1
|
Zhou X, Tian T, Li X, Liu S, Zhang Q. A high-accuracy measurement procedure for salbutamol, ractopamine, and clenbuterol in pork by isotope dilution-liquid chromatography/tandem mass spectrometry. Food Chem 2024; 459:140357. [PMID: 39003851 DOI: 10.1016/j.foodchem.2024.140357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
In-depth research into the precise evaluation of enzymatic digestion efficiency and the selection of a suitable deuterium-labelled internal standard remains a gap in the accurate determination of β2-agonists in animal-derived food by isotope dilution-liquid chromatography/tandem mass spectrometry (ID-LC-MS/MS). In this study, the enzymatic digestion conditions were optimized by monitoring the presence of β2-agonist conjugates in positive samples, which proved to be reliable for ensuring complete enzymatic digestion. Comparative analysis of deuterium-labelled internal standards for salbutamol (SAL), ractopamine (RAC), and clenbuterol (CLB) revealed that CLB-D6 and SAL-D9 were less effective in compensating for matrix effects due to hydrogen‑deuterium exchange during MS fragment formation. Consequently, SAL-D3, RAC-D3 and CLB-D9 were chosen for the implementation of ID-LC-MS/MS. The developed method demonstrates high accuracy and precision, with the average recoveries ranging from 93.8% to 107.3% with RSD <6.1%, which can provide higher-order measurement results for β2-agonists in pork.
Collapse
Affiliation(s)
- Xia Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| | - Tian Tian
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiuqin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| | - Shuyu Liu
- Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qinghe Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
2
|
Ding J, Hoglund RM, Tagbor H, Tinto H, Valéa I, Mwapasa V, Kalilani-Phiri L, Van Geertruyden JP, Nambozi M, Mulenga M, Hachizovu S, Ravinetto R, D'Alessandro U, Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39228131 DOI: 10.1002/psp4.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line recommended treatment for uncomplicated malaria. Pharmacokinetic (PK) properties in pregnant women are often based on small studies and need to be confirmed and validated in larger pregnant patient populations. This study aimed to evaluate the PK properties of amodiaquine and its active metabolite, desethylamodiaquine, and piperaquine in women in their second and third trimester of pregnancy with uncomplicated P. falciparum infections. Eligible pregnant women received either artesunate-amodiaquine (200/540 mg daily, n = 771) or dihydroartemisinin-piperaquine (40/960 mg daily, n = 755) for 3 days (NCT00852423). Population PK properties were evaluated using nonlinear mixed-effects modeling, and effect of gestational age and trimester was evaluated as covariates. 1071 amodiaquine and 1087 desethylamodiaquine plasma concentrations, and 976 piperaquine plasma concentrations, were included in the population PK analysis. Amodiaquine concentrations were described accurately with a one-compartment disposition model followed by a two-compartment disposition model of desethylamodiaquine. The relative bioavailability of amodiaquine increased with gestational age (1.25% per week). The predicted exposure to desethylamodiaquine was 2.8%-32.2% higher in pregnant women than that reported in non-pregnant women, while day 7 concentrations were comparable. Piperaquine concentrations were adequately described by a three-compartment disposition model. Neither gestational age nor trimester had significant impact on the PK of piperaquine. The predicted exposure and day 7 concentrations of piperaquine were similar to that reported in non-pregnant women. In conclusion, the exposure to desethylamodiaquine and piperaquine was similar to that in non-pregnant women. Dose adjustment is not warranted for women in their second and their trimester of pregnancy.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Harry Tagbor
- University of Health and Allied Sciences, Ho, Ghana
| | | | | | - Victor Mwapasa
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Linda Kalilani-Phiri
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | | | - Raffaella Ravinetto
- Public Health Department, Institute of Tropical Medicine, Antwerp, Belgium
- School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- The WorldWide Antimalarial Resistance Network, Oxford, UK
| |
Collapse
|
3
|
Saito M, Wilaisrisak P, Pimanpanarak M, Viladpai-Nguen J, Paw MK, Koesukwiwat U, Tarning J, White NJ, Nosten F, McGready R. Comparison of lumefantrine, mefloquine, and piperaquine concentrations between capillary plasma and venous plasma samples in pregnant women with uncomplicated falciparum and vivax malaria. Antimicrob Agents Chemother 2024; 68:e0009324. [PMID: 38597636 PMCID: PMC11064628 DOI: 10.1128/aac.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pornpimon Wilaisrisak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Viladpai-Nguen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Urairat Koesukwiwat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Alshogran OY, Dodeja P, Albukhaytan H, Laffey T, Chaphekar N, Caritis S, Shaik IH, Venkataramanan R. Drugs in Human Milk Part 1: Practical and Analytical Considerations in Measuring Drugs and Metabolites in Human Milk. Clin Pharmacokinet 2024; 63:561-588. [PMID: 38748090 DOI: 10.1007/s40262-024-01374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 05/22/2024]
Abstract
Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.
Collapse
Affiliation(s)
- Osama Y Alshogran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Prerna Dodeja
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hamdan Albukhaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor Laffey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, UPMC Magee-Women's Hospital, Pittsburgh, PA, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Room 7406, Salk Hall, Pittsburgh, PA, 15261, USA.
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Briki M, Murisier A, Guidi M, Seydoux C, Buclin T, Marzolini C, Girardin FR, Thoma Y, Carrara S, Choong E, Decosterd LA. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods for the therapeutic drug monitoring of cytotoxic anticancer drugs: An update. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124039. [PMID: 38490042 DOI: 10.1016/j.jchromb.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
In the era of precision medicine, there is increasing evidence that conventional cytotoxic agents may be suitable candidates for therapeutic drug monitoring (TDM)- guided drug dosage adjustments and patient's tailored personalization of non-selective chemotherapies. To that end, many liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays have been developed for the quantification of conventional cytotoxic anticancer chemotherapies, that have been comprehensively and critically reviewed. The use of stable isotopically labelled internal standards (IS) of cytotoxic drugs was strikingly uncommon, accounting for only 48 % of the methods found, although their use could possible to suitably circumvent patients' samples matrix effects variability. Furthermore, this approach would increase the reliability of cytotoxic drug quantification in highly multi-mediated cancer patients with complex fluctuating pathophysiological and clinical conditions. LC-MS/MS assays can accommodate multiplexed analyses of cytotoxic drugs with optimal selectivity and specificity as well as short analytical times and, when using stable-isotopically labelled IS for quantification, provide concentrations measurements with a high degree of certainty. However, there are still organisational, pharmacological, and medical constraints to tackle before TDM of cytotoxic drugs can be more largely adopted in the clinics for contributing to our ever-lasting quest to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- M Briki
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - A Murisier
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - M Guidi
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland; Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Seydoux
- Internal Medicine Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - T Buclin
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Marzolini
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - F R Girardin
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Y Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - S Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - E Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - L A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
6
|
Blessborn D, Kaewkhao N, Tarning J. A high-throughput LC-MS/MS assay for piperaquine from dried blood spots: Improving malaria treatment in resource-limited settings. J Mass Spectrom Adv Clin Lab 2024; 31:19-26. [PMID: 38229676 PMCID: PMC10789632 DOI: 10.1016/j.jmsacl.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Background Malaria is a parasitic disease that affects many of the poorest economies, resulting in approximately 241 million clinical episodes and 627,000 deaths annually. Piperaquine, when administered with dihydroartemisinin, is an effective drug against the disease. Drug concentration measurements taken on day 7 after treatment initiation have been shown to be a good predictor of therapeutic success with piperaquine. A simple capillary blood collection technique, where blood is dried onto filter paper, is especially suitable for drug studies in remote areas or resource-limited settings or when taking samples from children, toddlers, and infants. Methods Three 3.2 mm discs were punched out from a dried blood spot (DBS) and then extracted in a 96-well plate using solid phase extraction on a fully automated liquid handling system. The analysis was performed using LC-MS/MS with a calibration range of 3 - 1000 ng/mL. Results The recovery rate was approximately 54-72 %, and the relative standard deviation was below 9 % for low, middle and high quality control levels. The LC-MS/MS quantification limit of 3 ng/mL is sensitive enough to detect piperaquine for up to 4-8 weeks after drug administration, which is crucial when evaluating recrudescence and drug resistance development. While different hematocrit levels can affect DBS drug measurements, the effect was minimal for piperaquine. Conclusion A sensitive LC-MS/MS method, in combination with fully automated extraction in a 96-well plate format, was developed and validated for the quantification of piperaquine in DBS. The assay was implemented in a bioanalytical laboratory for processing large-scale clinical trial samples.
