1
|
Moazami Goodarzi M, Jalalirad R, Doroud D, Hozouri H, Aghasadeghi MR. DOE-based process optimization for development of efficient methods for purification of recombinant hepatitis B surface antigen from Pichia pastoris feedstock using Capto adhere resin. Heliyon 2024; 10:e35124. [PMID: 39161833 PMCID: PMC11332888 DOI: 10.1016/j.heliyon.2024.e35124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background The multimodal chromatography resins, such as Capto adhere, are considered good candidates to be utilized in downstream processing due to their high capacity and selectivity; however, their multimodal interactions lead to an intricacy in the adsorption-desorption patterns and systematic characterization of conditions for process steps is necessary. Methods Capto adhere, a strong ion exchanger with multimodal functionality, was used in this study for the final aim of recombinant hepatitis B surface antigen (rHBsAg) purification from Pichia pastoris (P. pastoris) industrial feedstock. Optimization of various parameters was done using the design of experiments (DOE) approach to determine the best binding and non-binding conditions. Results Maximum rHBsAg binding on Capto adhere occurred in 20 mM sodium acetate, pH 4.5, and a binding capacity of about 0.75 mg/ml was achieved, which was much higher than rHBsAg binding capacity of other resins reported so far. In elution optimization investigations, it was revealed that 1 M arginine (buffered in 50 mM sodium phosphate, pH 6.5) was the most efficient eluting agent. The binding and elution optimal conditions were utilized for further purification of rHBsAg from P. pastoris industrial feedstock in bind-elute mode, and the recovery and purity of the obtained rHBsAg were about 60% and 100%, respectively. Following optimization in the flow-through purification mode, the target protein recovery was significantly increased (up to 97%) and the target protein purity of more than 95% was achievable. SEC-HPLC analysis showed that the obtained retention times for the purified rHBsAg were similar to those reported previously. Conclusions These results suggest that Capto adhere under such optimized conditions can be considered as a good candidate for efficient purification of rHBsAg from P. pastoris industrial feedstock in downstream processing.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Delaram Doroud
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Hamidreza Hozouri
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | | |
Collapse
|
2
|
Anderson SM, Seto E, Chau D, Lee B, Vail A, Ding S, Voloshin A, Nagel M. Fiber chromatographic enabled process intensification increases monoclonal antibody product yield. Biotechnol Bioeng 2024; 121:757-770. [PMID: 37902763 DOI: 10.1002/bit.28584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
The most straightforward method to increase monoclonal antibody (mAb) product yield is to complete the purification process in less steps. Here, three different fiber chromatographic devices were implemented using a holistic approach to intensify the mAb purification process and increase yield. Fiber protein A (proA) chromatography was first investigated, but traditional depth filtration was not sufficient in reducing the contaminant load as the fiber proA device prematurely fouled. Further experimentation revealed that chromatin aggregates were the most likely reason for the fiber fouling. To reduce levels of chromatin aggregates, a chromatographic clarification device (CCD) was incorporated into the process, resulting in single-stage clarification of harvested cell culture fluid and reduction of DNA levels. The CCD clarified pool was then successfully processed through the fiber proA device, fully realizing the productivity gains that the fiber technology offers. After the proA and viral inactivation neutralization (VIN) hold step, the purification process was further intensified using a novel single-use fiber-based polishing anion exchange (AEX) material that is capable of binding both soluble and insoluble contaminants. The three-stage fiber chromatographic purification process was compared to a legacy five-step process of dual-stage depth filtration, bead-based proA chromatography, post-VIN depth filtration, and bead-based AEX chromatography. The overall yield from the five-step process was 60%, while the fiber chromatographic-enabled intensified process had an overall yield of 70%. The impurity clearance of DNA and host cell protein (HCP) for both processes were within the regulatory specification (<100 ppm HCP, <1 ppb DNA). For the harvest of a 2000 L cell culture, the intensified process is expected to increase productivity by 2.5-fold at clarification, 50-fold at the proA step, and 1.6-fold in polishing. Relative to the legacy process, the intensified process would reduce buffer use by 1088 L and decrease overall process product mass intensity by 12.6%.
