, Vávrová K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:220-32. [PMID: 26615916 DOI: 10.1016/j.bbamem.2015.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/27/2023]
Abstract
The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery.
Collapse
Affiliation(s)
- Barbora Školová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Janůšová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
Zhang T, Barclay L, Walensky LD, Saghatelian A. Regulation of mitochondrial ceramide distribution by members of the BCL-2 family. J Lipid Res 2015; 56:1501-10. [PMID: 26059977 PMCID: PMC4513991 DOI: 10.1194/jlr.m058750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/06/2015] [Indexed: 01/30/2023] Open
Abstract
Apoptosis is an intricately regulated cellular process that proceeds through different cell type- and signal-dependent pathways. In the mitochondrial apoptotic program, mitochondrial outer membrane permeabilization by BCL-2 proteins leads to the release of apoptogenic factors, caspase activation, and cell death. In addition to protein components of the mitochondrial apoptotic machinery, an interesting role for lipids and lipid metabolism in BCL-2 family-regulated apoptosis is also emerging. We used a comparative lipidomics approach to uncover alterations in lipid profile in the absence of the proapoptotic proteins BAX and BAK in mouse embryonic fibroblasts (MEFs). We detected over 1,000 ions in these experiments and found changes in an ion with an m/z of 534.49. Structural elucidation of this ion through tandem mass spectrometry revealed that this molecule is a ceramide with a 16-carbon N-acyl chain and sphingadiene backbone (d18:2/16:0 ceramide). Targeted LC/MS analysis revealed elevated levels of additional sphingadiene-containing ceramides (d18:2-Cers) in BAX, BAK-double knockout MEFs. Elevated d18:2-Cers are also found in immortalized baby mouse kidney epithelial cells lacking BAX and BAK. These results support the existence of a distinct biochemical pathway for regulating ceramides with different backbone structures and suggest that sphingadiene-containing ceramides may have functions that are distinct from the more common sphingosine-containing species.
Collapse
Affiliation(s)
- Tejia Zhang
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, San Diego, CA 92037
| | - Lauren Barclay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Loren D. Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
- Dana-Farber Cancer Institute and Children’s Hospital Boston, and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, San Diego, CA 92037
| |
Collapse
|
24
|
Basit A, Piomelli D, Armirotti A. Rapid evaluation of 25 key sphingolipids and phosphosphingolipids in human plasma by LC-MS/MS. Anal Bioanal Chem 2015; 407:5189-98. [PMID: 25749796 PMCID: PMC4471391 DOI: 10.1007/s00216-015-8585-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/09/2022]
Abstract
We report on a new, sensitive, and fast LC-MS/MS method for the simultaneous determination of 25 key sphingolipid components in human plasma, including phosphorylated sphinganine and sphingosine, in a single 9-min run. This method enables an effective and high-throughput coverage of the metabolic changes involving the sphingolipidome during physiological or pathological states. The method is based on liquid–liquid extraction followed by reversed-phase LC-MS/MS. Exogenous odd-chain lipids are used as cost-effective but reliable internal standards. The method was fully validated in surrogate matrix and naive human plasma following FDA guidelines. Sample stability and dilution integrity were also tested and verified.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | | | | |
Collapse
|
25
|
Kováčik A, Roh J, Vávrová K. The chemistry and biology of 6-hydroxyceramide, the youngest member of the human sphingolipid family. Chembiochem 2014; 15:1555-62. [PMID: 24990520 DOI: 10.1002/cbic.201402153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/08/2022]
Abstract
Sphingolipids are crucial for the life of the cell. In land-dwelling mammals, they are equally important outside the cell-in the extracellular space of the skin barrier-because they prevent loss of water. Although a large body of research has elucidated many of the functions of sphingolipids, their extensive structural diversity remains intriguing. A new class of sphingolipids based on 6-hydroxylated sphingosine has recently been identified in human skin. Abnormal levels of these 6-hydroxylated ceramides have repeatedly been observed in atopic dermatitis; however, neither the biosynthesis nor the roles of these unique ceramide subclasses have been established in the human body. In this Minireview, we summarize the current knowledge of 6-hydroxyceramides, including their discovery, structure, stereochemistry, occurrence in healthy and diseased human epidermis, and synthetic approaches to 6-hydroxysphingosine and related ceramides.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 50005 Hradec Králové (Czech Republic)
| | | | | |
Collapse
|
26
|
A lipidomic platform establishment for structural identification of skin ceramides with non-hydroxyacyl chains. Anal Bioanal Chem 2014; 406:1917-32. [PMID: 24458481 DOI: 10.1007/s00216-013-7601-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/05/2023]
