1
|
Paolino D, d'Avanzo N, Canato E, Ciriolo L, Grigoletto A, Cristiano MC, Mancuso A, Celia C, Pasut G, Fresta M. Improved anti-breast cancer activity by doxorubicin-loaded super stealth liposomes. Biomater Sci 2024; 12:3933-3946. [PMID: 38940612 DOI: 10.1039/d4bm00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
PEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model. The results demonstrated that the super stealth liposomes had suitable physicochemical properties for in vivo administration and could significantly increase the efficacy of doxorubicin in breast cancer lung metastasis tumor-bearing mice compared to the free drug. The super stealth liposomes also increased doxorubicin accumulation inside the tumor tissue. The permanence of PEG on the surface of the super stealth liposomes favored the formation of a depot of therapeutic nanocarriers inside the tumor tissue by improving their permanence after stopping treatment. The doxorubicin-loaded super stealth liposomes increased the survival of the mouse tumor model. These promising results demonstrate that the doxorubicin-loaded super stealth liposomes could be an effective nanomedicine to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Luigi Ciriolo
- Department of Health Science, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Massimo Fresta
- Department of Health Science, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
| |
Collapse
|
2
|
Zafar R, Bukhari SAB, Nasir H. Fabrication of Mn-TPP/RGO Tailored Glassy Carbon Electrode for Doxorubicin Sensing. ACS OMEGA 2024; 9:25694-25703. [PMID: 38911732 PMCID: PMC11191129 DOI: 10.1021/acsomega.3c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
Cancer is a long-standing disease, and the use of anticancer drugs can cause many different harmful side effects. Therefore, the quantitative analysis of anticancer drugs is crucial. Among all the analytical techniques that have been utilized for the detection of doxorubicin, electrochemical sensors have drawn exceptional consideration because they are simple, affordable, and highly sensitive. Manganese tetraphenylporphyrin decorated reduced graphene oxide (Mn-TPP/RGO), tetraphenylporphyrin decorated reduced graphene oxide (TPP/RGO), and reduced graphene oxide (RGO) nanostructure based glassy carbon electrodes (GCEs) were fabricated for the detection of doxorubicin (DOX). The synthesized materials were characterized by FTIR, scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV/vis), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Doxorubicin detection was performed using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Among the prepared electrodes, Mn-TPP/RGO modified GCE gave an optimum peak current at pH 3. The Mn-TPP/RGO modified electrode showed significant linear response range (0.1-0.6 mM); effective sensitivity (112.09 μA mM-1 cm-2); low detection limit (63.5 μM); and excellent stability, selectivity, repeatability, and reproducibility toward doxorubicin. With differential pulse voltammetry, LoD and sensitivity were 27 μM and 0.174 μA μM-1 cm-2, respectively. Real sample analysis was also performed in human serum, and it depicted reasonable recovery results for spiked doxorubicin.
Collapse
Affiliation(s)
- Rafia Zafar
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Aqsa Batool Bukhari
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Habib Nasir
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Trivedi S, Agade R, Belgamwar V. A bioanalytical assay for estimation of thymoquinone in rats cerebrospinal fluid and brain tissues of nasally administrated thymoquinone loaded lipo-polymeric nanoshells and its pharmacokinetic profiling. J Pharmacol Toxicol Methods 2024; 127:107519. [PMID: 38797368 DOI: 10.1016/j.vascn.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Thymoquinone (TH) has been one of the major phytochemical used in the treatment of cancers since long time, especially in the management of glioblastoma multiforme (GBM). The formulation of lipo-polymeric nanoshells (LPNs) and their nasal delivery are fascinating approaches for overcoming the drawbacks of low solubility and poor bioavailability of TH. Hence targeting LPNs to the brain requires a validated bioanalytical method for the assessment of TH concentration in Cerebrospinal fluid (CSF) and brain tissue homogenates (BTH). Therefore, the current work focuses on the development and validation of high-performance liquid chromatography (HPLC) method in CSF by employing nasal simulated fluid (NSF) as one of the major components of the mobile phase. The developed method was checked for linearity in the range of 0.05 to 1.6 μg/mL, having an r2 value of 0.999 with mean % recovery >95% and % RSD values below <2.0%. The developed method gave a clear separation of TH at 6.021 ± 0.17 min with an internal standard at 4.102 ± 0.09 min and a CSF spike at 2.170 ± 0.12 min. The developed method assisted in determining the in-vitro and in-vivo drug release study of LPNs, pharmacokinetic profiling, qualitative in-vivo brain uptake study, in-vitro cellular uptake, and generating stability data of formulated LPNs proposed for intranasal administration in rats.