Collapse
Affiliation(s)
- Sean M Anderson
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Elbert Seto
- Gilead, Protein Sciences, Foster City, California, USA
| | - David Chau
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Brian Lee
- Gilead, Protein Sciences, Foster City, California, USA
| | - Andrew Vail
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Sheng Ding
- Gilead, Protein Sciences, Foster City, California, USA
| | - Alexei Voloshin
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Mark Nagel
- Gilead, Protein Sciences, Foster City, California, USA
| |
Collapse
|
3
|
Leskovec M, Raspor A, Fujs V, Mihevc A, Štrancar A. Preferential exclusion chromatography as a capture step for extracellular AAV harvest from adherent and suspension productions. Electrophoresis 2023; 44:1934-1942. [PMID: 37599280 DOI: 10.1002/elps.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/22/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Preferential exclusion chromatography (PXC) sometimes described as hydrophobic interaction chromatography is a well-known, but not widely used technique for purification of Adeno-associated viruses. It employs high molarity of preferentially excluded cosolvent (salt in our case). The downside of this method is that high molarity of salt can lead to aggregation and precipitation of different compounds from the sample. In the case of viruses that are excreted to medium, the concentration of impurities is much lower compared to cell lysates, and PXC can be used as a first chromatographic, serotype independent step to concentrate and purify adeno-associated virus (AAV). Here, we explored PXC for adherent and suspension harvests using monolithic chromatographic columns (CIMmultus). Suspension extracellular adeno-associated virus, serotype 9 (AAV9) harvest had more impurities compared to adherent harvest, therefore it required higher input regarding method development. Final conditions for suspension harvest included higher molarity of binding salt and using more open channel format of chromatographic column (6 µm channel size). Vector genome analysis with droplet digital polymerase chain reaction (ddPCR) revealed 84% and 97% recovery for suspension and adherent AAV9 harvest, respectively. After PXC capture step, adherent AAV9 was purified by already described ion exchange techniques. Overall process vector genome recovery, from clarified harvest to anion exchange elution fraction, was 54% measured by ddPCR. Residual host cell DNA was measured at 40 ng per 1E13 vector genome, and empty AAV was below 5% in final anion exchange chromatography fraction.
Collapse
Affiliation(s)
- Maja Leskovec
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Raspor
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Veronika Fujs
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Mihevc
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
4
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
5
|
Goodarzi MM, Jalalirad R, Doroud D, Hozouri H, Aghasadeghi M, Paryan M. Determining buffer conditions for downstream processing of VLP-based recombinant hepatitis B surface antigen using multimodal resins in bind-elute and flow-through purification modes. Sci Rep 2023; 13:10745. [PMID: 37400485 DOI: 10.1038/s41598-023-37614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/24/2023] [Indexed: 07/05/2023] Open
Abstract
The difficulties in purification of VLP-based recombinant hepatitis B surface antigen (rHBsAg) are mainly emerged from inefficient semi-purification step plus proteins physicochemical properties and these issues make the downstream processing (DSP) very lengthy and expensive. In this study, optimization of rHBsAg (recombinantly-expressed in Pichia pastoris) DSP was performed using selection of buffering conditions in the semi-purification step. In the semi-purification optimization step, up to 73% of the protein impurities were eliminated and the utmost increase in rHBsAg purity (ca. 3.6-fold) was achieved using 20 mM sodium acetate, pH 4.5. By using rHBsAg binding and nonbinding situations obtained from the response surface plot in design of experiments (DOE), additional bind-elute and flow-through purification mode experiments were conducted and rHBsAg with high purity (near 100%) and recovery (> 83%) was achieved. Following assessment of critical quality attributes (i.e., purity, particle size distribution, host cell DNA, host cell protein, secondary structures, specific activity and relative potency), it was indicated that the characteristics of rHBsAg purified by the new DSP were similar or superior to the ones obtained from conventional DSP. The purification performance of the resin was constantly retained (97-100%) and no significant resin damage took place after 10 adsorption-elution-cleaning cycles. The new DSP developed for production of rHBsAg in this study can substitute the conventional one with granting satisfactory target protein quality, long-lasting resin efficacy, shorter and less expensive process. This process may be also employable for purification of both non-VLP- and VLP- based target proteins expressed in the yeast.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran.
| | - Delaram Doroud
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran.