Abstract
The stratum corneum (SC) is the outermost layer of skin that functions as a barrier and protects against environmental influences and transepidermal water loss. Its unique morphology consists of keratin-enriched corneocytes embedded in a distinctive mixture of lipids containing mainly ceramides, free fatty acids, and cholesterol. Ceramides are sphingolipids consisting of sphingoid bases, which are linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine (dS), sphingosine (S), phytosphingosine (P), and 6-hydroxysphingosine (H), and the fatty acid acyl chains are composed of non-hydroxy fatty acid (N), α-hydroxy fatty acid (A), ω-hydroxy fatty acid (O), and esterified ω-hydroxy fatty acid (E). The 16 ceramide classes include several combinations of sphingoid bases and fatty acid acyl chains. Among them, N-type ceramides are the most abundant in the SC. Mass spectrometry (MS)/MS analysis of N-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, which could be applied to structural identification of ceramides. Based on the MS/MS fragmentation patterns of N-type ceramides, comprehensive fragmentation schemes were proposed. In addition, mass fragmentation patterns, which are specific to the sphingoid backbone of N-type ceramides, were found in higher m/z regions of tandem mass spectra. These characteristic and general fragmentation patterns were used to identify N-type ceramides in human SC. Based on established MS/MS fragmentation patterns of N-type ceramides, 52 ceramides (including different classes of NS, NdS, NP, and NH) were identified in human SC. The MS/MS fragmentation patterns of N-type ceramides were characterized by interpreting their product ion scan mass spectra. This information may be used to identify N-type ceramides in the SC of human, rat, and mouse skin.
Collapse
|
27
|
Intercellular skin barrier lipid composition and organization in Netherton syndrome patients. J Invest Dermatol 2013; 134:1238-1245. [PMID: 24292773 DOI: 10.1038/jid.2013.517] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/13/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Abstract
Netherton syndrome (NTS) is a rare genetic skin disease caused by mutations in the serine protease inhibitor Kazal-type 5 gene, which encodes the lympho-epithelial Kazal-type-related inhibitor. NTS patients have profoundly impaired skin barrier function. As stratum corneum (SC) lipids have a crucial role in the skin barrier function, we investigated the SC lipid composition and organization in NTS patients. We studied the SC lipid composition by means of mass spectrometry, and the lipid organization was examined by infrared spectroscopy and X-ray diffraction. Decreased free fatty acid (FFA) chain length and increased levels of monounsaturated FFAs were observed in the SC of NTS patients compared with controls. Furthermore, the level of short-chain ceramides (CERs) was enhanced in NTS patients and a strong reduction in long-chain CER levels was seen in several patients. The changes in lipid composition modified the lipid organization leading to an increased disordering of the lipids compared with the controls. In addition, in a subgroup of patients the organization of the lipid layers changed dramatically. The altered FFA and CER profiles in NTS patients corresponded to changes in the expression of enzymes involved in SC lipid processing. The observed changes in lipid composition, lipid organization, and enzyme expression are likely to contribute to the barrier dysfunction in NTS.
Collapse
|
28
|
Thomas D, Eberle M, Schiffmann S, Zhang D, Geisslinger G, Ferreirós N. Nano-LC–MS/MS for the quantitation of ceramides in mice cerebrospinal fluid using minimal sample volume. Talanta 2013; 116:912-8. [DOI: 10.1016/j.talanta.2013.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
|
29
|
Ceramide synthesis in the epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:422-34. [PMID: 23988654 DOI: 10.1016/j.bbalip.2013.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
The epidermis and in particular its outermost layer the stratum corneum provides terrestrial vertebrates with a pivotal defensive barrier against water loss, xenobiotics and harmful pathogens. A vital demand for this epidermal permeability barrier is the lipid-enriched lamellar matrix that embeds the enucleated corneocytes. Ceramides are the major components of these highly ordered intercellular lamellar structures, in which linoleic acid- and protein-esterified ceramides are crucial for structuring and maintaining skin barrier integrity. In this review, we describe the fascinating diversity of epidermal ceramides including 1-O-acylceramides. We focus on epidermal ceramide biosynthesis emphasizing its metabolic and topological requirements and discuss enzymes that may be involved in α- and ω-hydroxylation. Finally, we turn to epidermal ceramide regulation, highlighting transcription factors and liposensors recently described to play crucial roles in modulating skin lipid metabolism and epidermal barrier homeostasis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier.
