1
|
Poteser M, Laguzzi F, Schettgen T, Vogel N, Weber T, Zimmermann P, Hahn D, Kolossa-Gehring M, Namorado S, Van Nieuwenhuyse A, Appenzeller B, Halldórsson TI, Eiríksdóttir Á, Haug LS, Thomsen C, Barbone F, Rosolen V, Rambaud L, Riou M, Göen T, Nübler S, Schäfer M, Haji Abbas Zarrabi K, Gilles L, Martin LR, Schoeters G, Sepai O, Govarts E, Moshammer H. Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies. TOXICS 2022; 10:481. [PMID: 36006160 PMCID: PMC9415789 DOI: 10.3390/toxics10080481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.
Collapse
Affiliation(s)
- Michael Poteser
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Box 210, 17177 Stockholm, Sweden
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nina Vogel
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | | | - Domenica Hahn
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | | | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | | | - Brice Appenzeller
- Department of Precision Health, Luxembourg Institute of Health (LIH), L-4354 Luxembourg, Luxembourg
| | - Thórhallur I. Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Ása Eiríksdóttir
- Department of Pharmacology and Toxicology, University of Iceland, 107 Reykjavik, Iceland
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Fabio Barbone
- Department of Medical Area, DAME, University of Udine, 33100 Udine, Italy
| | - Valentina Rosolen
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Loïc Rambaud
- Santé Publique France, French Public Health Agency (ANSP), 94415 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, French Public Health Agency (ANSP), 94415 Saint-Maurice, France
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Karin Haji Abbas Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
- Department of Hygiene, Medical University of Karakalpakstan, Nukus 230100, Uzbekistan
| |
Collapse
|
2
|
Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021). TOXICS 2022; 10:toxics10080443. [PMID: 36006122 PMCID: PMC9415341 DOI: 10.3390/toxics10080443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014–2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000–2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
Collapse
|
3
|
Simultaneous quantification of eight hemoglobin adducts of genotoxic substances by isotope-dilution UHPLC-MS/MS. Anal Bioanal Chem 2022; 414:5805-5815. [PMID: 35655100 PMCID: PMC9293867 DOI: 10.1007/s00216-022-04143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Various genotoxic carcinogens ubiquitously present in the human environment or respective reactive metabolites form adducts in DNA and proteins, which can be used as biomarkers of internal exposure. For example, the mass spectrometric determination of Val adducts at the N-termini of hemoglobin (Hb) peptide chains after cleavage by an Edman degradation has a long tradition in occupational medicine. We developed a novel isotope-dilution UHPLC-MS/MS method for the simultaneous quantification of Val adducts of eight genotoxic substances in Hb after cleavage with fluorescein-5-isothiocyanate (FIRE procedure™). The following adducts were included [sources in square brackets]: N-(2,3-dihydroxypropyl)-Val [glycidol], N-(2-carbamoylethyl)-Val [acrylamide], N-(2-carbamoyl-2-hydroxyethyl)-Val [glycidamide], N-((furan-2-yl)methyl)-Val [furfuryl alcohol], N-(trans-isoestragole-3′-yl)-Val [estragole/anethole], N-(3-ketopentyl)-Val [1-penten-3-one], N-(3-ketooctanyl)-Val [1-octene-3-one], and N-benzyl-Val [benzyl chloride], each of which was quantified with a specific isotope-labeled standard. The limits of quantification were between 0.014 and 3.6 pmol/g Hb (using 35 mg Hb per analysis); other validation parameters were satisfactory according to guidelines of the U.S. Food and Drug Administration. The quantification in erythrocyte samples of human adults (proof of principle) showed that the median levels of Hb adducts of acrylamide, glycidamide, and glycidol were found to be significantly lower in six non-smokers (25.9, 12.2, and 4.7 pmol/g Hb, respectively) compared to those of six smokers (69.0, 44.2, and 8.6 pmol/g Hb, respectively). In summary, the method surpasses former techniques of Hb adduct quantification due to its simplicity, sensitivity, and accuracy. It can be extended continuously with other Hb adducts and will be used in epidemiological studies on internal exposure to carcinogens.