| | - Hamidreza Hozouri
- Department of Quality Management, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| | - Mohammadreza Aghasadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| |
Collapse
|
6
|
Johnson J, Law SQK, Shojaee M, Hall AS, Bhuiyan S, Lim MBL, Silva A, Kong KJW, Schoppet M, Blyth C, Ranasinghe HN, Sejic N, Chuei MJ, Tatford OC, Cifuentes‐Rius A, James PF, Tester A, Dixon I, Lichtfuss G. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J Extracell Vesicles 2023; 12:e12332. [PMID: 37353884 PMCID: PMC10290200 DOI: 10.1002/jev2.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
The release of growth factors, cytokines and extracellular matrix modifiers by activated platelets is an important step in the process of healthy wound healing. Extracellular vesicles (EVs) released by activated platelets carry this bioactive cargo in an enriched form, and may therefore represent a potential therapeutic for the treatment of delayed wound healing, such as chronic wounds. While EVs show great promise in regenerative medicine, their production at clinical scale remains a critical challenge and their tolerability in humans is still to be fully established. In this work, we demonstrate that Ligand-based Exosome Affinity Purification (LEAP) chromatography can successfully isolate platelet EVs (pEVs) of clinical grade from activated platelets, which retain the regenerative properties of the parent cell. LEAP-isolated pEVs display the expected biophysical features of EV populations and transport essential proteins in wound healing processes, including insulin growth factor (IGF) and transforming growth factor beta (TGF-ß). In vitro studies show that pEVs induce proliferation and migration of dermal fibroblasts and increase dermal endothelial cells' angiogenic potential, demonstrating their wound healing potential. pEV treatment activates the ERK and Akt signalling pathways within recipient cells. In a first-in-human, double-blind, placebo-controlled, phase I clinical trial of healthy volunteer adults, designed primarily to assess safety in the context of wound healing, we demonstrate that injections of LEAP-purified pEVs in formulation buffer are safe and well tolerated (Plexoval II study, ACTRN12620000944932). As a secondary objective, biological activity in the context of wound healing rate was assessed. In this cohort of healthy participants, in which the wound bed would not be expected to be deficient in the bioactive cargo that pEVs carry, all wounds healed rapidly and completely and no difference in time to wound closure of the treated and untreated wounds was observed at the single dose tested. The outcomes of this study evidence that pEVs manufactured through the LEAP process can be injected safely in humans as a potential wound healing treatment, and warrant further study in clinical trials designed expressly to assess therapeutic efficacy in patients with delayed or disrupted wound healing.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Lichtfuss
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
7
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
8
|
|
9
|
Production- and Purification-Relevant Properties of Human and Murine Cytomegalovirus. Viruses 2021; 13:v13122481. [PMID: 34960750 PMCID: PMC8706497 DOI: 10.3390/v13122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
There is a large unmet need for a prophylactic vaccine against human cytomegalovirus (HCMV) to combat the ubiquitous infection that is ongoing with this pathogen. A vaccination against HCMV could protect immunocompromised patients and prevent birth defects caused by congenital HCMV infections. Moreover, cytomegalovirus (CMV) has a number of features that make it a very interesting vector platform for gene therapy. In both cases, preparation of a highly purified virus is a prerequisite for safe and effective application. Murine CMV (MCMV) is by far the most studied model for HCMV infections with regard to the principles that govern the immune surveillance of CMVs. Knowledge transfer from MCMV and mice to HCMV and humans could be facilitated by better understanding and characterization of the biological and biophysical properties of both viruses. We carried out a detailed investigation of HCMV and MCMV growth kinetics as well as stability under the influence of clarification and different storage conditions. Further, we investigated the possibilities to concentrate and purify both viruses by ultracentrifugation and ion-exchange chromatography. Defective enveloped particles were not separately analyzed; however, the behavior of exosomes was examined during all experiments. The effectiveness of procedures was monitored using CCID50 assay, Nanoparticle tracking analysis, ELISA for host cell proteins, and quantitative PCR for host cell DNA. MCMV generally proved to be more robust in handling. Despite its greater sensitivity, HCMV was efficiently (100% recovery) purified and concentrated by anion-exchange chromatography using QA monolithic support. The majority of the host genomic DNA as well as most of the host cell proteins were removed by this procedure.
