1
|
Grandière Pérez L, Brisse S. Diphtheria antitoxin treatment: from pioneer to neglected. Mem Inst Oswaldo Cruz 2025; 120:e240214. [PMID: 39841756 PMCID: PMC11752783 DOI: 10.1590/0074-02760240214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diphtheria, a severe respiratory infection, was a major killer of children until the early years of the 20th century. Although diphtheria is now largely controlled globally thanks to vaccination, it is still endemic in some world regions and large epidemics can occur where vaccination coverage is insufficient. The pathological effects caused by its main virulence factor, diphtheria toxin, can be diminished by passive transfer of antibodies. Equine diphtheria antitoxin (eDAT), the cornerstone of treatment against toxinic complications of diphtheria, was invented more than 130 years ago, in 1890, and is still in use today. A method to concentrate anti-diphtheria antibodies from hyperimmune equine serum was described in the first issue of Memórias do Instituto Oswaldo Cruz in 1909. On this historic occasion, we present recent knowledge on taxonomic, epidemiological and clinical aspects of diphtheria agents that produce diphtheria toxin, and provide a historical perspective on eDAT treatment, adverse effects, threats on its scarce international supply, and current avenues for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Grandière Pérez
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Le Mans, Le Mans, France
- Université d’Angers, Angers, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Institut Pasteur, French National Reference Centre for Corynebacteria of the Diphtheriae complex, Paris, France
| |
Collapse
|
2
|
Abdollahnia A, Bahmani K, Aliahmadi A, As'habi MA, Ghassempour A. Mass spectrometric analysis of Odonthobuthus Doriae scorpion venom and its non-neutralized fractions after interaction with commercial antivenom. Sci Rep 2024; 14:10389. [PMID: 38710718 DOI: 10.1038/s41598-024-59150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
It is believed that antivenoms play a crucial role in neutralizing venoms. However, uncontrolled clinical effects appear in patients stung by scorpions after the injection of antivenom. In this research, non-neutralized components of the venom of the Iranian scorpion Odonthobuthus doriae were analyzed after interacting with the commercial antivenom available in the market. The venom and antivenom interaction was performed, then centrifuged, and the supernatant was analyzed by high-performance liquid chromatography (HPLC). Two peaks of Odonthobuthus doriae venom were observed in the chromatogram of the supernatant. Two components were isolated by HPLC and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) instruments. Peptide sequencing was done by Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry (LC-Q-TOF MS/MS). Results indicate that the components of scorpion venom mainly have a molecular weight below 10 kDa, consisting of toxic peptides that disrupt the function of sodium and potassium channels. The MALDI-TOF MS results show that two toxic peptides with molecular masses of 6941 Da and 6396 Da were not neutralized by the antivenom. According to the MS/MS sequencing data, the components have been related to peptides A0A5P8U2Q6_MESEU and A0A0U4FP89_ODODO, which belong to the sodium and potassium channels toxins family, respectively.
Collapse
Affiliation(s)
- Adel Abdollahnia
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran, Iran
| | - Kiumars Bahmani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atousa Aliahmadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran, Iran
| | - Mohammad Ali As'habi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran, Iran.
| |
Collapse
|
3
|
da Costa CBP, Carvalho VRD, Ferreira LLC, Mattos JLC, Garcia LDM, Antunes MDS, Martins FJ, Ratcliffe NA, Cisne R, Castro HC. Production of hyperimmune sera: a study of digestion and fractionation methodologies for the purification process of heterologous immunoglobulins. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Camila Braz Pereira da Costa
- Instituto Vital Brazil, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | | | - Francislene Juliana Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Norman A. Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
4
|
Quality-Related Properties of Equine Immunoglobulins Purified by Different Approaches. Toxins (Basel) 2020; 12:toxins12120798. [PMID: 33327454 PMCID: PMC7764988 DOI: 10.3390/toxins12120798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG’s Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug’s venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.