Collapse
Affiliation(s)
- Daniel Blessborn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Natpapat Kaewkhao
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Coonahan ES, Amaratunga C, Long CA, Tarning J. Clinical needs assessment to inform development of a new assay to detect antimalarial drugs in patient samples: A case study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002087. [PMID: 37616192 PMCID: PMC10449106 DOI: 10.1371/journal.pgph.0002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Point-of-care assays have greatly increased access to diagnostic information and improved healthcare outcomes globally, especially in the case of tropical diseases in rural settings. Increased recognition of the impact of these tools and increased funding, along with advances in technology have led to a surge in development of new assays. However, many new tools fail to fulfill their intended purpose due to a lack of clinical impact, operational feasibility, and input from envisioned operators. To be successful, they must fit into existing clinical decision-making models and be designed in collaboration with end users. We describe a case study of the development of a new low-cost sensor for antimalarial drugs, from initial planning through collection and incorporation of design feedback to final assay design. The assay uses an aptamer-based sensor to detect antimalarial drugs from patient samples for tracking antimalarial use in Southeast Asia, a region with a long history of emerging antimalarial drug resistance. Design and use-case input was collected from malaria control experts, researchers, and healthcare workers to develop target product profiles. Data was collected via surveys and in-person interviews during assay development and ultimately informed a change in assay format. This aptamer sensor platform can be easily adapted to detect other small molecule and protein targets and the design process described here can serve as a model for the development of effective new assays to improve access to healthcare technology.
Collapse
Affiliation(s)
- Erin S. Coonahan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Cheng WL, Markus C, Lim CY, Tan RZ, Sethi SK, Loh TP. Calibration Practices in Clinical Mass Spectrometry: Review and Recommendations. Ann Lab Med 2023; 43:5-18. [PMID: 36045052 PMCID: PMC9467832 DOI: 10.3343/alm.2023.43.1.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022] Open
Abstract
Background Calibration is a critical component for the reliability, accuracy, and precision of mass spectrometry measurements. Optimal practice in the construction, evaluation, and implementation of a new calibration curve is often underappreciated. This systematic review examined how calibration practices are applied to liquid chromatography-tandem mass spectrometry measurement procedures. Methods The electronic database PubMed was searched from the date of database inception to April 1, 2022. The search terms used were "calibration," "mass spectrometry," and "regression." Twenty-one articles were identified and included in this review, following evaluation of the titles, abstracts, full text, and reference lists of the search results. Results The use of matrix-matched calibrators and stable isotope-labeled internal standards helps to mitigate the impact of matrix effects. A higher number of calibration standards or replicate measurements improves the mapping of the detector response and hence the accuracy and precision of the regression model. Constructing a calibration curve with each analytical batch recharacterizes the instrument detector but does not reduce the actual variability. The analytical response and measurand concentrations should be considered when constructing a calibration curve, along with subsequent use of quality controls to confirm assay performance. It is important to assess the linearity of the calibration curve by using actual experimental data and appropriate statistics. The heteroscedasticity of the calibration data should be investigated, and appropriate weighting should be applied during regression modeling. Conclusions This review provides an outline and guidance for optimal calibration practices in clinical mass spectrometry laboratories.
Collapse
Affiliation(s)
- Wan Ling Cheng
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Corey Markus
- Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Chun Yee Lim
- Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Sunil Kumar Sethi
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | | |
Collapse
|
9
|
Banda CG, Nkosi D, Allen E, Workman L, Madanitsa M, Chirwa M, Kapulula M, Muyaya S, Munharo S, Tarning J, Phiri KS, Mwapasa V, ter Kuile FO, Maartens G, Barnes KI. Impact of Dolutegravir-Based Antiretroviral Therapy on Piperaquine Exposure following Dihydroartemisinin-Piperaquine Intermittent Preventive Treatment of Malaria in Pregnant Women Living with HIV. Antimicrob Agents Chemother 2022; 66:e0058422. [PMID: 36374096 PMCID: PMC9764988 DOI: 10.1128/aac.00584-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dihydroartemisinin-piperaquine, an artemisinin-based combination therapy, has been identified as a promising agent for intermittent preventive treatment of malaria in pregnancy. However, in pregnant women living with HIV (PLWH), efavirenz-based antiretroviral therapy (ART) significantly reduces the plasma exposure of piperaquine. In an open-label, nonrandomized, fixed-sequence, pharmacokinetic study, we compared piperaquine plasma concentrations in 13 pregnant women during a 3-day treatment course of dihydroartemisinin-piperaquine when coadministered with efavirenz-based versus dolutegravir-based ART in the second or third trimester of pregnancy. Piperaquine concentrations were measured over a 28-day period, while on efavirenz-based ART and after switching to dolutegravir-based ART. Noncompartmental analysis was performed, and geometric mean ratios (GMRs) and 90% confidence intervals (CIs) were generated to compare piperaquine pharmacokinetic parameters between these two treatment periods. Compared with efavirenz-based ART, coadministration of dihydroartemisinin-piperaquine and dolutegravir-based ART resulted in a 57% higher overall piperaquine exposure (area under the concentration-time curve from 0 to 672 h [AUC0-672 h]) (GMR, 1.57; 90% CI, 1.28 to 1.93). Piperaquine's day 7 concentrations were also 63% higher (GMR, 1.63; 90% CI, 1.29 to 2.11), while day 28 concentrations were nearly three times higher (GMR, 2.96; 90% CI, 2.25 to 4.07). However, the maximum piperaquine concentration (Cmax) remained similar (GMR, 1.09; 90% CI, 0.79 to 1.49). Dihydroartemisinin-piperaquine was well tolerated, with no medication-related serious adverse events observed in this small study. Compared with efavirenz-based ART, a known inducer of piperaquine metabolism, dolutegravir-based ART resulted in increased overall piperaquine exposure with pharmacokinetic parameter values that were similar to those published previously for pregnant and nonpregnant women. Our findings suggest that the efficacy of dihydroartemisinin-piperaquine will be retained in pregnant women on dolutegravir. (The study was registered on PACTR.samrc.ac.za [PACTR201910580840196].).
Collapse
Affiliation(s)
- Clifford G. Banda
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Towngrid.7836.a, Cape Town, South Africa
- Kamuzu University of Health Sciences (formerly College of Medicine and Kamuzu College of Nursing, University of Malawi), Blantyre, Malawi
| | - Dumisile Nkosi
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Elizabeth Allen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Towngrid.7836.a, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network (WWARN), Pharmacology Scientific Group, University of Cape Towngrid.7836.a, Cape Town, South Africa
| | - Lesley Workman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Towngrid.7836.a, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network (WWARN), Pharmacology Scientific Group, University of Cape Towngrid.7836.a, Cape Town, South Africa
| | - Mwayiwawo Madanitsa
- Training and Research Unit of Excellence, Blantyre, Malawi
- Department of Clinical Sciences, Malawi University of Science and Technology, Limbe, Malawi
| | - Marumbo Chirwa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | | | - Sharon Muyaya
- Training and Research Unit of Excellence, Blantyre, Malawi
| | - Steven Munharo
- Training and Research Unit of Excellence, Blantyre, Malawi
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kamija S. Phiri
- Kamuzu University of Health Sciences (formerly College of Medicine and Kamuzu College of Nursing, University of Malawi), Blantyre, Malawi
- Training and Research Unit of Excellence, Blantyre, Malawi
| | - Victor Mwapasa
- Kamuzu University of Health Sciences (formerly College of Medicine and Kamuzu College of Nursing, University of Malawi), Blantyre, Malawi
- Training and Research Unit of Excellence, Blantyre, Malawi
| | - Feiko O. ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Towngrid.7836.a, Cape Town, South Africa
| | - Karen I. Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Towngrid.7836.a, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network (WWARN), Pharmacology Scientific Group, University of Cape Towngrid.7836.a, Cape Town, South Africa
| |
Collapse
|
10
|
Determination of unbound piperaquine in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. JOURNAL OF CHROMATOGRAPHY OPEN 2022; 2. [PMID: 35531322 PMCID: PMC9068709 DOI: 10.1016/j.jcoa.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piperaquine (PQ) is an antimalarial drug that is highly protein-bound. Variation in plasma protein contents may affect the pharmacokinetic (PK) exposure of unbound drug, leading to alteration of clinical outcomes. All published methods for determination of PQ in human plasma measure the total PQ including both bound and unbound PQ to plasma proteins. There is no published method for unbound PQ determination. Here we report an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for determination of PQ in human plasma filtrate prepared by filtering human plasma through Millipore Microcon® centrifugal filters (10k NMWL). The filter cup had to be treated with 5% benzalkonium chloride to reduce non-specific binding to the filter devices before filtration of plasma samples. Multiple reactions monitoring (MRM) of the ion pairs m/z 535/288 for PQ and m/z 541/294 for the internal standard (IS) was selected for quantification. When electrospray ionization (ESI+) was used, paradoxical matrix effect was observed despite the structure similarity of the deuterated IS: Ion suppression for PQ versus ion enhancement for the PQ-d6, even though they were closely eluted: 0.62 min versus 0.61 min. Separation was achieved on Evo C18 column (50 × 2.1 mm, 1.7 μm, Phenomenex Inc.) eluted with 10 mM NH4OH and MeCN. When atmospheric pressure chemical ionization in positive mode (APCI+) was used for ion source, matrix effect diminished. Separation was achieved on a PFP column (30 × 2.1 mm, 1.7 μm, Waters, Corp.) eluted with aqueous 20 mM ammonium formate 0.14% trifluoroacetic acid (A) and methanol-acetonitrile (4:1, v/v) containing 0.1% trifluoroacetic acid (B) at 0.8 mL/min flow rate in a gradient mode: 30–30–80–80–30–30%B (0–0.1–1.0–1.40–1.41–1.50 min). The retention time was 0.67 min for both PQ and the IS. The method was validated with a linear calibration range from 20 to 5,000 pg/mL and applied to clinical samples.