Collapse
|
10
|
Aune K, Lee J, Prakash V, Bhat R, Andreu J, Monasterio O, Perez-Ramirez B, Shearwin K, Arakawa T, Carpenter J, Crowe J, Crowe L, Somero G, Gagnon P, Charles MT. A tribute to Dr. Serge N. Timasheff, our mentor. Biophys Rev 2021; 13:459-484. [PMID: 34471434 PMCID: PMC8355303 DOI: 10.1007/s12551-021-00814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022] Open
Abstract
Dr. Serge N. Timasheff, our mentor and friend, passed away in 2019. This article is a collection of tributes from his postdoctoral fellows, friends, and daughter, who all have been associated with or influenced by him or his research. Dr. Timasheff is a pioneer of research on thermodynamic linkage between ligand interaction and macromolecular reaction. We all learned a great deal from Dr. Timasheff, not only about science but also about life.
Collapse
Affiliation(s)
- Kirk Aune
- 7647 Cortana Drive, Granger, IN 46530 USA
| | - James Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77059 USA
| | - V. Prakash
- Nutraceuticals and Nutritional Research Center, Ramaiah University of Applied Sciences, Bangalore, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharalal Nehru University, New Delhi, 110067 India
| | - Jose Andreu
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bernardo Perez-Ramirez
- CMC-Drug Device Integration, DP-Due Diligence, Biologics Drug Product Development & Manufacturing, Sanofi, 1 the Mountain Road, Framingham, MA 01701 USA
| | - Keith Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005 Australia
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130 USA
| | - John Carpenter
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of Colorado Anshutz Medical Campus, Auroa, CO 80045 USA
| | - John Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - Lois Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - George Somero
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 USA
| | - Pete Gagnon
- BIA Separations, Mirce 21, 5270, Ajdovscina, Slovenia
| | | |
Collapse
|
11
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
12
|
Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: Finally ready for prime time? Vaccine 2019; 37:5491-5503. [DOI: 10.1016/j.vaccine.2018.02.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
|
13
|
Pereira Aguilar P, González-Domínguez I, Schneider TA, Gòdia F, Cervera L, Jungbauer A. At-line multi-angle light scattering detector for faster process development in enveloped virus-like particle purification. J Sep Sci 2019; 42:2640-2649. [PMID: 31169979 PMCID: PMC6771681 DOI: 10.1002/jssc.201900441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/05/2022]
Abstract
At‐line static light scattering and fluorescence monitoring allows direct in‐process tracking of fluorescent virus‐like particles. We have demonstrated this by coupling at‐line multi‐angle light scattering and fluorescence detectors to the downstream processing of enveloped virus‐like particles. Since light scattering intensity is directly proportional to particle concentration, our strategy allowed a swift identification of product containing fractions and rapid process development. Virus‐like particles containing the Human Immunodeficiency Virus‐1 Gag protein fused to the Green Fluorescence protein were produced in Human Embryonic Kidney 293 cells by transient transfection. A single‐column anion‐exchange chromatography method was used for direct capture and purification. The majority of host‐cell protein impurities passed through the column without binding. Virus‐like particles bound to the column were eluted by linear or step salt gradients. Particles recovered in the step gradient purification were characterized by nanoparticle tracking analysis, size exclusion chromatography coupled to multi‐angle light scattering and fluorescence detectors and transmission electron microscopy. A total recovery of 66% for the fluorescent particles was obtained with a 50% yield in the main product peak. Virus‐like particles were concentrated 17‐fold to final a concentration of 4.45 × 1010 particles/mL. Simple buffers and operation make this process suitable for large scale purposes.
Collapse
Affiliation(s)
| | - Irene González-Domínguez
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Francesc Gòdia
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Cervera
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
14
|
Abstract
Exosomes are secreted by mammalian cells and are widely distributed in cellular systems. They are a medium of information and material transmission. The complexity of exosome nature and function is not thoroughly understood. Nevertheless, they are being confirmed as mediators of intercellular communication and play significant roles in many physiological and pathological processes. Significant obstacles to the efficient and robust isolation of large quantities of pure and specific exosomes still exist. These include a lack of understanding of the relationship between exosome characteristics and function, and a shortage of scalable solutions to separate specific exosomes from other large entities remain. Hence, generic production platforms are desired. While solutions suitable for exosome manufacturing under GMP are available, most have been developed for other purposes.