Collapse
|
4
|
Acrylonitrile induction of rodent neoplasia: Potential mechanism of action and relevance to humans. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473211055363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acrylonitrile, an industrial chemical, is a multisite carcinogen in rats and mice, producing tumors in four tissues with barrier function, that is, brain, forestomach, Zymbal’s gland, and Harderian gland. To assess mechanism(s) of action (MoA) for induction of neoplasia and to evaluate whether the findings in rodents are indicative of human hazard, data on the potential key effects produced by acrylonitrile in the four rodent target tissues of carcinogenicity were evaluated. A notable finding was depletion of glutathione in various organs, including two target tissues, the brain, and forestomach, suggesting that this effect could be a critical initiating event. An additional combination of oxidative DNA damage and cytotoxic effects of acrylonitrile and its metabolites, cyanide, and 2-cyanoethylene oxide, could initiate pro-inflammatory signaling and sustained cell and tissue injury, leading to compensatory cell proliferation and neoplastic development. The in vivo DNA-binding and genotoxicity of acrylonitrile has been studied in several target tissues with no compelling positive results. Thus, while some mutagenic effects were reported in acrylonitrile-exposed rodents, data to determine whether this mutagenicity stems from direct DNA reactivity of acrylonitrile are insufficient. Accordingly, the induction of tumors in rodents is consistent primarily with a non-genotoxic MoA, although a contribution from weak mutagenicity cannot be ruled out. Mechanistic data to support conclusions regarding human hazard from acrylonitrile exposure is weak. Comparison of metabolism of acrylonitrile between rodents and humans provide little support for human hazard. Three of the tissues affected in bioassays (forestomach, Zymbal’s gland, and Harderian gland) are present only in rodents, while the brain is anatomically different between rodents and humans, diminishing relevance of tumor induction in these tissues to human hazard. Extensive epidemiological data has not revealed causation of human cancer by acrylonitrile.
Collapse
|
5
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
High-throughput, simultaneous quantitation of hemoglobin adducts of acrylamide, glycidamide, and ethylene oxide using UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:197-205. [PMID: 29684911 DOI: 10.1016/j.jchromb.2018.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/24/2022]
Abstract
Ethylene oxide (EO), acrylamide (AA) and glycidamide (GA) exposures are associated with mammary tumors in animals. Currently available information about human exposure to these chemicals is limited creating the need for analytical methods to assess their exposure. We developed a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to simultaneously quantitate hemoglobin (Hb) N-terminal valine adducts of AA (HbAA), GA (HbGA), and EO (HbEO) using modified Edman reaction. The limits of detection of this method were 3.9, 4.9 and 12.9 in pmol/g Hb for HbAA, HbGA and HbEO, respectively. The among-day and within-day precision for all analytes determined with three levels of quality control pools ranged from 2.2-13.0% in percent coefficient of variation (%CV). The accuracy determined by standard addition was between 94 and 111% among all analytes. The median HbAA, HbGA and HbEO values in 34 self-reported non-smokers were 64.9, 45.3 and 113.6 pmol/g Hb and in 70 self-reported smokers were 127.8, 69.6 and 237.1 pmol/g Hb, respectively. HbAA, HbGA, and HbEO were detectable in all samples suggesting that the described method is suitable for measuring hemoglobin adducts of AA, GA and EO in the general population. This high throughput method can process 148 samples in 8 h. The HbEO/HbGA ratio appears independent of the HbAA levels in non-smokers and decreases with increasing HbAA concentration in smokers. This new method is suitable for measuring human exposure to AA, GA and EO and can provide further insight into the metabolism of these chemicals in humans.