Collapse
Affiliation(s)
- Sagar Trivedi
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India 440033.
| | - Rishabh Agade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India 440033
| | - Veena Belgamwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India 440033
| |
Collapse
|
4
|
Mochizuki K, Mitova V, Makino K, Terada H, Takeuchi I, Troev K. pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers. Int J Mol Sci 2024; 25:4518. [PMID: 38674103 PMCID: PMC11049995 DOI: 10.3390/ijms25084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.
Collapse
Affiliation(s)
- Kasumi Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Faculty of Pharmaceutical Science, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kolio Troev
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
5
|
Zhang C, Zhou X, Yan F, Lin J. N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin. Molecules 2023; 28:6443. [PMID: 37764222 PMCID: PMC10536127 DOI: 10.3390/molecules28186443] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability and efficient molecular transport capacity, is attached to the ITO electrode via a rapid and controllable electrochemical method, which can serve as a solid template for the confinement of numerous NGQDs through facile electrophoresis. By virtue of the excellent charge transfer capacity, π-π and electrostatic preconcentration effects of NGQDs, as well as the electrostatic enrichment ability of VMSF, the presented NGQDs@VMSF/ITO shows amplified electrochemical signal towards DOX with a positive charge, resulting in good analytical performance in terms of a wide linear range (5 nM~0.1 μM and 0.1~1 μM), high sensitivity (30.4 μA μM-1), and a low limit of detection (0.5 nM). Moreover, due to the molecular sieving property of VMSF, the developed NGQDs@VMSF/ITO sensor has good selectivity and works well in human serum and urine samples, with recoveries of 97.0~109%, thus providing a simple and reliable method for the direct electrochemical analysis of DOX without complex sample pretreatment procedures.
Collapse
Affiliation(s)
- Chaoyan Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Xiaoyu Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Jing Lin
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
6
|
Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples. SEPARATIONS 2022. [DOI: 10.3390/separations10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article presents a comparative study of selected deproteinization-, liquid–liquid-extraction- (LLE), and solid-phase-extraction (SPE)-based procedures for the isolation of doxorubicin (DOX) and daunorubicin (DAU) as an internal standard (IS) from rat tissue samples. During the experiments, all samples were analyzed via liquid chromatography coupled with fluorescence detection (LC-FL), with analytes being monitored at excitation and emission wavelengths of 487 and 555 nm, respectively. The absolute recoveries of the sample-preparation procedure were then calculated and compared, and the advantages and disadvantages of each approach were considered in depth. Ultimately, SPE with hydrophilic–lipophilic balanced (HLB) sorbents was selected as the most effective extraction procedure as it enabled the absolute recovery of DOX from tissue samples at a level of 91.6 ± 5.1%. Next, the selected HLB-SPE protocol was coupled with LC-FL separation and the resultant method was validated according to FDA and ICH requirements. The validation data confirmed that the developed procedure met all required criteria for bioanalytical methods, with a limit of detection (LOD) and limit of quantification (LOQ) of 0.005 µg/g and 0.01 µg/g, respectively. Finally, the developed protocol was successfully tested on various rat tissues enriched with DOX, confirming its potential as an interesting alternative to previously reported protocols for pharmacokinetic studies and clinical investigations aimed at analysis of the level and biodistribution of DOX in tissue samples after systemic administration of this drug.