Collapse
|
15
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
16
|
Hosseini SN, Javidanbardan A, Alizadeh Salim BS, Khatami M. Large-scale purification of recombinant hepatitis B surface antigen from Pichia pastoris with non-affinity chromatographic methods as a substitute to immunoaffinity chromatography. Prep Biochem Biotechnol 2018; 48:683-692. [DOI: 10.1080/10826068.2018.1487854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seyed Nezamedin Hosseini
- Department of Recombinant Yeast, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Javidanbardan
- Department of Recombinant Yeast, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | | - Maryam Khatami
- Department of Recombinant Yeast, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, Ochman M, Zeglen S, Rajfur Z, Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One 2018; 13:e0203489. [PMID: 30183777 PMCID: PMC6124810 DOI: 10.1371/journal.pone.0203489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| | - Agnieszka Dabrowska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Nowak
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Jasik
- Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, Sosnowiec, Poland
| | - Aleksandra Milewska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| |
Collapse
|
18
|
Arakawa T, Gagnon P. Excluded Cosolvent in Chromatography. J Pharm Sci 2018; 107:2297-2305. [DOI: 10.1016/j.xphs.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
|
19
|
Zaveckas M, Goda K, Ziogiene D, Gedvilaite A. Purification of recombinant trichodysplasia spinulosa–associated polyomavirus VP1-derived virus-like particles using chromatographic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:7-13. [DOI: 10.1016/j.jchromb.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
|
20
|
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med 2018; 24:242-256. [PMID: 29449149 DOI: 10.1016/j.molmed.2018.01.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles, in particular the subclass exosomes, are rapidly emerging as a novel therapeutic platform. However, currently very few clinical validation studies and no clearly defined manufacturing process exist. As exosomes progress towards the clinic for treatment of a vast array of diseases, it is important to define the engineering basis for their manufacture early in the development cycle to ensure they can be produced cost-effectively at the appropriate scale. We hypothesize that transitioning to defined manufacturing platforms will increase consistency of the exosome product and improve their clinical advancement as a new therapeutic tool. We present manufacturing technologies and strategies that are being implemented and consider their application for the transition from bench-scale to clinical production of exosomes.
Collapse
Affiliation(s)
- Ivano Luigi Colao
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | | | - Daniel Bracewell
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK.
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK; Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; Department of Nanobiomedical Science, BK21+ NBM Global Research Center for Regenerative Medicine & Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
21
|
Vincent D, Kramberger P, Hudej R, Štrancar A, Wang Y, Zhou Y, Velayudhan A. The development of a monolith-based purification process for Orthopoxvirus vaccinia virus Lister strain. J Chromatogr A 2017; 1524:87-100. [DOI: 10.1016/j.chroma.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023]
|
22
|
Matlschweiger A, Engelmaier H, Himmler G, Hahn R. Secretory immunoglobulin purification from whey by chromatographic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:53-62. [DOI: 10.1016/j.jchromb.2017.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
|
23
|
Sviben D, Forcic D, Ivancic-Jelecki J, Halassy B, Brgles M. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle charge and total-to-infective particle ratio. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1054:10-19. [PMID: 28415019 DOI: 10.1016/j.jchromb.2017.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Viral particles are used in medical applications as vaccines or gene therapy vectors. In order to obtain product of high purity, potency and safety for medical use purification of virus particles is a prerequisite, and chromatography is gaining increased attention to meet this aim. Here, we report on the use of ion-exchange and hydrophobic interaction chromatography on monolithic columns for purification of mumps virus (MuV) and measles virus (MeV). Efficiency of the process was monitored by quantification of infective virus particles (by 50% cell culture infective dose assay) and total virus particles, and monitoring of their size (by Nanoparticle Tracking Analysis). Ion-exchange chromatography was shown to be inefficient for MuV and best results for MeV were obtained on QA column with recovery around 17%. Purification of MuV and MeV by hydrophobic interaction chromatography resulted in recoveries around 60%. Results showed that columns with small channels (d=1.4μm) are not suitable for MuV and MeV, although their size is below 400nm, whereas columns with large channels (6μm) showed to be efficient and recoveries independent on the flow rate up to 10mL/min. Heterogeneity of the virus suspension and its interday variability mostly regarding total-to-infective particle ratio was observed. Interestingly, a trend in recovery depending on the day of the harvest was also observed for both viruses, and it correlated with the total-to-infective particle ratio, indicating influence of the virus sample composition on the chromatography results.