Collapse
|
11
|
Sun F, Tan H, Abdallah MF, Li Y, Zhou J, Li Y, Yang S. A novel calibration strategy based on isotopic distribution for high-throughput quantitative analysis of pesticides and veterinary drugs using LC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128413. [PMID: 35183054 DOI: 10.1016/j.jhazmat.2022.128413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Preparation of calibration curves is a critical step for large-scale quantification. However, this procedure is time-consuming, labor intensive. Herein, a novel isotopologue multipoint calibration (IMC) strategy, was proposed and demonstrated for the simultaneous quantitation of 120 pesticides and 83 veterinary drugs in surface water samples using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). In this strategy, the natural isotopic distribution was used to generate external calibration curves, eliminating the need of analyst's adjustment and many sets of chemical standard solutions required in external calibration curves. Additionally, this strategy was comprehensively validated, and the results indicated this strategy had better performance in both accuracy and precision, fully meeting the requirements for the quantitative analysis. Interestingly, for the samples with high concentration beyond the upper limit of quantitation, the IMC strategy could avoid samples dilution by monitoring the less abundant isotopic channels. Furthermore, the IMC method was successfully applied in the surface water samples collected from Anhui province, China. Among which, sulfamethoxazole and imidacoprid were the main contributors. In conclusion, we present a promising LC-HRMS strategy for the accurate quantitation of small molecules, which has a potential application in food and environmental analysis.
Collapse
Affiliation(s)
- Feifei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Food Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jinhui Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
12
|
Radovanovic M, Jones G, Day RO, Galettis P, Norris RL. Mitigating analyte to stable isotope labelled internal standard cross-signal contribution in quantitative liquid chromatography-tandem mass spectrometry. J Mass Spectrom Adv Clin Lab 2022; 24:57-64. [PMID: 35520954 PMCID: PMC9065310 DOI: 10.1016/j.jmsacl.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Utilising stable isotope labelled internal standards (SIL-IS) in quantitative LC-MS/MS drug analysis is the most widely used approach to normalise for variability during sample quantification processes. However, compounds containing atoms such as Sulphur, Chlorine or Bromine, could potentially cause cross-signal contribution to the SIL-IS from the naturally occurring isotopes, resulting in non-linear calibration curves. A simple, novel method of mitigating the effect is presented here. It entails monitoring of a less abundant SIL-IS isotope, as the precursor ion, of a mass that has no/minimal isotopic contribution from the analyte isotopes. Methods Experiments were conducted on two LC-MS/MS analysers: Waters Xevo TQ-S and Shimadzu 8050. Flucloxacillin (FLX) was used as an example. Two transitions were selected for FLX (m/z 454 → 160 → 295) and one for each of the SIL-IS isotopes (m/z 458 → 160 for the isotope 457 g/mol and m/z 460 → 160 for the isotope 459 g/mol). Assay biases were assessed at three SIL-IS concentrations: 0.7, 7 and 14 mg/L for each isotope. Results When using the SIL-IS isotope m/z 458 → 160 at a concentration of 0.7 mg/L, biases were up to 36.9 % on both instruments. Increasing the SIL-IS concentration to 14 mg/L, reduced the bias to 5.8 %. Using the less abundant isotope, m/z 460 → 160, resulted in biases of 13.9 % at an SIL-IS concentration of 0.7 mg/L. Conclusions Applying this method will mitigate cross-signal contribution from the analyte isotopes to the corresponding SIL-IS, minimise the use of SIL-IS, and, thereby, reduce overall cost.
Collapse
Key Words
- 13C4-FLX, 13C4 flucloxacillin
- Cross-signal contribution
- FLX, flucloxacillin
- Isotopic distribution
- K3-EDTA, potassium ethylenediaminetetraacetic acid
- LC-MS/MS
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- LLOQ, lower limit of quantification
- MRM, multiple reaction monitoring
- MS1, quadrupole 1
- MS2, quadrupole 2
- Q1, first quadrupole
- Q3, third quadrupole
- QC, quality control
- SIL-IS, stable isotope labelled internal standard
- Stable isotope labelled internal standard
- ULOQ, upper limit of quantification
Collapse
Affiliation(s)
- Mirjana Radovanovic
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
- SydPath, St Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Graham Jones
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
- SydPath, St Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Richard O. Day
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Peter Galettis
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Ross L.G. Norris
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
- SydPath, St Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
13
|
Development of an isotope dilution liquid chromatography/tandem mass spectrometry method for the accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage reference materials. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA method based on isotope dilution liquid chromatography/tandem mass spectrometry (ID-LC/MS/MS) was established as a candidate reference method for accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage. Their deuterated isotopes, imidacloprid-d4, chlothianidin-d3, and thiamethoxam-d4 were used as internal standards. The combination of HLB and Carb solid-phase extraction (SPE) cartridges was used to clean-up kimchi cabbage extracts. The ID-LC/MS/MS conditions were optimized with fortified kimchi cabbage samples for validation. Imidacloprid in the ERM-BC403 cucumber sample (0.627 ± 0.026) mg/kg was analyzed with the developed method, and the measured value (0.604 ± 0.028) mg/kg agreed within their uncertainties. The developed method was employed for the certification of kimchi cabbage reference materials prepared in this laboratory. The measured values of imidacloprid, clothianidin, and thiamethoxam are (0.860 ± 0.020) mg/kg, (0.524 ± 0.012) mg/kg, (0.787 ± 0.014) mg/kg, respectively. The standard deviation of the measured values for ten bottles was < 1%, and the measured values after one year agreed with their first measurements indicating reliable repeatability and reproducibility of the developed method.
Collapse
|
14
|
Kumar D, Gautam N, Alnouti Y. Analyte recovery in LC-MS/MS bioanalysis: An old issue revisited. Anal Chim Acta 2022; 1198:339512. [PMID: 35190119 PMCID: PMC8864627 DOI: 10.1016/j.aca.2022.339512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 11/24/2022]
Abstract
There are several challenges associated with LC-MS/MS bioanalytical method development and validation. Low and variable recovery of some analytes, especially the more hydrophobic ones, is often challenging. Analytes can be lost to various extents throughout the process of sample collection, storage, before, during, and/or after sample preparation and analysis. The calculation of overall extraction recovery can detect problems of low recovery during sample preparation but does not identify the source(s) of analyte losses. Low overall analyte recovery is the net result of losses that can happen for multiple reasons at all steps of sample preparation and analysis. Therefore, identifying the source(s) of analyte loss during sample preparation can help guide the optimization the bioanalysis conditions to minimize these losses. In this article we propose a practical protocol to systematically identify and quantify the sources of low analyte recovery. This allows the proper choice of strategies to optimize the relevant bioanalytical conditions to minimize analyte losses and improve overall recovery.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
15
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann Lab Med 2022; 42:121-140. [PMID: 34635606 PMCID: PMC8548246 DOI: 10.3343/alm.2022.42.2.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
The process of method development for a diagnostic assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and specialties. Additionally, method development details are typically not disclosed in journal publications. Method developers may need to search widely for pertinent information on their assay(s). This review summarizes the current practices and procedures in method development. Additionally, it probes aspects of method development that are generally not discussed, such as how exactly to calibrate an assay or where to place quality controls, using examples from the literature. This review intends to provide a comprehensive resource and induce critical thinking around the experiments for and execution of developing a clinically meaningful LC-MS/MS assay.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Validated HPTLC Method for Simultaneous Estimation of Dihydroartemisinin and Piperaquine Phosphate in Pharmaceutical Dosage Form. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nasiri A, Jahani R, Mokhtari S, Yazdanpanah H, Daraei B, Faizi M, Kobarfard F. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review. Analyst 2021; 146:6049-6063. [PMID: 34546235 DOI: 10.1039/d1an01047f] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The high-performance liquid chromatography-mass spectrometry (LC-MS) technique is widely applied to routine analysis in many matrices. Despite the enormous application of LC/MS, this technique is subjected to drawbacks called matrix effects (MEs) that could lead to ion suppression or ion enhancement. This phenomenon can exert a deleterious impact on the ionization efficacy of an analyte and subsequently on the important method performance parameters. LC-MS susceptibility to MEs is the main challenge of this technique in the analysis of complex matrices such as biological and food samples. Nowadays, the assessment, estimation, and overcoming of the MEs before developing a method is mandatory in any analysis. Two main approaches including the post-column infusion and post-extraction spike are proposed to determine the degree of MEs. Different strategies can be adopted to reduce or eliminate MEs depending on the complexity of the matrix. This could be done by improving extraction and clean-up methods, changing the type of ionization employed, optimization of liquid chromatography conditions, and using corrective calibration methods. This review article will provide an overview of the MEs as the Achilles heel of the LC-MS technique, the causes of ME occurrence, their consequences, and systemic approaches towards overcoming MEs during LC-MS-based multi-analyte procedures.