Collapse
|
7
|
Designing an "all-in-one" microextraction capsule device for the liquid chromatographic-fluorescence determination of doxorubicin and its metabolites in rat plasma. J Chromatogr A 2022; 1680:463432. [PMID: 36041251 DOI: 10.1016/j.chroma.2022.463432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, an "all-in-one" microextraction device was designed and fabricated for the extraction of doxorubicin and its two metabolites from rat plasma prior to their determination by high performance liquid chromatography coupled to fluorescence detector. A sol-gel-based sorbent was synthesized in situ and incorporated within two conjoined porous polypropylene tubes together with a cylindrical magnetic bar in order to avoid the need of an external stirring bar. Among other sorbents investigated, the moderately polar sol-gel poly(tetrahydrofuran) was found to be advantageous due to its high affinity toward the target analytes. Systematic investigation of the critical parameters affecting the adsorption and the desorption step was carried out. Due to the "built-in" filtration mechanism of the porous microextraction capsules, the isolation of the analytes was performed directly in the plasma matrix without any previous sample pretreatment (i.e., protein precipitation, centrifugation, etc.). The proposed method was validated in terms of linearity, accuracy, precision, specificity, sensitivity, and stability according to the FDA guidelines. The limits of detection ranged between 1 - 2 ng mL-1 while the lower limits of quantitation of the analytes were calculated as 10 ng mL-1. The accuracy (% relative error) was found within -9.7 - 15.3% under both intra- and inter-day conditions. The precision was better than 13.4% in all cases. ComplexGAPI index was employed to present the green attributes of the developed protocol from the preparation of the microextraction device to the final determination of the analytes. Finally, the applicability of the fabricated stand-alone extraction device was demonstrated in the analysis of the target analytes in rat plasma after intravenous administration of doxorubicin in order to assess its pharmacokinetic profile.
Collapse
|
8
|
High-Throughput Method for the Simultaneous Determination of Doxorubicin Metabolites in Rat Urine after Treatment with Different Drug Nanoformulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041177. [PMID: 35208967 PMCID: PMC8877250 DOI: 10.3390/molecules27041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
Doxorubicin (DOX) is one of the most effective cytotoxic agents against malignant diseases. However, the clinical application of DOX is limited, due to dose-related toxicity. The development of DOX nanoformulations that significantly reduce its toxicity and affect the metabolic pathway of the drug requires improved methods for the quantitative determination of DOX metabolites with high specificity and sensitivity. This study aimed to develop a high-throughput method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for the quantification of DOX and its metabolites in the urine of laboratory animals after treatment with different DOX nanoformulations. The developed method was validated by examining its specificity and selectivity, linearity, accuracy, precision, limit of detection, and limit of quantification. The DOX and its metabolites, doxorubicinol (DOXol) and doxorubicinone (DOXon), were successfully separated and quantified using idarubicin (IDA) as an internal standard (IS). The linearity was obtained over a concentration range of 0.05–1.6 μg/mL. The lowest limit of detection and limit of quantitation were obtained for DOXon at 5.0 ng/mL and 15.0 ng/mL, respectively. For each level of quality control (QC) samples, the inter- and intra-assay precision was less than 5%. The accuracy was in the range of 95.08–104.69%, indicating acceptable accuracy and precision of the developed method. The method was applied to the quantitative determination of DOX and its metabolites in the urine of rats treated by novel nanoformulated poly(lactic-co-glycolic acid) (DOX-PLGA), and compared with a commercially available DOX solution for injection (DOX-IN) and liposomal-DOX (DOX-MY).
Collapse
|
9
|
Yilmaz H, Şanlier ŞH. A novel second-generation platinum derivative and evaluation of its anti-cancer potential. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
Aboras SI, Korany MA, Abdine HH, Ragab MAA, El Diwany A, Agwa MM. HPLC with fluorescence detection for the bioanalysis and pharmacokinetic study of Doxorubicin and Prodigiosin loaded on eco-friendly casein nanomicelles in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1187:123043. [PMID: 34837816 DOI: 10.1016/j.jchromb.2021.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