Collapse
|
5
|
Kurtović T, Brgles M, Balija ML, Steinberger S, Sviben D, Marchetti-Deschmann M, Halassy B. Streamlined downstream process for efficient and sustainable (Fab') 2 antivenom preparation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200025. [PMID: 32760431 PMCID: PMC7384442 DOI: 10.1590/1678-9199-jvatitd-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.
Collapse
Affiliation(s)
- Tihana Kurtović
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Marija Brgles
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Maja Lang Balija
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Stephanie Steinberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies
and Analytics, TU Wien, Vienna, Austria
| | - Dora Sviben
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | | | - Beata Halassy
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Kurtović T, Lang Balija M, Brgles M, Sviben D, Tunjić M, Cajner H, Marchetti-Deschmann M, Allmaier G, Halassy B. Refinement strategy for antivenom preparation of high yield and quality. PLoS Negl Trop Dis 2019; 13:e0007431. [PMID: 31206512 PMCID: PMC6597126 DOI: 10.1371/journal.pntd.0007431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/27/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antivenoms from hyperimmune animal plasma are the only specific pharmaceuticals against snakebites. The improvement of downstream processing strategies is of great interest, not only in terms of purity profile, but also from yield-to-cost perspective and rational use of plasma of animal origin. We report on development of an efficient refinement strategy for F(ab')2-based antivenom preparation. Process design was driven by the imperative to keep the active principle constantly in solution as a precautionary measure to preserve stability of its conformation (precipitation of active principle or its adsorption to chromatographic stationary phase has been completely avoided). IgG was extracted from hyperimmune horse plasma by 2% (V/V) caprylic acid, depleted from traces of precipitating agent and digested by pepsin. Balance between incomplete IgG fraction breakdown, F(ab')2 over-digestion and loss of the active principle's protective efficacy was achieved by adjusting pepsin to substrate ratio at the value of 4:300 (w/w), setting pH to 3.2 and incubation period to 1.5 h. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. Developed manufacturing strategy gave 100% pure and aggregate-free F(ab')2 preparation, as shown by size-exclusion HPLC and confirmed by MS/MS. The overall yield of 75% or higher compares favorably to others so far reported. This optimised procedure looks also promising for large-scale production of therapeutic antivenoms, since high yield of the active drug and fulfillment of the regulatory demand considering purity was achieved. The recovery of the active substance was precisely determined in each purification step enabling accurate estimation of the process cost-effectiveness.
Collapse
Affiliation(s)
- Tihana Kurtović
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Maja Lang Balija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Dora Sviben
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Monika Tunjić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Hrvoje Cajner
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, Zagreb, Croatia
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| |
Collapse
|
7
|
Halassy B, Kurtović T, Lang Balija M, Brgles M, Tunjić M, Sviben D. Concept of sample-specific correction of immunoassay results for precise and accurate IgG quantification in horse plasma. J Pharm Biomed Anal 2018; 164:276-282. [PMID: 30408624 DOI: 10.1016/j.jpba.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023]
Abstract
The hyperimmune horse plasma (HHP), prepared through active immunisation of horses with an antigen of interest, is the most common starting material for antitoxin (animal antibody-based therapeutics) production. Precise IgG quantification in plasma is a prerequisite for accurate estimation of the purification process efficiency. Although immunoglobulins from HHP have been purified for over a century, there is still no in vitro method for precise and accurate determination of IgG content in HHP. For this reason, the purification process efficiency has been assessed by antibody activity measurements, mostly performed in vivo. Here we describe the development of a precise and accurate in vitro immunoassay for IgG quantification in HHP. We showed and highlighted that any difference in composition of IgG population between the standard and the sample, with respect to both IgG subclass distribution and antigen-specific IgG content, leads to inaccurate IgG quantification. We demonstrated that caprylic acid precipitation as the method for IgG isolation from horse plasma renders the composition of IgG population unchanged. This very efficient, fast, simple and inexpensive method was used to prepare internal, sample-specific reference IgG for each plasma sample, which was tested simultaneously to a respective plasma sample. Deviation of IgG quantity determined by ELISA for each sample-specific reference from its nominal value was used for correction of the results of respective plasma sample, which led to accurate and precise IgG quantification as shown by method validation. The here presented novel concept of sample-specific correction of immunoassay results could be widely applicable and easily introduced in different immunoassays for more accurate and precise plasma IgG quantification.