Collapse
|
7
|
Zhang Y, Wang Q, Zhang G, Jia W, Ren Y, Wu Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 178:825-833. [DOI: 10.1016/j.talanta.2017.09.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
|
8
|
Kirman C, Hays S. Derivation of endogenous equivalent values to support risk assessment and risk management decisions for an endogenous carcinogen: Ethylene oxide. Regul Toxicol Pharmacol 2017; 91:165-172. [DOI: 10.1016/j.yrtph.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/08/2017] [Accepted: 10/26/2017] [Indexed: 01/26/2023]
|
9
|
Alternative sampling strategies for the assessment of biomarkers of exposure. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Colenbie S, Buylaert W, Stove C, Deschepper E, Vandewoude K, De Smedt T, Bader M, Göen T, Van Nieuwenhuyse A, De Paepe P. Biomarkers in patients admitted to the emergency department after exposure to acrylonitrile in a major railway incident involving bulk chemical material. Int J Hyg Environ Health 2017; 220:261-270. [PMID: 28110842 DOI: 10.1016/j.ijheh.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND A railway incident with victims of exposure to the cyanogenic substance acrylonitrile (ACN). AIMS We retrospectively (i)built an inventory of the clinical characteristics of individuals admitted to surrounding emergency departments (ED's) and (ii)studied the correlation between N-2-cyanoethylvaline (CEV), a biomarker used in a population study for evaluating exposure to ACN, with lactate and thiocyanate (SCN), biomarkers determined during emergency care. RESULTS 438 patients from 11 ED's were included and presented with known symptoms of ACN poisoning but also with concern about the risks. A comparison of CEV with lactate or SCN was possible in 108 and 73 patients respectively. CEV was very high in a critically ill patient with a high lactate. There was no correlation with CEV in the patients with normal or slightly elevated lactate concentrations. A correlation of CEV with SCN was only observed in smokers. LIMITATIONS First there is a lack of data in some clinical files concerning the time and duration of exposure and the smoking-status. A second limitation is that blood samples for biomarkers were not taken systematically in all patients, which may have induced bias. A third limitation is that blood sampling was possibly done outside the correct time window related to the delayed toxicity of ACN. Finally the number of severely-intoxicated patients was low and ACN exposure may not have taken place e.g. in individuals consulting with psychological symptoms. These aspects may have contributed to the below detection limits' analyses of biomarkers. CONCLUSIONS CEV was markedly elevated in a severely-intoxicated patient with high lactate, a sensitive marker for CN intoxication. We found no correlation of CEV with normal or slightly elevated lactate concentrations but clinicians should consider the possibility of subsequent rises due to the delay in ACN toxicity. CEV correlated with SCN in smokers, which may be explained by ACN in tobacco smoke and deserves further exploration. Further studies are necessary to evaluate the correlation between biomarkers in acute chemical exposures to ACN and these should be carried out prospectively using a preplanned template.
Collapse
Affiliation(s)
- Sebastiaan Colenbie
- Department of Emergency Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Walter Buylaert
- Department of Emergency Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Christophe Stove
- Faculty of Pharmaceutical Sciences, Laboratory of Toxicology, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Ellen Deschepper
- Biostatistics Unit, Department of Public Health, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Koenraad Vandewoude
- Ghent University Hospital, general management, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Tom De Smedt
- Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, B-1050 Elsene, Belgium.
| | - Michael Bader
- BASF SE, Occupational Medicine & Health Protection, GUA/CB-H308, 67056 Ludwigshafen am Rhein, Germany.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine of the Friedrich-Alexander-University of Erlangen-Nuremberg, Schillerstrasse 25, D-91054 Erlangen, Germany.
| | - An Van Nieuwenhuyse
- Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, B-1050 Elsene, Belgium.