Collapse
|
30
|
Balgoma D, Checa A, Sar DG, Snowden S, Wheelock CE. Quantitative metabolic profiling of lipid mediators. Mol Nutr Food Res 2013; 57:1359-77. [PMID: 23828856 DOI: 10.1002/mnfr.201200840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
Abstract
Lipids are heterogeneous biological molecules that possess multiple physiological roles including cell structure, homeostasis, and restoration of tissue functionality during and after inflammation. Lipid metabolism constitutes a network of pathways that are related at multiple biosynthetic hubs. Disregulation of lipid metabolism can lead to pathophysiological effects and multiple lipid mediators have been described to be involved in physiological processes, (e.g. inflammation). Accordingly, a thorough description of these pathways may shed light on putative relations in multiple complex diseases, including chronic obstructive pulmonary disease, asthma, Alzheimer's disease, multiple sclerosis, obesity, and cancer. Due to the structural complexity of lipids and the low abundance of many lipid mediators, mass spectrometry is the most commonly employed method for analysis. However, multiple challenges remain in the efforts to analyze every lipid subfamily. In this review, the biological role of sphingolipids, glycerolipids, oxylipins (e.g. eicosanoids), endocannabinoids, and N-acylethanolamines in relation to health and disease and the state-of-the-art analyses are summarized. The characterization and understanding of these pathways will increase our ability to examine for interrelations among lipid pathways and improve the knowledge of biological mechanisms in health and disease.
Collapse
Affiliation(s)
- David Balgoma
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND The stratum corneum (SC) is the outermost region of the epidermis and plays key roles in cutaneous barrier function in mammals. The SC is composed of 'bricks', represented by flattened, protein-enriched corneocytes, and 'mortar', represented by intercellular lipid-enriched layers. As a result of this 'bricks and mortar' structure, the SC can be considered as a 'rampart' that encloses water and solutes essential for physiological homeostasis and that protects mammals from physical, chemical and biological assaults. STRUCTURES AND FUNCTIONS The corneocyte cytoskeleton contains tight bundles of keratin intermediate filaments aggregated with filaggrin monomers, which are subsequently degraded into natural moisturizing compounds by various proteases, including caspase 14. A cornified cell envelope is formed on the inner surface of the corneocyte plasma membrane by transglutaminase-catalysed cross-linking of involucrin and loricrin. Ceramides form a lipid envelope by covalently binding to the cornified cell envelope, and extracellular lamellar lipids play an important role in permeability barrier function. Corneodesmosomes are the main adhesive structures in the SC and are degraded by certain serine proteases, such as kallikreins, during desquamation. CLINICAL RELEVANCE The roles of the different SC components, including the structural proteins in corneocytes, extracellular lipids and some proteins associated with lipid metabolism, have been investigated in genetically engineered mice and in naturally occurring hereditary skin diseases, such as ichthyosis, ichthyosis syndrome and atopic dermatitis in humans, cattle and dogs.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
32
|
Smesny S, Schmelzer CEH, Hinder A, Köhler A, Schneider C, Rudzok M, Schmidt U, Milleit B, Milleit C, Nenadic I, Sauer H, Neubert RHH, Fluhr JW. Skin ceramide alterations in first-episode schizophrenia indicate abnormal sphingolipid metabolism. Schizophr Bull 2013; 39:933-41. [PMID: 22589371 PMCID: PMC3686445 DOI: 10.1093/schbul/sbs058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is considerable evidence for specific pathology of lipid metabolism in schizophrenia, affecting polyunsaturated fatty acids and in particular sphingolipids. These deficits are assumed to interfere with neuronal membrane functioning and the development and maintenance of myelin sheaths. Recent studies suggest that some of these lipid pathologies might also be detected in peripheral skin tests. In this study, we examined different skin lipids and their relation to schizophrenia. We assessed epidermal lipid profiles in 22 first-episode antipsychotic-naïve schizophrenia patients and 22 healthy controls matched for age and gender using a hexan/ethanol extraction technique and combined high-performance thin-layer chromatography/gas-chromatography. We found highly significant increase of ceramide AH and NH/AS classes in patients and decrease of EOS and NP ceramide classes. This is the first demonstration of specific peripheral sphingolipid alterations in schizophrenia. The results support recent models of systemic lipid pathology and in particular of specific sphingolipids, which are crucial in neuronal membrane integrity. Given recent findings showing amelioration of psychopathology using fatty acid supplementation, our findings also bear relevance for sphingolipids as potential biomarkers of the disease.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Jena, Germany.
| | | | - Anke Hinder
- Institute of Pharmacology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandra Köhler
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Christiane Schneider
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Maria Rudzok
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Ulrike Schmidt
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Berko Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Christine Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Igor Nenadic
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | | | - Joachim W. Fluhr
- Department of Dermatology, University of Berlin - Charité, Division of Dermato-Surgery and Centre of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
33
|
Maula T, Artetxe I, Grandell PM, Slotte JP. Importance of the sphingoid base length for the membrane properties of ceramides. Biophys J 2013. [PMID: 23199915 DOI: 10.1016/j.bpj.2012.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.