Collapse
Affiliation(s)
- Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaya Mokhtari
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yazdanpanah
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Coonahan ES, Yang KA, Pecic S, De Vos M, Wellems TE, Fay MP, Andersen JF, Tarning J, Long CA. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine. Sci Transl Med 2021; 13:13/585/eabe1535. [PMID: 33731432 DOI: 10.1126/scitranslmed.abe1535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Tracking antimalarial drug use and efficacy is essential for monitoring the current spread of antimalarial drug resistance. However, available methods for determining tablet quality and patient drug use are often inaccessible, requiring well-equipped laboratories capable of performing liquid chromatography-mass spectrometry (LC-MS). Here, we report the development of aptamer-based fluorescent sensors for the rapid, specific detection of the antimalarial compounds piperaquine and mefloquine-two slow-clearing partner drugs in current first-line artemisinin-based combination therapies (ACTs). Highly selective DNA aptamers were identified that bind piperaquine and mefloquine with dissociation constants (K d's) measured in the low nanomolar range via two independent methods. The aptamers were isolated from a library of single-stranded DNA molecules using a capture-systematic evolution of ligands by exponential enrichment (SELEX) technique and then adapted into structure-switching aptamer fluorescent sensors. Sensor performance was optimized for the detection of drug from human serum and crushed tablets, resulting in two sensing platforms. The patient sample platform was validated against an LC-MS standard drug detection method in samples from healthy volunteers and patients with malaria. This assay provides a rapid and inexpensive method for tracking antimalarial drug use and quality for the containment and study of parasite resistance, a major priority for malaria elimination campaigns. This sensor platform allows for flexibility of sample matrix and can be easily adapted to detect other small-molecule drugs.
Collapse
Affiliation(s)
- Erin S Coonahan
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA.,Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University , Fullerton, CA 92831, USA
| | - Maarten De Vos
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.,Department of Electrical Engineering (ESAT), KU Leuven, Leuven 3000, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA
| | - Michael P Fay
- Biostatistics Research Branch, DCR, NIAID, NIH, Rockville, MD 20852, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA.
| |
Collapse
|
19
|
Tisler S, Pattison DI, Christensen JH. Correction of Matrix Effects for Reliable Non-target Screening LC-ESI-MS Analysis of Wastewater. Anal Chem 2021; 93:8432-8441. [PMID: 34096716 DOI: 10.1021/acs.analchem.1c00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Matrix effects are well-known challenges for accurate and comparable measurements with liquid chromatography (LC) electrospray ionization mass spectrometry (ESI-MS). This study describes a three-step method to evaluate and compensate for matrix effects in enriched wastewater extracts using LC ESI-high-resolution MS (HRMS). As a first step, the "dilute and shoot" approach was used to determine the optimal relative enrichment factor (REF) for a direct comparison between wastewater influent (REF 10) and effluent (REF 50) extracts. However, the rapid decrease in the number of non-target compounds detected with increasing dilution leads to the need for a correction of the matrix effect for analyzing samples with higher REFs. As a second step, the observed matrix effect at higher REFs was corrected by the retention time-dependent matrix effect. A new scaling (TiChri scale) of the matrix effect was introduced, which demonstrates that the total ion chromatogram (TIC) predicts the matrix effect as effectively as post-column infusion (PCI) approaches; thus, the average median matrix effect was improved from -65 to 1% for influent (REF 100) and from -46 to -2% for effluent extracts (REF 250). The TIC traces for concentrated (REF 250) influent and effluent samples were successfully used to correct the matrix effects and allowed the extent of micropollutant degradation in three WWTPs to be quantified. As a final step, the residual structure-specific matrix effect was predicted and corrected by quantitative structure-property relationships (QSPR), which led to a further correction of the matrix effect to 0 ± 7% for 65 compounds.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - David I Pattison
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
20
|
Rosano TG, Rumberger JM, Wood M. Matrix Normalization Techniques for Definitive Urine Drug Testing. J Anal Toxicol 2021; 45:901-912. [PMID: 34013336 DOI: 10.1093/jat/bkab052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Analytical performance of stable isotope labeled internal standardization (SIL-IS) and threshold accurate calibration (TAC) methods of matrix normalization are compared for quantitation of 51 drugs and metabolites (analytes) in urine with analysis by UPLC-MS-MS. SIL-IS was performed with both analyte-specific (ASIL-IS) and shared (SSIL-IS) internal standards. Variance in inter-specimen matrix effect, without use of a matrix normalization method, was studied by UPLC-MS-MS (Ultra Performance Liquid Chromatography with tandem mass spectrometry) analysis of 338 urine donor samples and showed over 200% variation in ion response for some analytes. Matrix normalization methods were evaluated for precision, accuracy, calibration, multi-matrix recovery and positive casework quantitation. Acceptable calibration and quality control criteria were achieved for all methods when calibrators and controls were prepared from the same urine matrix pool. Quantitative accuracy, determined by addition of analytes to multi-donor urine pools at two concentration levels, resulted in acceptable percent relative standard deviation (%RSD) and bias for TAC and ASIL-IS methods. SSIL-IS method quantitations in analyte-supplemented donor pools revealed a %RSD ranging from 20-60% for more than 30% of the analytes and a method bias that ranged up to 87%, with a differential matrix effect on analyte and shared internal standard accounting for the imprecision and bias. Analyte quantitation in 162 authentic case samples showed close agreement for TAC and ASIL-IS methods, with greater variance in the SSIL-IS method. The study demonstrates effective matrix normalization by ASIL-IS and TAC methods and a matrix-caused bias in the SSIL-IS method.
Collapse
Affiliation(s)
- Thomas G Rosano
- National Toxicology Center, Center for Medical Science, Albany NY, USA.,Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - John M Rumberger
- National Toxicology Center, Center for Medical Science, Albany NY, USA
| | | |
Collapse
|
21
|
Piperaquine Pharmacokinetics during Intermittent Preventive Treatment for Malaria in Pregnancy. Antimicrob Agents Chemother 2021; 65:AAC.01150-20. [PMID: 33361303 PMCID: PMC8092554 DOI: 10.1128/aac.01150-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.)
Collapse
|
22
|
Khamis MM, Adamko DJ, El-Aneed A. STRATEGIES AND CHALLENGES IN METHOD DEVELOPMENT AND VALIDATION FOR THE ABSOLUTE QUANTIFICATION OF ENDOGENOUS BIOMARKER METABOLITES USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:31-52. [PMID: 31617245 DOI: 10.1002/mas.21607] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Metabolomics is a dynamically evolving field, with a major application in identifying biomarkers for drug development and personalized medicine. Numerous metabolomic studies have identified endogenous metabolites that, in principle, are eligible for translation to clinical practice. However, few metabolomic-derived biomarker candidates have been qualified by regulatory bodies for clinical applications. Such interruption in the biomarker qualification process can be largely attributed to various reasons including inappropriate study design and inadequate data to support the clinical utility of the biomarkers. In addition, the lack of robust assays for the routine quantification of candidate biomarkers has been suggested as a potential bottleneck in the biomarker qualification process. In fact, the nature of the endogenous metabolites precludes the application of the current validation guidelines for bioanalytical methods. As a result, there have been individual efforts in modifying existing guidelines and/or developing alternative approaches to facilitate method validation. In this review, three main challenges for method development and validation for endogenous metabolites are discussed, namely matrix effects evaluation, alternative analyte-free matrices, and the choice of internal standards (ISs). Some studies have modified the equations described by the European Medicines Agency for the evaluation of matrix effects. However, alternative strategies were also described; for instance, calibration curves can be generated in solvents and in biological samples and the slopes can be compared through ratios, relative standard deviation, or a modified Stufour suggested approaches while quantifying mainly endogenous metabolitesdent t-test. ISs, on the contrary, are diverse; in which seven different possible types, used in metabolomics-based studies, were identified in the literature. Each type has its advantages and limitations; however, isotope-labeled ISs and ISs created through isotope derivatization show superior performance. Finally, alternative matrices have been described and tested during method development and validation for the quantification of endogenous entities. These alternatives are discussed in detail, highlighting their advantages and shortcomings. The goal of this review is to compare, apprise, and debate current knowledge and practices in order to aid researchers and clinical scientists in developing robust assays needed during the qualification process of candidate metabolite biomarkers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
23
|
Bheemanapally K, Ibrahim MMH, Briski KP. Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for High-Neuroanatomical Resolution Quantification of Brain Estradiol Concentrations. J Pharm Biomed Anal 2020; 191:113606. [PMID: 32966939 DOI: 10.1016/j.jpba.2020.113606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Ventromedial hypothalamic nucleus (VMN) control of glucostasis is estradiol (E-2)-dependent. E-2 regulation of VMN reactivity to hypoglycemia may involve changes in signal volume due to altered aromatase expression. Here, high-resolution micropunch dissection tools for isolation of segmental VMN tissue were used with Design of Experiments-refined uHPLC-electrospray ionization-mass spectrometry (LC-ESI-MS) methodology to investigate the premise that effects of acute and/or recurring hypoglycemia on VMN E-2 content are sex-dimorphic. Relationships among multiple independent mass spectrometric operational variables were assessed by Central Composite Design (CCD) to amplify E-2 chromatogram area. Combinations of spectrometric temperature and gas pressure variable combinations were screened by Akaike Information Criterion correction modeling. A Fibonacci Sequence design using CCD minimum and maximal variable limits produced a small-run model that replicated maximal response from CCD. E-2 chromatographic response was further enhanced by optimization of solid phase extraction and instrument source and collision-induced dissociation voltages. In male rats, acute and chronic hypoglycemia respectively elevated or diminished E-2 concentrations relative to baseline in both rostral and caudal VMN. However, females exhibited regional variability in tissue E-2 profiles during acute (increased, rostral VMN; no change, caudal VMN) and recurring (no change, rostral VMN; increased, caudal VMN) hypoglycemia. Outcomes demonstrate requisite LC-ESI-MS sensitivity for E-2 quantification in small-volume brain tissue samples acquired with high-neuroanatomical specificity. Current methodology will facilitate efforts to investigate physiological consequences of VMN rostro-caudal segment-specific acclimation of E-2 profiles to recurring hypoglycemia, including effects on gluco-regulatory function, in each sex.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