A rapid, efficient, and sensitive liquid chromatographic assay hyphenated to fluorometric detector (HPLC-FLD) was developed and validated for the determination of doxorubicin (DXR) and prodigiosin (PDG) in rat plasma. The sample pre-treatment involves a protein precipitation with acetonitrile with satisfying extraction efficiency (98% and 85% for DXR and PDG, respectively). The chromatographic separation was accomplished using stationary phase: Agilent Zorbax Eclipse plus-C18 analytical column (250 × 4.6 mm, 5 μm) and gradient eluting mobile phase of ammonium acetate (pH = 3), acetonitrile and methanol with programmed fluorescence detection. As the proposed method has been validated, it was subsequently implemented to evaluate DXR and PDG loaded on novel eco-friendly Casein nano drug delivery system after intravenous injection in healthy rats. A comparative pharmacokinetics' study was carried out in rats for DXR in free form, DXR alone entrapped in the nanomicelle and DXR with PDG entrapped in the nano micelle. After testing the differences in pharmacokinetic parameters of the different formulations using ANOVA, the results showed insignificant differences among the tested parameters. This indicates that the presented nanomicelle delivery system has succeeded to incorporate PDG and DXR in a hydrophilic, safe, and potent formulation. This novel nanomicelle has negligible effect on the distribution and elimination of DXR.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Ahmed El Diwany
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
11
|
Galievsky V, Pawliszyn J. Fluorometer for Screening of Doxorubicin in Perfusate Solution and Tissue with Solid-Phase Microextraction Chemical Biopsy Sampling. Anal Chem 2020; 92:13025-13033. [PMID: 32847350 DOI: 10.1021/acs.analchem.0c01905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of an in vivo solid-phase microextraction (SPME) method capable of analyzing drugs and metabolic products in biofluids and living tissues holds great promise. The standard in vivo SPME protocol based on mass spectrometry is a very powerful analytical approach, but it is not practical for on-site analysis in many cases. In this paper, we present a fluorescence-based SPME method and a prototype of a portable fluorometer that is capable of quickly quantifying concentrations of the anticancer drug, doxorubicin (DOX). The instrument uses thin coated, biocompatible SPME fibers, which we have previously presented as a chemical biopsy tool for use during in vivo lung perfusion (IVLP) procedures within a hospital setting. In this research, we test SPME fibers with C8-SCX, C18, and HLB coatings with our fluorometer. The mixed-mode C8-SCX fibers showed the best sensitivity of the three and were therefore used to examine DOX extraction from perfusate solution and a homogenized lamb lung tissue. The maximum concentration of free active sites in the C8-SCX fiber and the adsorption equilibrium constant were determined to be (9.1 ± 0.3) × 10-7 mol m-2 and 420 ± 30 m3 mol-1, respectively. Finally, the detection limits for DOX extracted from buffer, perfusate, and lung tissue were 40, 100, and 3700 μg L-1, respectively.
Collapse
Affiliation(s)
- Victor Galievsky
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
A review on various analytical methods for determination of anthracyclines and their metabolites as anti–cancer chemotherapy drugs in different matrices over the last four decades. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kuo PH, Teng YH, Cin AL, Han W, Huang PW, Wang LHC, Chou YT, Yang JL, Tseng YL, Kao M, Chang MDT. Heparan sulfate targeting strategy for enhancing liposomal drug accumulation and facilitating deep distribution in tumors. Drug Deliv 2020; 27:542-555. [PMID: 32241176 PMCID: PMC7170378 DOI: 10.1080/10717544.2020.1745326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs), such as liposomes, effectively evade the severe toxicity of unexpected accumulation and passively shuttle drugs into tumor tissues by enhanced permeability and retention. In the case of non-small cell lung cancer and pancreatic ductal adenocarcinoma, cancer-associated fibroblasts promote the aggregation of a gel-like extracellular matrix that forms a physical barrier in the desmoplastic stroma of the tumor. These stroma are composed of protein networks and glycosaminoglycans (GAGs) that greatly compromise tumor-penetrating performance, leading to insufficient extravasation and tissue penetration of NPs. Moreover, the presence of heparan sulfate (HS) and related proteoglycans on the cell surface and tumor extracellular matrix may serve as molecular targets for NP-mediated drug delivery. Here, a GAG-binding peptide (GBP) with high affinity for HS and high cell-penetrating activity was used to develop an HS-targeting delivery system. Specifically, liposomal doxorubicin (L-DOX) was modified by post-insertion with the GBP. We show that the in vitro uptake of L-DOX in A549 lung adenocarcinoma cells increased by GBP modification. Cellular uptake of GBP-modified L-DOX (L-DOX-GBP) was diminished in the presence of extracellular HS but not in the presence of other GAGs, indicating that the interaction with HS is critical for the cell surface binding of L-DOX-GBP. The cytotoxicity of doxorubicin positively correlated with the molecular composition of GBP. Moreover, GBP modification improved the in vivo distribution and anticancer efficiency of L-DOX, with enhanced desmoplastic targeting and extensive distribution. Taken together, GBP modification may greatly improve the tissue distribution and delivery efficiency of NPs against HS-abundant desmoplastic stroma-associated neoplasm.