Collapse
Affiliation(s)
- Terhi Maula
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
34
|
Goto-Inoue N, Hayasaka T, Zaima N, Nakajima K, Holleran WM, Sano S, Uchida Y, Setou M. Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin. PLoS One 2012; 7:e49519. [PMID: 23166695 PMCID: PMC3499467 DOI: 10.1371/journal.pone.0049519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023] Open
Abstract
Imaging mass spectrometry (IMS) is a useful cutting edge technology used to investigate the distribution of biomolecules such as drugs and metabolites, as well as to identify molecular species in tissues and cells without labeling. To protect against excess water loss that is essential for survival in a terrestrial environment, mammalian skin possesses a competent permeability barrier in the stratum corneum (SC), the outermost layer of the epidermis. The key lipids constituting this barrier in the SC are the ceramides (Cers) comprising of a heterogeneous molecular species. Alterations in Cer composition have been reported in several skin diseases that display abnormalities in the epidermal permeability barrier function. Not only the amounts of different Cers, but also their localizations are critical for the barrier function. We have employed our new imaging system, capable of high-lateral-resolution IMS with an atmospheric-pressure ionization source, to directly visualize the distribution of Cers. Moreover, we show an ichthyotic disease pathogenesis due to abnormal Cer metabolism in Dorfman–Chanarin syndrome, a neutral lipid storage disorder with ichthyosis in human skin, demonstrating that IMS is a novel diagnostic approach for assessing lipid abnormalities in clinical setting, as well as for investigating physiological roles of lipids in cells/tissues.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Kinki University, Nara, Nara, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Nankoku, Japan
| | - Walter M. Holleran
- Department of Dermatology, School of Medicine, University of California San Francisco, Department of Veterans Affairs Medical Center, and Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Nankoku, Japan
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California San Francisco, Department of Veterans Affairs Medical Center, and Northern California Institute for Research and Education, San Francisco, California, United States of America
- * E-mail: (YU); (MS)
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
- * E-mail: (YU); (MS)
| |
Collapse
|
35
|
Schäfer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, Hohl D, Bloch W, Werner S. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 2012; 4:364-79. [PMID: 22383093 PMCID: PMC3403295 DOI: 10.1002/emmm.201200219] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 12/18/2022] Open
Abstract
The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocytes. Surprisingly, mice with enhanced Nrf2 activity in keratinocytes developed epidermal thickening, hyperkeratosis and inflammation resembling lamellar ichthyosis. This resulted from upregulation of the cornified envelope proteins small proline-rich proteins (Sprr) 2d and 2h and of secretory leukocyte peptidase inhibitor (Slpi), which we identified as novel Nrf2 targets in keratinocytes. Since Sprrs are potent scavengers of reactive oxygen species and since Slpi has antimicrobial activities, their upregulation contributes to Nrf2's protective function. However, it also caused corneocyte fragility and impaired desquamation, followed by alterations in the epidermal lipid barrier, inflammation and overexpression of mitogens that induced keratinocyte hyperproliferation. These results identify an unexpected role of Nrf2 in epidermal barrier function, which needs to be considered for pharmacological use of Nrf2 activators.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
t'Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 2011; 84:403-11. [PMID: 22111752 DOI: 10.1021/ac202646v] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%).
