1
|
Samadifar M, Yamini Y, Khataei MM, Shirani M. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants. J Chromatogr A 2023; 1706:464227. [PMID: 37506462 DOI: 10.1016/j.chroma.2023.464227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.
Collapse
Affiliation(s)
- Mahsa Samadifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahboue Shirani
- Department of Chemistry, Faculty of Sciences, University of Jiroft, Jiroft, Iran
| |
Collapse
|
2
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
4
|
Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. J Pharm Biomed Anal 2020; 180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
|
5
|
Seidi S, Tajik M, Baharfar M, Rezazadeh M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
7
|
Ali I, Suhail M, Alharbi OML, Hussain I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1579739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Omar M. L. Alharbi
- Department of Biology, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| |
Collapse
|
8
|
Gorynski K. A critical review of solid-phase microextraction applied in drugs of abuse determinations and potential applications for targeted doping testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Owczarek K, Szczepańska N, Płotka-Wasylka J, Namieśnik J. New Achievements in the Field of Extraction of Trace Analytes from Samples Characterized by Complex Composition of the Matrix. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2019. [DOI: 10.1007/978-981-13-9105-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Lashgari M, Yamini Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019; 191:283-306. [DOI: 10.1016/j.talanta.2018.08.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
11
|
He Y, Concheiro-Guisan M. Microextraction sample preparation techniques in forensic analytical toxicology. Biomed Chromatogr 2018; 33:e4444. [DOI: 10.1002/bmc.4444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yi He
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| |
Collapse
|
12
|
Wang CH, Su H, Chou JH, Huang MZ, Lin HJ, Shiea J. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays. Anal Chim Acta 2018; 1021:60-68. [DOI: 10.1016/j.aca.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
|
13
|
Kuo YC, Heish WQ, Huang HY, Liu WL. Application of mesoporous carbon-polymer monolith for the extraction of phenolic acid in food samples. J Chromatogr A 2018; 1539:12-18. [DOI: 10.1016/j.chroma.2018.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/30/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
14
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Szultka M, Pomastowski P, Railean-Plugaru V, Buszewski B. Microextraction sample preparation techniques in biomedical analysis. J Sep Sci 2014; 37:3094-105. [DOI: 10.1002/jssc.201400621] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Malgorzata Szultka
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry; Nicolaus Copernicus University; Torun Poland
| | - Pawel Pomastowski
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry; Nicolaus Copernicus University; Torun Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry; Nicolaus Copernicus University; Torun Poland
- Faculty of Chemistry and Chemical Technology; Moldova State University; Chisinau Republic of Moldova
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry; Nicolaus Copernicus University; Torun Poland
| |
Collapse
|
17
|
Pereira J, Silva CL, Perestrelo R, Gonçalves J, Alves V, Câmara JS. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Anal Bioanal Chem 2014; 406:2101-22. [DOI: 10.1007/s00216-013-7527-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
18
|
Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 2013; 1321:1-13. [DOI: 10.1016/j.chroma.2013.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
19
|
Cuervo D, Díaz-Rodríguez P, Muñoz-Guerra J. An automated sample preparation for detection of 72 doping-related substances. Drug Test Anal 2013; 6:516-27. [DOI: 10.1002/dta.1538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Darío Cuervo
- Laboratorio de Control del Dopaje, Agencia Española de Protección de la Salud en el Deporte; Ministerio de Educación, Cultura y Deporte, Gobierno de España; c/ Pintor El Greco s/n 28040 Madrid Spain
| | - Pablo Díaz-Rodríguez
- Laboratorio de Control del Dopaje, Agencia Española de Protección de la Salud en el Deporte; Ministerio de Educación, Cultura y Deporte, Gobierno de España; c/ Pintor El Greco s/n 28040 Madrid Spain
| | - Jesús Muñoz-Guerra
- Laboratorio de Control del Dopaje, Agencia Española de Protección de la Salud en el Deporte; Ministerio de Educación, Cultura y Deporte, Gobierno de España; c/ Pintor El Greco s/n 28040 Madrid Spain
| |
Collapse
|
20
|
Abstract
The extraction and/or purification of drugs and medicines from biological matrices are important objectives in investigating their toxicological and pharmaceutical properties. Many widely used methods such as liquid–liquid extraction or SPE, used for extracting, purifying and enriching drugs and medicines found in biological materials, involve laborious, intensive and expensive preparatory procedures, and they require organic solvents that are toxic to both humans and the environment. Recent trends are focused on miniaturization, high-throughput and automation techniques. All the advantages and disadvantages of these techniques and devices in biological analysis are presented, and their applications in the extraction and/or purification of drugs and medicines from biological matrices are discussed in this review.
Collapse
|
21
|
|
22
|
Poorahong S, Thammakhet C, Thavarungkul P, Kanatharana P. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:242-250. [PMID: 23245299 DOI: 10.1080/10934529.2013.726592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.