24
|
Wattanakul T, Ogutu B, Kabanywanyi AM, Asante KP, Oduro A, Adjei A, Sie A, Sevene E, Macete E, Compaore G, Valea I, Osei I, Winterberg M, Gyapong M, Adjuik M, Abdulla S, Owusu-Agyei S, White NJ, Day NPJ, Tinto H, Baiden R, Binka F, Tarning J. Pooled Multicenter Analysis of Cardiovascular Safety and Population Pharmacokinetic Properties of Piperaquine in African Patients with Uncomplicated Falciparum Malaria. Antimicrob Agents Chemother 2020; 64:e01848-19. [PMID: 32312783 PMCID: PMC7318010 DOI: 10.1128/aac.01848-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicenter trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90-ms mean QTc prolongation per 100-ng/ml increase in piperaquine concentration. The effect of piperaquine on absolute QTc interval estimated a mean maximum QTc interval of 456 ms (50% effective concentration of 209 ng/ml). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98 to 2.46% risk of having QTc prolongation of >60 ms in all treatment settings. Although piperaquine administration resulted in QTc prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern. (This study has been registered at ClinicalTrials.gov under identifier NCT02199951.).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernhards Ogutu
- INDEPTH Network, Accra, Ghana
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | - Alex Adjei
- Dodowa Health Research Centre, Dodowa, Ghana
| | - Ali Sie
- Nouna Health Research Centre, Nouna, Burkina Faso
| | - Esperanca Sevene
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | - Eusebio Macete
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | | | - Innocent Valea
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Margaret Gyapong
- Dodowa Health Research Centre, Dodowa, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | | | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | | | - Fred Binka
- INDEPTH Network, Accra, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| |
Collapse
|
25
|
Mwebaza N, Cheah V, Forsman C, Kajubi R, Marzan F, Wallender E, Dorsey G, Rosenthal PJ, Aweeka F, Huang L. Determination of piperaquine concentration in human plasma and the correlation of capillary versus venous plasma concentrations. PLoS One 2020; 15:e0233893. [PMID: 32470030 PMCID: PMC7259774 DOI: 10.1371/journal.pone.0233893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background A considerable challenge in quantification of the antimalarial piperaquine in plasma is carryover of analyte signal between assays. Current intensive pharmacokinetic studies often rely on the merging of venous and capillary sampling. Drug levels in capillary plasma may be different from those in venous plasma, Thus, correlation between capillary and venous drug levels needs to be established. Methods Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to develop the method. Piperaquine was measured in 205 pairs of capillary and venous plasma samples collected simultaneously at ≥24hr post dose in children, pregnant women and non-pregnant women receiving dihydroartemisinin-piperaquine as malaria chemoprevention. Standard three-dose regimen over three days applied to all participants with three 40mg dihydroartemisinin/320mg PQ tablets per dose for adults and weight-based dose for children. Correlation analysis was performed using the program Stata® SE12.1. Linear regression models were built using concentrations or logarithm transformed concentrations and the final models were selected based on maximal coefficient of determination (R2) and visual check. Results An LC-MS/MS method was developed and validated, utilizing methanol as a protein precipitation agent, a Gemini C18 column (50x2.0mm, 5μm) eluted with basic mobile phase solvents (ammonium hydroxide as the additive), and ESI+ as the ion source. This method had a calibration range of 10–1000 ng/mL and carryover was negligible. Correlation analysis revealed a linear relationship: Ccap = 1.04×Cven+4.20 (R2 = 0.832) without transformation of data, and lnCcap = 1.01×lnCven+0.0125, (R2 = 0.945) with natural logarithm transformation. The mean ratio (±SD) of Ccap/Cven was 1.13±0.42, and median (IQR) was 1.08 (0.917, 1.33). Conclusions Capillary and venous plasma PQ measures are nearly identical overall, but not readily exchangeable due to large variation. Further correlation study accounting for disposition phases may be necessary.
Collapse
Affiliation(s)
- Norah Mwebaza
- Infectious Disease Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Vincent Cheah
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
| | - Camilla Forsman
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
| | - Erika Wallender
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Francesca Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
| | - Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Evaluation, identification and impact assessment of abnormal internal standard response variability in regulated LC-MS bioanalysis. Bioanalysis 2020; 12:545-559. [PMID: 32352315 DOI: 10.4155/bio-2020-0058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Internal standard (IS) plays an important role in LC-MS bioanalysis by compensating for the variability of the analyte of interest in bioanalytical workflow. Due to the complexity of biological sample compositions and bioanalytical processes, a certain level of IS response variability across a run or a study is anticipated. However, an extensive variability may raise doubts to the accuracy of the measured results and also suggest nonoptimal analytical method. In this current paper, recent publications and guidelines regarding IS response in LC-MS bioanalysis were thoroughly reviewed with focus on the evaluation, identification and impact assessment of 'abnormal' IS response variability. A systematic decision tree was proposed to facilitate investigation into abnormal IS response variability after each run.
Collapse
|
27
|
van der Pluijm RW, Tripura R, Hoglund RM, Pyae Phyo A, Lek D, Ul Islam A, Anvikar AR, Satpathi P, Satpathi S, Behera PK, Tripura A, Baidya S, Onyamboko M, Chau NH, Sovann Y, Suon S, Sreng S, Mao S, Oun S, Yen S, Amaratunga C, Chutasmit K, Saelow C, Runcharern R, Kaewmok W, Hoa NT, Thanh NV, Hanboonkunupakarn B, Callery JJ, Mohanty AK, Heaton J, Thant M, Gantait K, Ghosh T, Amato R, Pearson RD, Jacob CG, Gonçalves S, Mukaka M, Waithira N, Woodrow CJ, Grobusch MP, van Vugt M, Fairhurst RM, Cheah PY, Peto TJ, von Seidlein L, Dhorda M, Maude RJ, Winterberg M, Thuy-Nhien NT, Kwiatkowski DP, Imwong M, Jittamala P, Lin K, Hlaing TM, Chotivanich K, Huy R, Fanello C, Ashley E, Mayxay M, Newton PN, Hien TT, Valecha N, Smithuis F, Pukrittayakamee S, Faiz A, Miotto O, Tarning J, Day NPJ, White NJ, Dondorp AM. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 2020; 395:1345-1360. [PMID: 32171078 PMCID: PMC8204272 DOI: 10.1016/s0140-6736(20)30552-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. METHODS In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. FINDINGS Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50). INTERPRETATION Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance. FUNDING UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Dysoley Lek
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | | | - Anupkumar R Anvikar
- National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | | | | | | | | | | | - Marie Onyamboko
- Kinshasa Mahidol Oxford Research Unit (KIMORU), Kinshasa, Democratic Republic of the Congo; Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Yok Sovann
- Pailin Provincial Health Department, Pailin, Cambodia
| | - Seila Suon
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sivanna Mao
- Sampov Meas Referral Hospital, Pursat, Cambodia
| | - Savuth Oun
- Ratanakiri Referral Hospital, Ratanakiri, Cambodia
| | | | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | - Nhu Thi Hoa
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Akshaya Kumar Mohanty
- Infectious Disease Biology Unit, IGH, Rourkela Research Unit of ILS, Bhubeneswar, DBT, Rourkela, India
| | - James Heaton
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Myo Thant
- Defence Services Medical Research Centre, Yangon, Myanmar
| | | | | | - Roberto Amato
- Nuffield Department of Medicine and MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Richard D Pearson
- Nuffield Department of Medicine and MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK; Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Naomi Waithira
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michele van Vugt
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA; AstraZeneca, Gaithersburg, MD, USA
| | - Phaik Yeong Cheah
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network - Asia Regional Centre, Bangkok, Thailand
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; The Open University, Milton Keynes, UK; Harvard T H Chan School of Public Health, Harvard University, Boston, MA USA
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nguyen Thanh Thuy-Nhien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Dominic P Kwiatkowski
- Nuffield Department of Medicine and MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittamala
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Khin Lin
- Department of Medical Research, Pyin Oo Lwin, Myanmar
| | | | - Kesinee Chotivanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rekol Huy
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Caterina Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Kinshasa Mahidol Oxford Research Unit (KIMORU), Kinshasa, Democratic Republic of the Congo
| | - Elizabeth Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit (LOMWRU), Vientiane, Laos
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit (LOMWRU), Vientiane, Laos; Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Laos
| | - Paul N Newton
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit (LOMWRU), Vientiane, Laos
| | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Abul Faiz
- Malaria Research Group and Dev Care Foundation, Dhaka, Bangladesh
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Nuffield Department of Medicine and MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Kobylinski KC, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Pantuwatana K, Phasomkusolsil S, Davidson SA, Winterberg M, Hoglund RM, Mukaka M, van der Pluijm RW, Dondorp A, Day NPJ, White NJ, Tarning J. Safety, Pharmacokinetics, and Mosquito-Lethal Effects of Ivermectin in Combination With Dihydroartemisinin-Piperaquine and Primaquine in Healthy Adult Thai Subjects. Clin Pharmacol Ther 2019; 107:1221-1230. [PMID: 31697848 PMCID: PMC7285759 DOI: 10.1002/cpt.1716] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
Mass administration of antimalarial drugs and ivermectin are being considered as potential accelerators of malaria elimination. The safety, tolerability, pharmacokinetics, and mosquito‐lethal effects of combinations of ivermectin, dihydroartemisinin‐piperaquine, and primaquine were evaluated. Coadministration of ivermectin and dihydroartemisinin‐piperaquine resulted in increased ivermectin concentrations with corresponding increases in mosquito‐lethal effect across all subjects. Exposure to piperaquine was also increased when coadministered with ivermectin, but electrocardiograph QT‐interval prolongation was not increased. One subject had transiently impaired liver function. Ivermectin mosquito‐lethal effect was greater than predicted previously against the major Southeast Asian malaria vectors. Both Anopheles dirus and Anopheles minimus mosquito mortality was increased substantially (20‐fold and 35‐fold increase, respectively) when feeding on volunteer blood after ivermectin administration compared with in vitro ivermectin‐spiked blood. This suggests the presence of ivermectin metabolites that impart mosquito‐lethal effects. Further studies of this combined approach to accelerate malaria elimination are warranted.