| | - Peter De Paepe
- Department of Emergency Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| |
Collapse
|
11
|
|
12
|
St Helen G, Jacob P, Peng M, Dempsey DA, Hammond SK, Benowitz NL. Intake of toxic and carcinogenic volatile organic compounds from secondhand smoke in motor vehicles. Cancer Epidemiol Biomarkers Prev 2014; 23:2774-82. [PMID: 25398951 PMCID: PMC4257856 DOI: 10.1158/1055-9965.epi-14-0548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Volatile organic compounds (VOC) from tobacco smoke are associated with cancer, cardiovascular, and respiratory diseases. The objective of this study was to characterize the exposure of nonsmokers to VOCs from secondhand smoke (SHS) in vehicles using mercapturic acid metabolites. METHODS Fourteen nonsmokers were individually exposed in the backseat to one hour of SHS from a smoker seated in the driver's seat who smoked three cigarettes at 20-minute intervals in a stationary car with windows opened by 10 cm. Baseline and 0- to 8-hour postexposure mercapturic acid metabolites of nine VOCs were measured in urine. Air-to-urine VOC ratios were estimated on the basis of respirable particulate matter (PM2.5) or air nicotine concentration, and lifetime excess risk (LER) of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene was estimated for adults. RESULTS The greatest increase in 0- to 8-hour postexposure concentrations of mercapturic acids from baseline was MHBMA-3 (parent, 1,3-butadiene; 2.1-fold), then CNEMA (acrylonitrile; 1.7-fold), PMA (benzene; 1.6-fold), MMA (methylating agents; 1.6-fold), and HEMA (ethylene oxide; 1.3-fold). The LER of cancer death from exposure to acrylonitrile, benzene, and 1,3-butadiene in SHS for 5 hours a week ranged from 15.5 × 10(-6) to 28.1 × 10(-6) for adults, using air nicotine and PM2.5 to predict air VOC exposure, respectively. CONCLUSION Nonsmokers have significant intake of multiple VOCs from breathing SHS in cars, corresponding to health risks that exceed the acceptable level. IMPACT Smoking in cars may be associated with increased risks of cancer, respiratory, and cardiovascular diseases among nonsmokers.
Collapse
Affiliation(s)
- Gideon St Helen
- Center for Tobacco Control Research and Education, University of California, San Francisco, California. Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, University of California, San Francisco, California
| | - Peyton Jacob
- Center for Tobacco Control Research and Education, University of California, San Francisco, California. Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, University of California, San Francisco, California
| | - Margaret Peng
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, University of California, San Francisco, California
| | - Delia A Dempsey
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, University of California, San Francisco, California
| | - S Katharine Hammond
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California
| | - Neal L Benowitz
- Center for Tobacco Control Research and Education, University of California, San Francisco, California. Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, University of California, San Francisco, California. Departments of Medicine, and Bioengineering and Therapeutic Sciences, University of California, San Francisco, California.
| |
Collapse
|
13
|
De Smedt T, De Cremer K, Vleminckx C, Fierens S, Mertens B, Van Overmeire I, Bader M, De Paepe P, Göen T, Nemery B, Schettgen T, Stove C, Van Oyen H, Van Loco J, Van Nieuwenhuyse A. Acrylonitrile exposure in the general population following a major train accident in Belgium: A human biomonitoring study. Toxicol Lett 2014; 231:344-51. [DOI: 10.1016/j.toxlet.2014.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
14
|
Rudel RA, Ackerman JM, Attfield KR, Brody JG. New exposure biomarkers as tools for breast cancer epidemiology, biomonitoring, and prevention: a systematic approach based on animal evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:881-95. [PMID: 24818537 PMCID: PMC4154213 DOI: 10.1289/ehp.1307455] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/29/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to chemicals that cause rodent mammary gland tumors is common, but few studies have evaluated potential breast cancer risks of these chemicals in humans. OBJECTIVE The goal of this review was to identify and bring together the needed tools to facilitate the measurement of biomarkers of exposure to potential breast carcinogens in breast cancer studies and biomonitoring. METHODS We conducted a structured literature search to identify measurement methods for exposure biomarkers for 102 chemicals that cause rodent mammary tumors. To evaluate concordance, we compared human and animal evidence for agents identified as plausibly linked to breast cancer in major reviews. To facilitate future application of exposure biomarkers, we compiled information about relevant cohort studies. RESULTS Exposure biomarkers have been developed for nearly three-quarters of these rodent mammary carcinogens. Analytical methods have been published for 73 of the chemicals. Some of the remaining chemicals could be measured using modified versions of existing methods for related chemicals. In humans, biomarkers of exposure have been measured for 62 chemicals, and for 45 in a nonoccupationally exposed population. The Centers for Disease Control and Prevention has measured 23 in the U.S. population. Seventy-five of the rodent mammary carcinogens fall into 17 groups, based on exposure potential, carcinogenicity, and structural similarity. Carcinogenicity in humans and rodents is generally consistent, although comparisons are limited because few agents have been studied in humans. We identified 44 cohort studies, with a total of > 3.5 million women enrolled, that have recorded breast cancer incidence and stored biological samples. CONCLUSIONS Exposure measurement methods and cohort study resources are available to expand biomonitoring and epidemiology related to breast cancer etiology and prevention.