Collapse
Affiliation(s)
- Dora Sviben
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000 Zagreb, Croatia; Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - Dubravko Forcic
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000 Zagreb, Croatia; Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - Jelena Ivancic-Jelecki
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000 Zagreb, Croatia; Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000 Zagreb, Croatia; Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000 Zagreb, Croatia; Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia.
| |
Collapse
|
24
|
Steppert P, Burgstaller D, Klausberger M, Kramberger P, Tover A, Berger E, Nöbauer K, Razzazi‐Fazeli E, Jungbauer A. Separation of HIV‐1 gag virus‐like particles from vesicular particles impurities by hydroxyl‐functionalized monoliths. J Sep Sci 2017; 40:979-990. [DOI: 10.1002/jssc.201600765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Petra Steppert
- Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | - Daniel Burgstaller
- Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | - Miriam Klausberger
- Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | | | | | - Eva Berger
- Austrian Centre of Industrial Biotechnology Vienna Austria
| | - Katharina Nöbauer
- VetCore Facility for Research University of Veterinary Medicine Vienna Vienna Austria
| | | | - Alois Jungbauer
- Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology Vienna Austria
| |
Collapse
|
25
|
Surawathanawises K, Kundrod K, Cheng X. Microfluidic devices with templated regular macroporous structures for HIV viral capture. Analyst 2017; 141:1669-77. [PMID: 26899457 DOI: 10.1039/c5an02282g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a need to develop inexpensive, portable and easy-to-use devices for viral sample processing for resource-limited settings. Here we offer a solution to efficient virus capture by incorporating macroporous materials with regular structures into microfluidic devices for affinity chromatography. Two-dimensional simulations were first conducted to investigate the effects of two structures, a nanopost array and a spherical pore network, on nanoparticle capture. Then, the two structures were created in polymers by templating anodic aluminum oxide films and 3D close-packed silica particles, respectively. When the microdevices containing functionalized porous materials were tested for human immunodeficiency virus (HIV) isolation, capture efficiencies of 80-99% were achieved under a continuous flow. Comparatively, functionalized flatbed microchannels captured around 10% of HIV particles. As the characteristic dimensions of the nanostructures are tunable, such devices can be adapted for the capture of different submicron bioparticles. The high capture efficiency and easy-to-operate nature suit the needs of resource-limited settings and may find applications in point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Kathryn Kundrod
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA.
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA and Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
26
|
Lintern K, Pathak M, Smales CM, Howland K, Rathore A, Bracewell DG. Residual on column host cell protein analysis during lifetime studies of protein A chromatography. J Chromatogr A 2016; 1461:70-7. [DOI: 10.1016/j.chroma.2016.07.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
|
27
|
Steppert P, Burgstaller D, Klausberger M, Berger E, Aguilar PP, Schneider TA, Kramberger P, Tover A, Nöbauer K, Razzazi-Fazeli E, Jungbauer A. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. J Chromatogr A 2016; 1455:93-101. [DOI: 10.1016/j.chroma.2016.05.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
|
28
|
Huang R, Kiss MM, Batonick M, Weiner MP, Kay BK. Generating Recombinant Antibodies to Membrane Proteins through Phage Display. Antibodies (Basel) 2016; 5:antib5020011. [PMID: 31557992 PMCID: PMC6698964 DOI: 10.3390/antib5020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
One of the most important classes of proteins in terms of drug targets is cell surface membrane proteins, and yet it is a challenging set of proteins for generating high-quality affinity reagents. In this review, we focus on the use of phage libraries, which display antibody fragments, for generating recombinant antibodies to membrane proteins. Such affinity reagents generally have high specificity and affinity for their targets. They have been used for cell staining, for promoting protein crystallization to solve three-dimensional structures, for diagnostics, and for treating diseases as therapeutics. We cover publications on this topic from the past 10 years, with a focus on the various formats of membrane proteins for affinity selection and the diverse affinity selection strategies used. Lastly, we discuss the challenges faced in this field and provide possible directions for future efforts.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| | - Margaret M Kiss