Collapse
Affiliation(s)
- Kevin C Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Kanchana Pantuwatana
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Phasomkusolsil
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Silas A Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Byakika-Kibwika P, Ssenyonga R, Lamorde M, Blessborn D, Tarning J. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous Artesunate or quinine plus Dihydroartemisinin-Piperaquine. BMC Infect Dis 2019; 19:1025. [PMID: 31795967 PMCID: PMC6889437 DOI: 10.1186/s12879-019-4647-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Treatment for severe malaria must be prompt with effective parenteral antimalarial drugs for at least 24 h to achieve fast parasite clearance, and when the patient can tolerate oral therapy, treatment should be completed with effective artemisinin based combination therapy (ACT) for complete parasite clearance and to prevent recrudescence. We evaluated piperaquine concentration and malaria treatment outcomes among Ugandan children treated for severe malaria with intravenous artesunate (AS) or quinine (QN) plus dihydroartemisinin-piperaquine (DP), in Tororo District Hospital in Eastern Uganda. Methods Capillary blood piperaquine concentration data were obtained from a randomized clinical trial whose objective was to evaluate parasite clearance, 42-day parasitological treatment outcomes and safety, following treatment of severe malaria with intravenous AS or QN, plus artemether-lumefantrine or DP among children in Tororo District Hospital, in Eastern Uganda. Results Piperaquine concentration data from 150 participants who received DP were analyzed. Participants with unadjusted treatment failure had lower median day 7 capillary piperaquine concentration than those with treatment success (34.7 (IQR) (17.9–49.1) vs 66.7 (IQR) (41.8–81.9), p < 0.001), and lower than the recommended day 7 cut off level of 57 ng/mL. There was no difference in median capillary piperaquine concentrations among participants with re-infection and recrudescence (35.3 (IQR) (17.9–55.2) vs 34.8 (IQR) (18.1–45.1), p = 0.847). The risk of treatment failure was two times higher among children with low (< 57 ng/mL) day 7 capillary piperaquine concentration (relative risk: 2.1 CI 1.4–3.1), p < 0.001) compared to children with high day 7 capillary piperaquine concentrations (> 57 ng/mL). Conclusion Considering the low day 7 concentrations of piperaquine reported in the patients studied here, we suggest to adopt the recently recommended higher dose of DP in young children or a prolonged 5-day dosing in children living in malaria endemic areas who have suffered an initial episode of severe malaria in order to achieve adequate drug exposures for effective post-treatment prophylactic effects. Trial registration The study was registered with the Pan African Clinical Trial Registry (PACTR201110000321348). Registered 7th October 2011.
Collapse
Affiliation(s)
- Pauline Byakika-Kibwika
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda. .,Infectious Diseases Institute, Kampala, Uganda.
| | - Ronald Ssenyonga
- Clinical Trials Unit, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Merkley ED, Burnum-Johnson KE, Anderson LN, Jenson SC, Wahl KL. Uniformly 15N-Labeled Recombinant Ricin A-Chain as an Internal Retention Time Standard for Increased Confidence in Forensic Identification of Ricin by Untargeted Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2019; 91:13372-13376. [PMID: 31596564 DOI: 10.1021/acs.analchem.9b03389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ricin, a toxic protein from the castor plant, is of forensic and biosecurity interest because of its high toxicity and common occurrence in crimes and attempted crimes. Qualitative methods to detect ricin are therefore needed. Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics methods are well suited because of their high specificity. Specificity in LC-MS/MS comes from both the LC and MS components. However, modern untargeted proteomics methods often use nanoflow LC, which has less reproducible retention times than standard-flow LC, making it challenging to use retention time as a point of identification in a forensic assay. We address this challenge by using retention times relative to a standard, namely, the uniformly 15N-labeled ricin A-chain produced recombinantly in a bacterial expression system. This material, added as an internal standard prior to trypsin digestion, produces a stable-isotope-labeled standard for every ricin tryptic peptide in the sample. We show that the MS signals for 15N and natural isotopic abundance ricin peptides are distinct, with mass shifts that correspond to the numbers of nitrogen atoms in each peptide or fragment. We also show that, as expected, labeled and unlabeled peptides coelute, with relative retention time differences of less than 0.2%.
Collapse
Affiliation(s)
- Eric D Merkley
- Chemical and Biological Signature Sciences Group , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kristin E Burnum-Johnson
- Integrative Omics Group , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Lindsey N Anderson
- Biological Systems Science Group , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Sarah C Jenson
- Chemical and Biological Signature Sciences Group , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Karen L Wahl
- Integrative Omics Group , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
31
|
Variations in internal standard response: some thoughts and real-life cases. Bioanalysis 2019; 11:1715-1725. [DOI: 10.4155/bio-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Internal standards are essential to ensure the reliability of chromatographic bioanalytical methods. However, this only holds true if the response of the internal standard is adequately monitored. A difference needs to be made between isolated variations in a limited number of samples, which can be easily handled using objective criteria triggering the re-analysis of the affected samples and more complex situations such as trends or systematic differences, which may require the use of scientific judgment, trigger further investigations and ultimately result in the rejection of analytical runs.
Collapse
|
32
|
van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh NV, Jittamala P, Hanboonkunupakarn B, Chutasmit K, Saelow C, Runjarern R, Kaewmok W, Tripura R, Peto TJ, Yok S, Suon S, Sreng S, Mao S, Oun S, Yen S, Amaratunga C, Lek D, Huy R, Dhorda M, Chotivanich K, Ashley EA, Mukaka M, Waithira N, Cheah PY, Maude RJ, Amato R, Pearson RD, Gonçalves S, Jacob CG, Hamilton WL, Fairhurst RM, Tarning J, Winterberg M, Kwiatkowski DP, Pukrittayakamee S, Hien TT, Day NP, Miotto O, White NJ, Dondorp AM. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. THE LANCET. INFECTIOUS DISEASES 2019; 19:952-961. [PMID: 31345710 PMCID: PMC6715822 DOI: 10.1016/s1473-3099(19)30391-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year. METHODS Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308. FINDINGS Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1-58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2-33·0) in northeastern Thailand, 38·2% (15·9-60·5) in western Cambodia, 73·4% (57·0-84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5-59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011-13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade. INTERPRETATION Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency. FUNDING UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nhu Thi Hoa
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Thuy-Nhien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Podjanee Jittamala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sovann Yok
- Pailin Provincial Health Department, Pailin, Cambodia
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sivanna Mao
- Sampov Meas Referral Hospital, Pursat, Cambodia
| | - Savuth Oun
- Ratanakiri Referral Hospital, Ratanakiri, Cambodia
| | | | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; WorldWide Antimalarial Resistance Network Asia Regional Centre, Bangkok, Thailand
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Laos
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Markus Winterberg
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas Pj Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
33
|
Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother 2019; 63:AAC.00060-19. [PMID: 31182525 PMCID: PMC6658739 DOI: 10.1128/aac.00060-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Combining three existing antimalarials in the form of triple ACTs, including dihydroartemisinin (DHA)-piperaquine + mefloquine, is a potential treatment option for multidrug-resistant Plasmodium falciparum malaria. In a sequential open-label study, healthy Thai volunteers were treated with DHA-piperaquine (120 to 960 mg), mefloquine (500 mg), and DHA-piperaquine + mefloquine (120 to 960 mg + 500 mg), and serial symptom questionnaires, biochemistry, full blood counts, pharmacokinetic profiles, and electrocardiographic measurements were performed. Fifteen healthy subjects were enrolled. There was no difference in the incidence or severity of adverse events between the three treatment arms. The slight prolongation in QTc (QT interval corrected for heart rate) associated with DHA-piperaquine administration did not increase after administration of DHA-piperaquine + mefloquine. The addition of mefloquine had no significant effect on the pharmacokinetic properties of piperaquine. However, coadministration of mefloquine significantly reduced the exposures to dihydroartemisinin for area under the concentration-time curve (−22.6%; 90% confidence interval [CI], −33.1, −10.4; P = 0.0039) and maximum concentration of drug in serum (−29.0%; 90% CI, −40.6, −15.1; P = 0.0079). Mefloquine can be added safely to dihydroartemisinin-piperaquine in malaria treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT02324738.)