Collapse
Affiliation(s)
- Ruben t'Kindt
- Metablys, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Farwanah H, Kolter T, Sandhoff K. Mass spectrometric analysis of neutral sphingolipids: Methods, applications, and limitations. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:854-60. [DOI: 10.1016/j.bbalip.2011.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
38
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 554] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
39
|
Escalas-Taberner J, González-Guerra E, Guerra-Tapia A. [Sensitive skin: a complex syndrome]. ACTAS DERMO-SIFILIOGRAFICAS 2011; 39:295-300. [PMID: 21757181 DOI: 10.1111/j.1346-8138.2011.01406.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Epidemiologic studies indicate that ever larger numbers of people report having sensitive skin, for which a European prevalence of 50% is estimated. Sensitive skin is characterized by hyperreactivity, with manifestations varying in relation to many factors. The pathogenesis of this disorder is poorly understood, although studies point to a biophysical mechanism. Objective diagnosis of sensitive skin is difficult, as information comes mainly from the patient's report of symptoms in the absence of effective, strongly predictive tests because of great interindividual variability in skin sensitivity. Substances that trigger a reaction in hypersensitive skin also vary greatly. The impact of this syndrome on quality of life is considerable and patients often present psychiatric symptoms; therefore, dermatologists should explore this possibility when taking a patient's history. Patient cooperation and physician persistence are both essential for treating sensitive skin.
Collapse
Affiliation(s)
- J Escalas-Taberner
- Servicio de Dermatología, Hospital Universitario de Son Espases, Palma de Mallorca, España.
| | | | | |
Collapse
|
40
|
Pappas A. Epidermal surface lipids. DERMATO-ENDOCRINOLOGY 2011; 1:72-6. [PMID: 20224687 DOI: 10.4161/derm.1.2.7811] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/19/2022]
Abstract
A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne.
Collapse
Affiliation(s)
- Apostolos Pappas
- The Johnson & Johnson Skin Research Center; CPPW, a Division of Johnson & Johnson Consumer Companies, Inc.; Skillman, New Jersey USA
| |
Collapse
|
41
|
van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 2011; 52:1211-1221. [PMID: 21444759 DOI: 10.1194/jlr.m014456] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ceramides (CERs) in the upper layer of the skin, the stratum corneum (SC), play a key role in the skin barrier function. In human SC, the literature currently reports 11 CER subclasses that have been identified. In this paper, a novel quick and robust LC/MS method is presented that allows the separation and analysis of all known human SC CER subclasses using only limited sample preparation. Besides all 11 known and identified subclasses, a 3D multi-mass chromatogram shows the presence of other lipid subclasses. Using LC/MS/MS with an ion trap (IT) system, a Fourier transform-ion cyclotron resonance system, and a triple quadrupole system, we were able to identify one of these lipid subclasses as a new CER subclass: the ester-linked ω-hydroxy fatty acid with a dihydrosphingosine base (CER [EOdS]). Besides the identification of a new CER subclass, this paper also describes the applicability and robustness of the developed LC/MS method by analyzing three (biological) SC samples: SC from human dermatomed skin, human SC obtained by tape stripping, and SC from full-thickness skin explants. All three biological samples showed all known CER subclasses and slight differences were observed in CER profile.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Louise Hoppel
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Rob van der Heijden
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands; Netherlands Metabolomics Centre, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Rob J Vreeken
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands; Netherlands Metabolomics Centre, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| |
Collapse
|
42
|
Chen Y, Liu Y, Sullards MC, Merrill AH. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 2010; 12:306-19. [PMID: 20680704 PMCID: PMC2982954 DOI: 10.1007/s12017-010-8132-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/20/2010] [Indexed: 01/20/2023]
Abstract
Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Wallace H. Coulter Department of Biomedical Engineering and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
43
|
Liou YB, Sheu MT, Liu DZ, Lin SY, Ho HO. Quantitation of ceramides in nude mouse skin by normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 2010; 401:107-13. [DOI: 10.1016/j.ab.2010.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
44
|
Popa I, Thuy LH, Colsch B, Pin D, Gatto H, Haftek M, Portoukalian J. Analysis of free and protein-bound ceramides by tape stripping of stratum corneum from dogs. Arch Dermatol Res 2010; 302:639-44. [PMID: 20361334 DOI: 10.1007/s00403-010-1049-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/11/2010] [Accepted: 03/18/2010] [Indexed: 01/14/2023]
Abstract
The free and protein-bound ceramides of dog stratum corneum (SC) were analyzed by thin-layer chromatography after tape stripping of the abdomen of five dogs. The sphingoid bases were identified by gas-liquid chromatography as sphingosine, phytosphingosine, and 6-hydroxysphingosine. Electrospray ionization-ion trap mass spectrometry was used to characterize the protein-bound ceramides containing sphingosine and omega-hydroxy long-chain fatty acids. Although the molecular species were the same ones in all dogs, wide quantitative variations in the patterns of SC ceramides were observed in different breeds of dogs. The free ceramide concentration changed with the depth of SC, with a higher concentration in the deep layers, whereas the concentration of protein-bound ceramides remained constant. These results show that canine SC is close to that of humans with respect to ceramides.