Collapse
Affiliation(s)
- Sujittra Poorahong
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | | | |
Collapse
|
23
|
Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 2012; 113:1667-85. [PMID: 23273266 DOI: 10.1021/cr300148j] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agata Spietelun
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | | | | | | |
Collapse
|
24
|
Cobzac SC, Gocan S. CHROMATOGRAPHY: RECENT PROGRESS. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.647193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
High-throughput polymer monolith in-tip SPME fiber preparation and application in drug analysis. Bioanalysis 2011; 3:2613-25. [DOI: 10.4155/bio.11.267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A simple, low-cost and reproducible automated procedure has been developed to prepare in-tip solid-phase microextraction (SPME) fibers coated with polymer monoliths using a photopolymerization technique. Up to 96 fibers were prepared at one time using a polymerization mixture consisting of ethylene glycol dimethacrylate, dimethoxy-α-phenylacetophenone and 1-decanol. Results: The optimization procedures that affected polymer morphology, such as compositions of the crosslinkers and porogens, polymerization time and fiber thickness as well as extraction efficiency of the immobilized Oasis hydrophilic-lipophilic-balanced extraction sorbent were investigated. Also, the reproducibility of automated in-tip SPME fiber preparation, as well as sample process parameters, such as sample extraction and desorption volumes, are discussed. Conclusion: The performance of the polymer monoliths in-tip SPME assessed with a model drug compound from clinical studies and a head-to-head comparison using in-tip SPME and conventional SPE clearly demonstrated that the SPME is a feasible approach for routine drug analysis in the pharmaceutical industry.
Collapse
|
26
|
Cobzac SC, Gocan S. SAMPLE PREPARATION FOR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY: RECENT PROGRESS. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.588064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Simona Codruta Cobzac
- a Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering , Babes-Bolyai University , Cluj Napoca, Romania
| | - Simion Gocan
- a Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering , Babes-Bolyai University , Cluj Napoca, Romania
| |
Collapse
|
27
|
Mirnaghi FS, Chen Y, Sidisky LM, Pawliszyn J. Optimization of the Coating Procedure for a High-Throughput 96-Blade Solid Phase Microextraction System Coupled with LC–MS/MS for Analysis of Complex Samples. Anal Chem 2011; 83:6018-25. [DOI: 10.1021/ac2010185] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatemeh S. Mirnaghi
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yong Chen
- Supelco Inc., 595 North Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Leonard M. Sidisky
- Supelco Inc., 595 North Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
28
|
Abstract
Background: Automated methodologies using silica-based, monolithic, micropipette tip-based SPE have been developed for the analysis of small molecules in support of both preclinical and first-in-human development studies using LC–MS/MS. The use of micropipette tip-based SPE with the Tomtec Quadra 96® and the evaluation of prototype micropipette tips for use with the Hamilton Microlab® Star robot is outlined. Results: Mixed-mode cation exchange and C18 SPE methods have been developed using human and rat plasma for the extraction of lipophilic and polar analytes. These methods are advantageous as they use low plasma sample, washing and elution volumes and result in a method extraction cycle time of approximately 6.2 min for 96 samples. Conclusion: This significantly reduced extraction time, compared with 96-well plate format SPE, indicates that the sample preparation stage is no longer the rate-limiting stage in performing a selective extraction procedure. Robust and sensitive methods have been developed that have proven to be more cost effective than traditional 96-well plate format SPE methods.
Collapse
|
29
|
Xie W, Chavez-Eng C, Fang W, Constanzer M, Matuszewski B, Mullett W, Pawliszyn J. Quantitative liquid chromatographic and tandem mass spectrometric determination of vitamin D3 in human serum with derivatization: A comparison of in-tube LLE, 96-well plate LLE and in-tip SPME. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1457-66. [DOI: 10.1016/j.jchromb.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/14/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
30
|
KATAOKA H. Current Developments and Future Trends in Solid-phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses. ANAL SCI 2011; 27:893-905. [DOI: 10.2116/analsci.27.893] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 2009; 396:339-64. [DOI: 10.1007/s00216-009-3076-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
32
|
Analytical methods used in conjunction with solid-phase microextraction: a review of recent bioanalytical applications. Bioanalysis 2009; 1:1081-102. [DOI: 10.4155/bio.09.88] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Integration of sampling and sample preparation with various analytical instruments is a highly desirable feature for any analytical method. This is most conveniently achieved by using microextraction techniques or various microdevices. Among these techniques, solid-phase microextraction (SPME) is particularly remarkable due to its simplicity and effectiveness. This review discusses the most recent applications of SPME in bioanalysis, grouped according to the analytical instrument that SPME is coupled to. It is shown that one of the most important aspects of such analytical methods is the ability of SPME to perform direct and selective extraction of analytes from complex biological samples. By far, the most popular method continues to be SPME coupled to GC. Nevertheless, the last 2 years have witnessed significant advances in other areas, such as successful automation of SPME coupled to liquid chromatography and the development of new coatings suitable for direct extraction from biological samples. Furthermore, a few bioanalytical applications based on direct coupling of SPME to MS, ion mobility spectrometry, CE and analytical chemiluminescence have been reported.
Collapse
|
33
|
|