Collapse
Affiliation(s)
- Ping-Hsueh Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsien Teng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ann-Lun Cin
- Operations Center for Industry Collaboration, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen Han
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Ling Yang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Minhsiung Kao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
14
|
Choi WG, Kim DK, Shin Y, Park R, Cho YY, Lee JY, Kang HC, Lee HS. Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Determination of Doxorubicin and its Metabolites Doxorubicinol, Doxorubicinone, Doxorubicinolone, and 7-Deoxydoxorubicinone in Mouse Plasma. Molecules 2020; 25:molecules25051254. [PMID: 32164308 PMCID: PMC7179444 DOI: 10.3390/molecules25051254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022] Open
Abstract
Doxorubicin, an anthracycline antitumor antibiotic, acts as a cancer treatment by interfering with the function of DNA. Herein, liquid chromatography-tandem mass spectrometry was for the first time developed and validated for the simultaneous determination of doxorubicin and its major metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The liquid–liquid extraction of a 10 μL mouse plasma sample with chloroform:methanol (4:1, v/v) and use of the selected reaction monitoring mode led to less matrix effect and better sensitivity. The lower limits of quantification levels were 0.5 ng/mL for doxorubicin, 0.1 ng/mL for doxorubicinol, and 0.01 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone. The standard curves were linear over the range of 0.5–200 ng/mL for doxorubicin; 0.1–200 ng/mL for doxorubicinol; and 0.01–50 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The intra and inter-day relative standard deviation and relative errors for doxorubicin and its four metabolites at four quality control concentrations were 0.9–13.6% and –13.0% to 14.9%, respectively. This method was successfully applied to the pharmacokinetic study of doxorubicin and its metabolites after intravenous administration of doxorubicin at a dose of 1.3 mg/kg to female BALB/c nude mice.
Collapse
|
15
|
Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3:95. [PMID: 32127636 PMCID: PMC7054360 DOI: 10.1038/s42003-020-0817-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sumaya Al-Hosani
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
16
|
Wang Q, Ren T, Zhao J, Wong CH, Chan HYE, Zuo Z. Exclusion of unsuitable CNS drug candidates based on their physicochemical properties and unbound fractions in biomatrices for brain microdialysis investigations. J Pharm Biomed Anal 2020; 178:112946. [PMID: 31727358 DOI: 10.1016/j.jpba.2019.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Microdialysis has been the only direct method of continuously measuring the unbound drug concentrations in extracellular fluid at a specific brain region with respect to time in the same animal. However, not every compound is suitable for microdialysis system as demonstrated by their inconsistent "by gain" and "by loss" in-vitro microdialysis probe recoveries leading to over- or under- estimated in-vivo concentrations. Therefore, our current study was proposed aiming to develop simple exclusion criteria for drug candidates that are not suitable for microdialysis system investigation. Through literature research, the properties ((LogP, pKa, water solubility and unbound fraction in plasma and brain) of drugs that have been reported for microdialysis studies were summarized. The exclusion criteria were developed by evaluating the impact of such properties on the consistency of in-vitro "by gain" and "by loss" recoveries of microdialysis probe. As a result, forty-five compounds were identified from literatures, among which doxorubicin, docetaxel, omeprazole, donepezil and phenytoin were found to have inconsistent in-vitro "by gain" and "by loss" microdialysis probe recoveries and subsequently selected for the exclusion criteria analysis. It was found that compounds with limited water solubility (less than 1 g/L) and unbound fraction in plasma (fu,plasma less than 30%) and brain homogenate (fu,brain less than 10%) were more likely to have inconsistent "by gain" and "by loss" microdialysis probe recoveries. Our proposed exclusion criteria were further validated using carbamazepine (limited water solubility only), DB213 (limited fu,brain only) and piperine (both limited water solubility and limited fu,plasma, fu,brain). Our current proposed exclusion criteria will help excluding the CNS drug candidates that are highly unlikely suitable for brain microdialysis approach leading to a better success rate in brain microdialysis approach development.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
17
|