Collapse
Affiliation(s)
- Iuliana Popa
- Laboratory of Dermatological Research, EA 4169 University of Lyon-I and Edouard Herriot Hospital, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50:1708-19. [PMID: 19349641 DOI: 10.1194/jlr.d800055-jlr200] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatography-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm x 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Han X, Jiang X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. EUR J LIPID SCI TECH 2009; 111:39-52. [PMID: 19690629 DOI: 10.1002/ejlt.200800117] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingolipidomics, a branch of lipidomics, focuses on the large-scale study of the cellular sphingolipidomes. In the current review, two main approaches for the analysis of cellular sphingolipidomes (i.e. LC-MS- or LC-MS/MS-based approach and shotgun lipidomics-based approach) are briefly discussed. Their advantages, some considerations of these methods, and recent applications of these approaches are summarized. It is the authors' sincere hope that this review article will add to the readers understanding of the advantages and limitations of each developed method for the analysis of a cellular sphingolipidome.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | | |
Collapse
|
47
|
Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res 2008; 49:1621-39. [PMID: 18499644 PMCID: PMC2444003 DOI: 10.1194/jlr.r800012-jlr200] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Sphingosin" was first described by J. L. W. Thudichum in 1884 and structurally characterized as 2S,3R,4E-2-aminooctadec-4-ene-1,3-diol in 1947 by Herb Carter, who also proposed the designation of "lipides derived from sphingosine as sphingolipides." This category of amino alcohols is now known to encompass hundreds of compounds that are referred to as sphingoid bases and sphingoid base-like compounds, which vary in chain length, number, position, and stereochemistry of double bonds, hydroxyl groups, and other functionalities. Some have especially intriguing features, such as the tail-to-tail combination of two sphingoid bases in the alpha,omega-sphingoids produced by sponges. Most of these compounds participate in cell structure and regulation, and some (such as the fumonisins) disrupt normal sphingolipid metabolism and cause plant and animal disease. Many of the naturally occurring and synthetic sphingoid bases are cytotoxic for cancer cells and pathogenic microorganisms or have other potentially useful bioactivities; hence, they offer promise as pharmaceutical leads. This thematic review gives an overview of the biodiversity of the backbones of sphingolipids and the broader field of naturally occurring and synthetic sphingoid base-like compounds.
Collapse
Affiliation(s)
- Sarah T Pruett
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gu Y, Muñoz-Garcia A, Brown JC, Ro J, Williams JB. Cutaneous water loss and sphingolipids covalently bound to corneocytes in the stratum corneum of house sparrows Passer domesticus. J Exp Biol 2008; 211:1690-5. [DOI: 10.1242/jeb.017186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The barrier to water loss from the skin of birds and mammals is localized in the stratum corneum (SC), the outer layer of the epidermis. The SC consists of corneocytes, each surrounded by a protein envelope, and a lipid compartment, formed by an extracellular matrix of lipids and by lipids covalently bound to the protein envelope. In mammals, covalently bound lipids in the SC consist of ω-hydroxyceramides attached to the outer surface of corneocytes. Evidence suggests that covalently bound lipids in the SC might be crucial for the establishment of a competent permeability barrier. In this study we assessed the composition of covalently bound lipids of the avian SC and their relationship to cutaneous water loss (CWL) in two populations of house sparrows, one living in the deserts of Saudi Arabia and the other in mesic Ohio. Previously, we showed that CWL of adult desert sparrows was 25%lower than that of mesic birds. In the present study we characterize covalently bound lipids of the SC using thin layer chromatography and high performance liquid chromatography coupled with atmospheric pressure Photospray® ionization mass spectrometry. Our study is the first to demonstrate the existence of sphingolipids covalently bound to corneocytes in the SC of birds. Although ω-hydroxyceramides occurred in the lipid envelope surrounding corneocytes, the major constituent of the covalently bound lipid envelope in house sparrows was ω-hydroxycerebrosides,ceramides with a hexose molecule attached. Sparrows from Saudi Arabia had more covalently bound cerebrosides, fewer covalently bound ceramides and a lower ceramide to cerebroside ratio than sparrows living in Ohio; these differences were associated with CWL.
Collapse
Affiliation(s)
- Yu Gu
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Agustí Muñoz-Garcia
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Johnie C. Brown
- Applied Biosystems, 500 Old Connecticut Path, Framingham, MA 01710, USA
| | - Jennifer Ro
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Joseph B. Williams
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|