Collapse
Affiliation(s)
- Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia.
| | - Tihana Kurtović
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Maja Lang Balija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Monika Tunjić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Dora Sviben
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| |
Collapse
|
8
|
Zhang XJ, Li HL, Deng DY, Ji C, Yao XD, Liu JX. Functional and proteomic comparison of different techniques to produce equine anti-tetanus immunoglobulin F(ab')2 fragments. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:29-39. [PMID: 29883887 DOI: 10.1016/j.jchromb.2018.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022]
Abstract
Tetanus is still a major cause of human deaths in several developing countries. In particular, the neonatal form remains a significant public health problem. According to the World Health Organization, administration of tetanus toxoid is recommended for neonatal tetanus patients. Furthermore, tetanus antitoxin or anti-tetanus immunoglobulin (Ig) are used for mild case or intensive care. This paper discusses a novel purification technique for improving equine anti-tetanus Ig production. First, equine plasma dealt with two steps salting out with ammonium sulfate; second, ultrafiltration concentration liquid purified by one successive protein G based affinity chromatography steps; finally, the purified F(ab')2 fragments was characterized using biochemical and proteomic methods and shown to be pure and homogeneous. Compared with the original technique product, specific activity increased by 80% (about 90,000 IU/g) and recovery of F(ab')2 is approximately equal 75%. Furthermore, Proteomic profiling of total technique process is demonstrated by nano-HPLC-MS and bioinformatics analysis. New technique to produce equine anti-tetanus immunoglobulin F(ab')2 fragments from crude plasma in high quality and yield. And it also could be used for industrial amplification.
Collapse
Affiliation(s)
- Xue-Jun Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan province, PR China.
| | - Hai-Ling Li
- College of Environment and Ecology, Chengdu University of Technology, Chengdu, Sichuan province, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan province, PR China
| | - Da-Yi Deng
- Jiangxi Institute of Biological Products, Ji'an, Jiangxi province, PR China
| | - Chong Ji
- Jiangxi Institute of Biological Products, Ji'an, Jiangxi province, PR China
| | - Xiao-Dong Yao
- Jiangxi Institute of Biological Products, Ji'an, Jiangxi province, PR China
| | - Jia-Xin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan province, PR China
| |
Collapse
|
9
|
Ilina EN, Larina MV, Aliev TK, Dolgikh DA, Kirpichnikov MP. Recombinant Monoclonal Antibodies for Rabies Post-exposure Prophylaxis. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534663 DOI: 10.1134/s0006297918010017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies virus is a prototypical neurotropic virus that causes one of the most dangerous zoonotic diseases in humans. Humanized or fully human monoclonal antibodies (mAb) that neutralize rabies virus would be the basis for powerful post-exposure prophylaxis of rabies in humans, having several significant benefits in comparison with human or equine rabies polyclonal immunoglobulins. The most advanced antibodies should broadly neutralize natural rabies virus isolates, bind with conserved antigenic determinants of the rabies virus glycoprotein, and show high neutralizing potency in assays in vivo. The antibodies should recognize nonoverlapping epitopes if they are used in combination. This review focuses on basic requirements for anti-rabies therapeutic antibodies. The urgency in the search for novel rabies post-exposure prophylaxis and methods of development of anti-rabies human mAb cocktail are discussed. The rabies virus structure and pathways of its penetration into the nervous system are also briefly described.