Collapse
|
34
|
He J, Yuan J, Du J, Chen X, Zhang X, Ma A, Pan J. Automated on-line SPE determination of amisulpride in human plasma using LC coupled with restricted-access media column. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Chotsiri P, Zongo I, Milligan P, Compaore YD, Somé AF, Chandramohan D, Hanpithakpong W, Nosten F, Greenwood B, Rosenthal PJ, White NJ, Ouédraogo JB, Tarning J. Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children. Nat Commun 2019; 10:480. [PMID: 30696903 PMCID: PMC6351525 DOI: 10.1038/s41467-019-08297-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
Young children are the population most severely affected by Plasmodium falciparum malaria. Seasonal malaria chemoprevention (SMC) with amodiaquine and sulfadoxine-pyrimethamine provides substantial benefit to this vulnerable population, but resistance to the drugs will develop. Here, we evaluate the use of dihydroartemisinin-piperaquine as an alternative regimen in 179 children (aged 2.33–58.1 months). Allometrically scaled body weight on pharmacokinetic parameters of piperaquine result in lower drug exposures in small children after a standard mg per kg dosage. A covariate-free sigmoidal EMAX-model describes the interval to malaria re-infections satisfactorily. Population-based simulations suggest that small children would benefit from a higher dosage according to the WHO 2015 guideline. Increasing the dihydroartemisinin-piperaquine dosage and extending the dose schedule to four monthly doses result in a predicted relative reduction in malaria incidence of up to 58% during the high transmission season. The higher and extended dosing schedule to cover the high transmission period for SMC could improve the preventive efficacy substantially. Seasonal malaria chemoprevention provides substantial benefit for young children, but resistance to used drugs will likely develop. Here, Chotsiri et al. evaluate the use of dihydroartemisinin-piperaquine as a regimen in 179 children, and population-based simulations suggest that small children would benefit from a higher and extended dosage.
Collapse
Affiliation(s)
- Palang Chotsiri
- Faculty of Tropical Medicine, Department of Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Paul Milligan
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | | | | | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Warunee Hanpithakpong
- Faculty of Tropical Medicine, Department of Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, London, OX3 7LJ, United Kingdom.,Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, 63110, Thailand
| | - Brian Greenwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Philip J Rosenthal
- Department of Medicine, University of California, Box 0811, San Francisco, CA 94143, CA, USA
| | - Nicholas J White
- Faculty of Tropical Medicine, Department of Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, London, OX3 7LJ, United Kingdom
| | | | - Joel Tarning
- Faculty of Tropical Medicine, Department of Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, London, OX3 7LJ, United Kingdom.
| |
Collapse
|
36
|
Choemang A, Na-Bangchang K. An Alternative HPLC with Ultraviolet Detection for Determination of Piperaquine in Plasma. J Chromatogr Sci 2019; 57:27-32. [PMID: 30169629 DOI: 10.1093/chromsci/bmy077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/09/2018] [Indexed: 11/13/2022]
Abstract
A simple, sensitive, selective and reproducible method based on liquid chromatography was developed for the determination of piperaquine in human plasma samples. Sample preparation involved a single step liquid-liquid extraction by organic solvents (hexane: tert-butyl methylether at the ratio of 1:1, v:v). Piperaquine was separated from the internal standard mefloquine on a reversed-phase C18 column, with the mobile phase consisting of a mixture of acetonitrile and 0.1% trichloroacetic acid (in water) (15:85, v:v) running at a flow rate of 1.0 mL/min. Retention times of piperaquine and mefloquine were 9.92 and 14.20 min, respectively. Ultraviolet detection was set at the wavelength 354 nm. Good precision and accuracy were obtained for both within-day repeatability and day-to-day reproducibility. Limit of quantification for piperaquine was accepted as 10 ng/mL using 150-μL plasma sample. The mean recoveries for piperaquine and internal standard were between 88.8% and 91.7%. The validated analytical method was successfully applied in twenty blinded spiked human plasma samples.
Collapse
Affiliation(s)
- Anurak Choemang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Graduate Studies, Thammasat University (Rangsit Campus), Paholyothin Road, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Graduate Studies, Thammasat University (Rangsit Campus), Paholyothin Road, Pathumthani, Thailand
| |
Collapse
|
37
|
A convenient strategy to overcome interference in LC-MS/MS analysis: Application in a microdose absolute bioavailability study. J Pharm Biomed Anal 2018; 165:198-206. [PMID: 30553110 DOI: 10.1016/j.jpba.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022]
Abstract
Stable isotope labeled (SIL) compounds have been commonly used as internal standards (IS) to ensure the accuracy and quality of liquid chromatography-mass spectrometry (LC-MS) bioanalytical assays. Recently, the application of SIL drugs and LC-MS assays to microdose absolute bioavailability (BA) studies has gained increasing attention. This approach can provide significant cost and time saving, and higher data quality compared to the accelerator mass spectrometry (AMS)-based method, since it avoids the use of radioactive drug, high-cost AMS instrumentation and complex measurement processes. It also eliminates potential metabolite interference with AMS-based assay. However, one major challenge in the application of this approach is the potential interference between the unlabeled drug, the microdose SIL drug, and the SIL-IS during LC-MS analysis. Here we report a convenient and cost-effective strategy to overcome the interference by monitoring the isotopic ion (instead of the commonly used monoisotopic ion) of the interfered compound in MS analysis. For the BMS-986205 absolute BA case study presented, significant interference was observed from the microdose IV drug [13C7,15N]-BMS-986205 to its SIL-IS, [13C7,15N, D3]-BMS-986205, since the difference of nominal molecular mass between the two compounds is only 3 mu, and there is a Cl atom in the molecules. By applying this strategy (monitoring the 37Cl ion for the analysis of the IS), a 90-fold reduction of interference was achieved, which allowed the use of a synthetically accessible SIL compound and enabled the fast progress of the absolute BA study. This strategy minimizes the number of stable isotope labels used for avoiding interference, which greatly reduces the difficulty in synthesizing the SIL compounds and generates significant time and cost savings. In addition, this strategy can also be used to reduce the MS response of the analyte, therefore, avoiding the detector saturation issue of LC-MS/MS assay for high concentration BMS-986205. A LC-MS/MS assay utilizing this strategy was successfully developed for the simultaneous analysis of BMS-986205 and [13C7, 15N]-BMS-986205 in dog plasma using [13C7,15N, D3]-BMS-986205 as the IS. The assay was successfully applied to a microdose absolute BA study of BMS-986205 in dogs. The assay was also validated in human plasma and used to support a human absolute BA study. The same strategy can also be applied to other compounds, including those not containing Cl or other elements with abundant isotopes, or other applications (e.g. selection of internal standard), and the applications were presented.
Collapse
|
38
|
Baxevanis F, Kuiper J, Fotaki N. Strategic drug analysis in fed-state gastric biorelevant media based on drug physicochemical properties. Eur J Pharm Biopharm 2018; 127:326-341. [DOI: 10.1016/j.ejpb.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
|
39
|
Jin X, Zhou F, Liu Y, Cheng C, Yao L, Jia Y, Wang G, Zhang J. Simultaneous determination of parecoxib and its main metabolites valdecoxib and hydroxylated valdecoxib in mouse plasma with a sensitive LC-MS/MS method to elucidate the decreased drug metabolism of tumor bearing mice. J Pharm Biomed Anal 2018; 158:1-7. [PMID: 29843006 DOI: 10.1016/j.jpba.2018.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/15/2022]
Abstract
Parecoxib (PX), a prodrug of valdecoxib (VX), is an injectable selective COX-2 inhibitor, and is recommended for the treatment of cancer pain. PX can be rapidly hydrolyzed into its active metabolite VX, and VX is further metabolized into hydroxylated valdecoxib (OH-VX) by cytochrome P450 enzymes. However, cancer patients have been reported to possess reduced drug metabolism ability, which might cause excessive drug accumulation. Such overdose of PX significantly increased the risk of renal safety and cardiovascular events. Therefore, it is necessary to elucidate the concentration profiles of PX and its metabolites in cancer status. In this study, a sensitive, rapid and specific LC-MS/MS method for quantification of PX, VX and OH-VX in the plasma of tumor bearing mouse was developed and validated. After protein precipitation, all the analytes were separated on an Agilent ZORBAX Extend-C18 HPLC column (2.1 × 100 mm, 3.5 μm) with gradient elution. The analytes were detected by an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. The transition m/z 369.0 → 119.0, m/z 312.9 → 117.9, m/z 329.0 → 196.0, and m/z 307.1 → 161.3 were used for monitoring PX, VX, OH-VX and IS respectively. The calibration curves of the analytes showed good linearity over the concentration range of 3-3000 ng/mL for PX and VX, and 3-1000 ng/mL for OH-VX. Intra- and inter-batch accuracies (in terms of relative error, RE < 9.9%) and precisions (in terms of relative standard deviation, RSD < 8.8%) satisfied the standard of validation. The matrix effect, recovery and stability were also within acceptable criteria. The method was successfully applied to the pharmacokinetics study of PX in tumor bearing mice, and PX and VX levels were found elevated with the growth of tumor volume, which might increase the risk of drug overdose.