Collapse
|
15
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
16
|
Huang YF, Chiang SY, Liou SH, Chen ML, Chen MF, Uang SN, Wu KY. The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol Lett 2012; 215:92-9. [PMID: 23069881 DOI: 10.1016/j.toxlet.2012.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022]
Abstract
This study assesses the association of acrylamide (AA) and glycidamide (GA) hemoglobin adducts (AAVal and GAVal) and their ratios with genetic polymorphisms of the metabolic enzymes cytochrome P450 2E1 (CYP2E1), exon 3 and 4 of microsomal epoxide hydrolase (mEH3 and mEH4), glutathione transferase theta (GSTT1), and mu (GSTM1) or/and the combinations of these polymorphisms, involved in the activation and detoxification of AA in humans. Fifty-one AA-exposed workers and 34 controls were recruited and provided a post-shift blood sample. AAVal and GAVal were determined simultaneously using isotope-dilution liquid chromatography-electronspray ionization/tandem mass spectrometry (LC-ESI-MS/MS). Genetic polymorphisms of CYP2E1, mEH3 and 4, GSTT1, and GSTM1 were also analyzed. Our results reveal that the GAVal/AAVal ratio, potentially reflecting the proportion of AA metabolized to GA, ranged from 0.13 to 0.45 with a mean at 0.27. Multivariate regression analysis demonstrates that the joint effect of CYP2E1, GSTM1, and mEH4 genotypes was significantly associated with AAVal and GAVal levels after adjustment for AA exposures. These results suggest that mEH4 and the combined genotypes of CYP2E1, GSTM1 and mEH4 may be associated with the formation of AAVal and GAVal. Further studies may be needed to shed light on the roles that phase I and II enzymes play in AA metabolism.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, College of Public Health, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
von Stedingk H, Vikström AC, Rydberg P, Pedersen M, Nielsen JKS, Segerbäck D, Knudsen LE, Törnqvist M. Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark. Chem Res Toxicol 2011; 24:1957-65. [PMID: 21882862 DOI: 10.1021/tx200284u] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The knowledge about fetal exposure to acrylamide/glycidamide from the maternal exposure through food is limited. Acrylamide, glycidamide, and ethylene oxide are electrophiles and form adducts with hemoglobin (Hb), which could be used for in vivo dose measurement. In this study, a method for analysis of Hb adducts by liquid chromatography-mass spectrometry, the adduct FIRE procedure, was applied to measurements of adducts from these compounds in maternal blood samples (n = 87) and umbilical cord blood samples (n = 219). The adduct levels from the three compounds, acrylamide, glycidamide, and ethylene oxide, were increased in tobacco smokers. Highly significant correlations were found between cord and maternal blood with regard to measured adduct levels of the three compounds. The mean cord/maternal hemoglobin adduct level ratios were 0.48 (range 0.27-0.86) for acrylamide, 0.38 (range 0.20-0.73) for glycidamide, and 0.43 (range 0.17-1.34) for ethylene oxide. In vitro studies with acrylamide and glycidamide showed a lower (0.38-0.48) rate of adduct formation with Hb in cord blood than with Hb in maternal blood, which is compatible with the structural differences in fetal and adult Hb. Together, these results indicate a similar life span of fetal and maternal erythrocytes. The results showed that the in vivo dose in fetal and maternal blood is about the same and that the placenta gives negligible protection of the fetus to exposure from the investigated compounds. A trend of higher levels of the measured adducts in cord blood with gestational age was observed, which may reflect the gestational age-related change of the cord blood Hb composition toward a higher content of adult Hb. The results suggest that the Hb adduct levels measured in cord blood reflect the exposure to the fetus during the third trimester. The evaluation of the new analytical method showed that it is suitable for monitoring of background exposures of the investigated electrophilic compounds in large population studies.
Collapse
Affiliation(s)
- Hans von Stedingk
- Department of Materials and Environmental Chemistry, Environmental Chemistry Unit, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Analytical methods in DNA and protein adduct analysis. Anal Bioanal Chem 2010; 398:2563-72. [DOI: 10.1007/s00216-010-4217-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/10/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
|