Collapse
Affiliation(s)
- E N Ilina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
10
|
Shaikh IK, Dixit PP, Pawade BS, Waykar IG. Development of dot-ELISA for the detection of venoms of major Indian venomous snakes. Toxicon 2017; 139:66-73. [PMID: 29024771 DOI: 10.1016/j.toxicon.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
India remained an epicenter for the snakebite-related mortality and morbidities due to widespread agricultural activities across the country and a considerable number of snakebites offended by Indian cobra (Naja naja), common krait (Bungarus caeruleus), Russell's viper (Daboia russelii), and saw-scaled viper (Echis carinatus). Presently, there is no selective test available for the detection of snake envenomation in India before the administration of snake antivenin. Therefore, the present study aimed to develop rapid, sensitive assay for the management of snakebite, which can detect venom, responsible snake species and serve as a tool for the reasonable administration of snake antivenin, which have scarcity across the world. The selective envenomation detection assay needs venom specific antibodies (VSAbs) for that monovalent antisera was prepared by hyperimmunization of rabbits with specific venom. However, obtained antibodies exhibit maximum activity towards homologous venom as well as quantifiable degree of cross-reactivity with heterologous venoms. Use of these antibodies for development of selective envenomation detection assay may create ambiguity in results, therefore needs to isolate VSAbs from monovalent antisera. The cross-reacting antibodies were specifically removed by immunoaffinity chromatography to obtain VSAbs. For the development of venom detection ELISA test (VDET), two different species of antibodies were used that offers enhanced sensitivity along with selective identification of the venoms of the responsible snakes. In conclusion, the developed VDET is rapid, specific, yet sensitive to detect venoms of offending snake species, and its venom concentration down to 1.0 ng/ml. However, the device observed with lowest venom concentration detection ability in the range <1.0 ng/ml from experimentally envenomated samples. The implementation of VDET will help in avoiding unnecessary usage and adverse reactions of snake antivenin. The test has all the merits to become a choice of method in envenomation diagnosis from medically important snakes of India.
Collapse
Affiliation(s)
- Innus K Shaikh
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, Sub Campus, Osmanabad, India; Department of Antitoxin and Sera, Haffkine Biopharmaceutical Corporation Limited, Pune, India.
| | - Prashant P Dixit
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, Sub Campus, Osmanabad, India
| | - Balasaheb S Pawade
- Department of Antitoxin and Sera, Haffkine Biopharmaceutical Corporation Limited, Pune, India
| | - Indrasen G Waykar
- Department of Antitoxin and Sera, Haffkine Biopharmaceutical Corporation Limited, Pune, India
| |
Collapse
|
11
|
Turki I, Hammami A, Kharmachi H, Mousli M. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency. Mol Immunol 2013; 57:66-73. [PMID: 24091293 DOI: 10.1016/j.molimm.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy.
Collapse
Affiliation(s)
- Imène Turki
- Laboratoire de Parasitologie Médicale, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, LR11-IPT06, 13 Place Pasteur - BP74, 1002 Tunis-Belvédère, Tunisia
| | | | | | | |
Collapse
|
12
|
Li T, Byun JY, Kim BB, Shin YB, Kim MG. Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence ofantibodies. Biosens Bioelectron 2013; 42:403-8. [DOI: 10.1016/j.bios.2012.10.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
13
|
Segura Á, Herrera M, Villalta M, Vargas M, Gutiérrez JM, León G. Assessment of snake antivenom purity by comparing physicochemical and immunochemical methods. Biologicals 2013. [DOI: 10.1016/j.biologicals.2012.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
A study on the use of caprylic acid and ammonium sulfate in combination for the fractionation of equine antivenom F(ab′)2. Biologicals 2012; 40:338-44. [DOI: 10.1016/j.biologicals.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 11/19/2022] Open
|
15
|
Both L, Banyard AC, van Dolleweerd C, Horton DL, Ma JKC, Fooks AR. Passive immunity in the prevention of rabies. THE LANCET. INFECTIOUS DISEASES 2012; 12:397-407. [PMID: 22541629 DOI: 10.1016/s1473-3099(11)70340-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prevention of clinical disease in those exposed to viral infection is an important goal of human medicine. Using rabies virus infection as an example, we discuss the advances in passive immunoprophylaxis, most notably the shift from the recommended polyclonal human or equine immunoglobulins to monoclonal antibody therapies. The first rabies-specific monoclonal antibodies are undergoing clinical trials, so passive immunisation might finally become an accessible, affordable, and routinely used part of global health practices for rabies. Coupled with an adequate supply of modern tissue-culture vaccines, replacing the less efficient and unsafe nerve-tissue-derived rabies vaccines, the burden of this disease could be substantially reduced.