Collapse
Affiliation(s)
- Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Cheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lan Yao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanwei Jia
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
40
|
Gallay J, Prod'hom S, Mercier T, Bardinet C, Spaggiari D, Pothin E, Buclin T, Genton B, Decosterd LA. LC-MS/MS method for the simultaneous analysis of seven antimalarials and two active metabolites in dried blood spots for applications in field trials: Analytical and clinical validation. J Pharm Biomed Anal 2018; 154:263-277. [PMID: 29579633 DOI: 10.1016/j.jpba.2018.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 02/04/2023]
Abstract
In epidemiological studies, antimalarials measurements in blood represent the best available marker of drugs exposure at population level, an important driver for the emergence of drug resistance. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) for the simultaneous quantification of 7 frequently used antimalarials (amodiaquine, chloroquine, quinine, sulfadoxine, pyrimethamine, mefloquine, lumefantrine) and 2 active metabolites (N-desethyl-amodiaquine, desbutyl-lumefantrine) in 10-μl dried blood spots (DBS). This sampling approach is suitable for field studies wherein blood samples processing, transportation and storage are problematic. Sample preparation included extraction from a 3 mm-disk punched out of the DBS with 100-μl of methanol + 1% formic acid containing deuterated internal standards for all drugs. Good performances were achieved in terms of trueness (-12.1 to +11.1%), precision (1.4-15.0%) and sensitivity, with lower limits of quantification comprised between 2 ng/ml (sulfadoxine) and 20 ng/ml (chloroquine, quinine, pyrimethamine, mefloquine, lumefantrine and desbutyl-lumefantrine). All analytes were stable in DBS kept for 24 h at room temperature and at 37 °C. The developed assay was applied within the frame of a pharmacokinetic study including 16 healthy volunteers who received a single dose of artemether-lumefantrine. Lumefantrine concentrations in plasma and in DBS were highly correlated (R = 0.97) at all time points, confirming the assumption that lumefantrine concentrations determined in DBS confidently reflect blood concentrations. The blood/plasma ratio of 0.56 obtained using the Bland-Altman approach (and corresponding to the slope of the linear regression) is in line with very low penetration of lumefantrine into red blood cells. This sensitive multiplex LC-MS/MS assay enabling the simultaneous analysis of antimalarials in DBS is suitable for epidemiological studies in field conditions.
Collapse
Affiliation(s)
- Joanna Gallay
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Sylvain Prod'hom
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Thomas Mercier
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Carine Bardinet
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Dany Spaggiari
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Emilie Pothin
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Thierry Buclin
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | - Blaise Genton
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Division of Infectious Diseases and Department of Community Medicine, University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
41
|
Rossmann J, Renner LD, Oertel R, El-Armouche A. Post-column infusion of internal standard quantification for liquid chromatography-electrospray ionization-tandem mass spectrometry analysis – Pharmaceuticals in urine as example approach. J Chromatogr A 2018; 1535:80-87. [DOI: 10.1016/j.chroma.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
|
42
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
43
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
44
|
Chen G, Jirjees F, Al Bawab A, McElnay JC. Quantification of amlodipine in dried blood spot samples by high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:252-258. [PMID: 29195144 DOI: 10.1016/j.jchromb.2017.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
A sensitive and specific method, utilising high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was developed for the quantitative determination of amlodipine in dried blood spot (DBS) samples. Chromatographic separation was achieved using a Waters XBridge C18 column with gradient elution of a mixture of water and acetonitrile containing 0.1% formic acid (v/v). Amlodipine was quantified using a Waters Quattro Premier mass spectrometer coupled with an electro-spray ionization (ESI) source in positive ion mode. The MRM transitions of 408.9 m/z→238.1m/z and 408.9→294.0 m/z were used to quantify and qualify amlodipine, respectively. The method was validated across the concentration range of 0.5-30ng/mL by assessing specificity, sensitivity, linearity, precision, accuracy, recovery and matrix effect according to the Food and Drug Administration (FDA) guidelines. This method was also validated clinically within a large pharmacoepidemiological study in which amlodipine blood concentration was determined in patients who had been prescribed this medication.
Collapse
Affiliation(s)
- Gaoyun Chen
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Feras Jirjees
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Abdel Al Bawab
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, Jordan
| | - James C McElnay
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
45
|
Ahn S, Kim B, Baek SY, Aristiawan Y, Kim J, Kim B. Exact Matrix-matching Calibration by Standard Addition-Isotope Dilution-Liquid Chromatography/Mass Spectrometry for the Accurate Determination of Chloramphenicol in Infant Formula. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seonghee Ahn
- Division of Metrology for Quality of Life; Korea Research Institute of Standards and Science; Daejeon 34113 Korea
| | - Bomi Kim
- Division of Metrology for Quality of Life; Korea Research Institute of Standards and Science; Daejeon 34113 Korea
- Department of Chemistry; Chungnam National University; Daejeon 34134 Korea
| | - Song-Yee Baek
- Division of Metrology for Quality of Life; Korea Research Institute of Standards and Science; Daejeon 34113 Korea
| | - Yosi Aristiawan
- Division of Metrology for Quality of Life; Korea Research Institute of Standards and Science; Daejeon 34113 Korea
- Department of Bio-Analytical Science; University of Science and Technology; Daejeon 34113 Korea
| | - Jeongkwon Kim
- Department of Chemistry; Chungnam National University; Daejeon 34134 Korea
| | - Byungjoo Kim
- Division of Metrology for Quality of Life; Korea Research Institute of Standards and Science; Daejeon 34113 Korea
| |
Collapse
|
46
|
Matrix effect management in liquid chromatography mass spectrometry: the internal standard normalized matrix effect. Bioanalysis 2017; 9:1093-1105. [PMID: 28737421 DOI: 10.4155/bio-2017-0059] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LC-MS is becoming a standard for many applications, thanks to high sensitivity and selectivity; nevertheless, some issues are still present, particularly due to matrix effect (ME). Considering this, the use of optimal internal standards (ISs, usually stable-isotope labeled) is important, but not always possible because of cost or availability. Therefore, a deep investigation of the inter-lot variability of the ME and of the correcting power of the chosen IS (isotope-labeled or not) is mandatory. While the adoption of isotopically labeled ISs considered as a 'gold standard' to mitigate ME impact on analytical results, there is not consensus about the standard technique to evaluate it during method validation. In this paper, currently available techniques to evaluate, reduce or counterbalance ME are presented and discussed. Finally, these techniques were summarized in a flowchart for a robust management of ME, particularly considering the concept of 'internal standard normalized ME'.
Collapse
|
47
|
Bienvenu JF, Provencher G, Bélanger P, Bérubé R, Dumas P, Gagné S, Gaudreau É, Fleury N. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association. Anal Chem 2017; 89:7560-7568. [DOI: 10.1021/acs.analchem.7b01383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean-François Bienvenu
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Gilles Provencher
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Patrick Bélanger
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - René Bérubé
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Pierre Dumas
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Sébastien Gagné
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Éric Gaudreau
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| | - Normand Fleury
- Centre de toxicologie du
Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, Québec, Canada G1 V 5B3
| |
Collapse
|
48
|
Liu H, Zang M, Yang A, Ji J, Xing J. Simultaneous determination of piperaquine and its N-oxidated metabolite in rat plasma using LC-MS/MS. Biomed Chromatogr 2017; 31. [PMID: 28299804 DOI: 10.1002/bmc.3974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N-oxidated metabolite (PQ-M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple-quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0-400.0 ng/mL for PQ and 1.0-50.0 ng/mL for PQ-M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ-M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co-administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ-M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).
Collapse
Affiliation(s)
- Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Meitong Zang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Aijuan Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
49
|
MAO Z, WANG X, DI X, LIU Y, ZANG Y, MA D, LIU Y, DI X. Quantitative Detection of Ambroxol in Human Plasma Using HPLC-APCI-MS/MS: Application to a Pharmacokinetic Study. ANAL SCI 2017; 33:1099-1103. [DOI: 10.2116/analsci.33.1099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhengsheng MAO
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin WANG
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin DI
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Yangdan LIU
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Yanan ZANG
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Dongke MA
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Youping LIU
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin DI
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| |
Collapse
|
50
|
Loos G, Van Schepdael A, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150366. [PMID: 27644982 PMCID: PMC5031633 DOI: 10.1098/rsta.2015.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 05/04/2023]
Abstract
Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Glenn Loos
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|