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Melissa Batonick
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Michael P Weiner
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| |
Collapse
|
29
|
Rodriguez-Illera M, Janssen AE, Boom RM. Channeled monoliths for selective recovery of a lacto-tripeptide from a crude hydrolyzate. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Herigstad MO, Dimartino S, Boi C, Sarti. GC. Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. J Chromatogr A 2015; 1407:130-8. [DOI: 10.1016/j.chroma.2015.06.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
|
31
|
Preparation of pure, high titer, pseudoinfectious Flavivirus particles by hollow fiber tangential flow filtration and anion exchange chromatography. Vaccine 2015; 33:4255-60. [DOI: 10.1016/j.vaccine.2014.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022]
|
32
|
Zaveckas M, Snipaitis S, Pesliakas H, Nainys J, Gedvilaite A. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 991:21-8. [DOI: 10.1016/j.jchromb.2015.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 11/27/2022]
|
33
|
|
34
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|
35
|
Ruščić J, Gutiérrez-Aguirre I, Tušek Žnidarič M, Kolundžija S, Slana A, Barut M, Ravnikar M, Krajačić M. A new application of monolithic supports: The separation of viruses from one another. J Chromatogr A 2015; 1388:69-78. [DOI: 10.1016/j.chroma.2015.01.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 11/29/2022]
|
36
|
Rački N, Kramberger P, Steyer A, Gašperšič J, Štrancar A, Ravnikar M, Gutierrez-Aguirre I. Methacrylate monolith chromatography as a tool for waterborne virus removal. J Chromatogr A 2015; 1381:118-24. [DOI: 10.1016/j.chroma.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 01/01/2015] [Indexed: 02/07/2023]
|
37
|
Kramberger P, Urbas L, Štrancar A. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum Vaccin Immunother 2015; 11:1010-21. [PMID: 25751122 PMCID: PMC4514237 DOI: 10.1080/21645515.2015.1009817] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/25/2014] [Indexed: 10/23/2022] Open
Abstract
Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production.
Collapse
|
38
|
Martinčič A, Milačič R, Vidmar J, Turel I, Keppler BK, Ščančar J. New method for the speciation of ruthenium-based chemotherapeutics in human serum by conjoint liquid chromatography on affinity and anion-exchange monolithic disks. J Chromatogr A 2014; 1371:168-76. [DOI: 10.1016/j.chroma.2014.10.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023]
|
39
|
Svec F, Lv Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal Chem 2014; 87:250-73. [DOI: 10.1021/ac504059c] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frantisek Svec
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongqin Lv
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
40
|
Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity. J Chromatogr A 2014; 1331:69-79. [DOI: 10.1016/j.chroma.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
|
41
|
Podgornik A, Yamamoto S, Peterka M, Krajnc NL. Fast separation of large biomolecules using short monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:80-9. [DOI: 10.1016/j.jchromb.2013.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
42
|
Gerster P, Kopecky EM, Hammerschmidt N, Klausberger M, Krammer F, Grabherr R, Mersich C, Urbas L, Kramberger P, Paril T, Schreiner M, Nöbauer K, Razzazi-Fazeli E, Jungbauer A. Purification of infective baculoviruses by monoliths. J Chromatogr A 2013; 1290:36-45. [DOI: 10.1016/j.chroma.2013.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
43
|
Fast purification of the filamentous Potato virus Y using monolithic chromatographic supports. J Chromatogr A 2013; 1272:33-40. [DOI: 10.1016/j.chroma.2012.11.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 11/22/2022]
|
44
|
Hardick O, Dods S, Stevens B, Bracewell DG. Nanofiber adsorbents for high productivity downstream processing. Biotechnol Bioeng 2012; 110:1119-28. [DOI: 10.1002/bit.24765] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/05/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022]
|
45
|
Podgornik A, Krajnc NL. Application of monoliths for bioparticle isolation. J Sep Sci 2012; 35:3059-72. [DOI: 10.1002/jssc.201200387] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Aleš Podgornik
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
- BIA Separations d.o.o.; Ajdovščina Slovenia
| | - Nika Lendero Krajnc
- BIA Separations d.o.o.; Ajdovščina Slovenia
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
| |
Collapse
|