Collapse
Affiliation(s)
- Leonard Both
- Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's University of London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Ertürk G, Uzun L, Tümer MA, Say R, Denizli A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron 2011; 28:97-104. [DOI: 10.1016/j.bios.2011.07.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 07/04/2011] [Indexed: 11/25/2022]
|
17
|
Kittipongwarakarn S, Hawe A, Tantipolphan R, Limsuwun K, Khomvilai S, Puttipipatkhachorn S, Jiskoot W. New method to produce equine antirabies immunoglobulin F(ab')₂ fragments from crude plasma in high quality and yield. Eur J Pharm Biopharm 2011; 78:189-95. [PMID: 21414404 DOI: 10.1016/j.ejpb.2011.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/18/2022]
Abstract
Rabies is still a major cause of human deaths in several developing countries. According to the World Health Organization, administration of antirabies serum or antirabies immunoglobulin is recommended for patients who have experienced a category-III exposure to rabies. Improvement of antirabies immunoglobulin production is required to enhance safety and efficacy of the products. In this paper, a new method to produce equine antirabies immunoglobulin F(ab')(2) fragments from crude plasma is proposed. First, protein G affinity chromatography was used to purify IgG from equine plasma. Moreover, purification of IgG was shown to facilitate its digestion by pepsin. Compared to the direct digestion of crude plasma, a lower amount of pepsin and a shorter digestion time were required to completely digest the purified IgG to F(ab')(2). Complete digestion of purified IgG to F(ab')(2) was achieved at a pepsin/IgG (w/w) ratio of 5:45 with preservation of structure and potency. Finally, purification of F(ab')(2) was accomplished by a combination of protein A affinity chromatography and ultrafiltration with a 50-kDa nominal molecular weight cut-off membrane. The new process resulted in 68.9±0.6 (%) total recovery of F(ab')(2) and a F(ab')(2) product of high potency.
Collapse
|
18
|
Bourhy H, Dacheux L, Ribadeau-Dumas F. [The use of passive rabies immunotherapy: from the past to the future]. Biol Aujourdhui 2010; 204:71-80. [PMID: 20950578 DOI: 10.1051/jbio/2009049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Rabies is a fatal disease transmitted by infected animals by bite, scratch, licking on broken skin or contamination of mucosis by saliva. The regimen of post-exposure prophylaxis for people not previously vaccinated, that is currently recommended by WHO, consists of a combination of wound cleaning, active immunization and passive immunization when the exposure is of category 3. Most of the products available on the market, in particular human rabies immunoglobulins, highly purified equine rabies immunoglobulins and the derived F(ab')(2) fragments, are now characterized by high potency and safety. Although the interest of passive anti-rabies immunization was first demonstrated in the first half of the 20th century, there is still an inadequate supply of these products to the target populations mostly in developing countries. Therefore, it is urgent to set-up training and information actions for healthcare personnel on the need to use passive immunotherapy and the lack of adverse effects of the related products. For the future, we hope that a scale up of production and a lower price will improve the accessibility to these products. The development of new products based on monoclonal antibodies and molecular biology, and which may be cheaper, is promising.
Collapse
Affiliation(s)
- Hervé Bourhy
- Centre National de Référence de la Rage, Centre Collaborateur de l'Organisation Mondiale de la Santé de Référence et de Recherche pour la Rage, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Institut Pasteur, 25-28 rue du Docteur Roux, Paris Cedex 15, France.
| | | | | |
Collapse
|
19
|
Validation of a simple, rapid and cost effective method for the estimation of caprylic acid and sodium caprylate from biological products using NEFA-C kit. Biologicals 2010; 38:321-4. [DOI: 10.1016/j.biologicals.2009.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/09/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
|
20
|
Abstract
Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|