Rahimi M, Bagheri Gh. A, Fatemi SJ. A new sensor consisting of bird nest-like nanostructured nickel cobaltite as the sensing element for electrochemical determination of doxorubicin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Alkholief M. Optimization of Lecithin-Chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Rejinold NS, Cherukula K, Ha JH, Park I, Kim Y. Olive Oil‐Based Ultrafine Theranostic Photo Nanoemulsions: A Versatile Tumor Maneuvering Nanoplatform for Precise Controlled Drug Release in Tumor and Complete Tumor Eradication Mediated by Photo‐Chemotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N. Sanoj Rejinold
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Jong Hoon Ha
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Yeu‐Chun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| |
Collapse
|
20
|
Mattu C, Brachi G, Menichetti L, Flori A, Armanetti P, Ranzato E, Martinotti S, Nizzero S, Ferrari M, Ciardelli G. Alternating block copolymer-based nanoparticles as tools to modulate the loading of multiple chemotherapeutics and imaging probes. Acta Biomater 2018; 80:341-351. [PMID: 30236799 DOI: 10.1016/j.actbio.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/30/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022]
Abstract
Cancer therapy often relies on the combined action of different molecules to overcome drug resistance and enhance patient outcome. Combined strategies relying on molecules with different pharmacokinetics often fail due to the lack of concomitant tumor accumulation and, thus, to the loss of synergistic effect. Due to their ability to enhance treatment efficiency, improve drug pharmacokinetics, and reduce adverse effects, polymer nanoparticles (PNPs) have been widely investigated as co-delivery vehicles for cancer therapies. However, co-encapsulation of different drugs and probes in PNPs requires a flexible polymer platform and a tailored particle design, in which both the bulk and surface properties of the carriers are carefully controlled. In this work, we propose a core-shell PNP design based on a polyurethane (PUR) core and a phospholipid external surface. The modulation of the hydrophilic/hydrophobic balance of the PUR core enhanced the encapsulation of two chemotherapeutics with dramatically different water solubility (Doxorubicin hydrochloride, DOXO and Docetaxel, DCTXL) and of Iron Oxide Nanoparticles for MRI imaging. The outer shell remained unchanged among the platforms, resulting in un-modified cellular uptake and in vivo biodistribution. We demonstrate that the choice of PUR core allowed a high entrapment efficiency of all drugs, superior or comparable to previously reported results, and that higher core hydrophilicity enhances the loading efficiency of the hydrophilic DOXO and the MRI contrast effect. Moreover, we show that changing the PUR core did not alter the surface properties of the carriers, since all particles showed a similar behavior in terms of cell internalization and in vivo biodistribution. We also show that PUR PNPs have high passive tumor accumulation and that they can efficient co-deliver the two drugs to the tumor, reaching an 11-fold higher DOXO/DCTXL ratio in tumor as compared to free drugs. STATEMENT OF SIGNIFICANCE: Exploiting the synergistic action of multiple chemotherapeutics is a promising strategy to improve the outcome of cancer patients, as different agents can simultaneously engage different features of tumor cells and/or their microenvironment. Unfortunately, the choice is limited to drugs with similar pharmacokinetics that can concomitantly accumulate in tumors. To expand the spectrum of agents that can be delivered in combination, we propose a multi-compartmental core-shell nanoparticles approach, in which the core is made of biomaterials with high affinity for drugs of different physical properties. We successfully co-encapsulated Doxorubicin Hydrochloride, Docetaxel, and contrast agents and achieved a significantly higher concomitant accumulation in tumor versus free drugs, demonstrating that nanoparticles can improve synergistic cancer chemotherapy.
Collapse
Affiliation(s)
- C Mattu
- Politecnico di Torino, DIMEAS C.so Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - G Brachi
- Politecnico di Torino, DIMEAS C.so Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - L Menichetti
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy; Fondazione Regione Toscana G. Monasterio, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - A Flori
- Fondazione Regione Toscana G. Monasterio, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - P Armanetti
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy
| | - E Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant'Eusebio 5, Vercelli 13100, Italy
| | - S Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - S Nizzero
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA; Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - M Ferrari
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - G Ciardelli
- Politecnico di Torino, DIMEAS C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
21
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Wei D, Pang K, Song Q, Suo Y, He H, Weng X, Gao X, Wei X. Noninvasive monitoring of nanoparticle clearance and aggregation in blood circulation by in vivo flow cytometry. J Control Release 2018; 278:66-73. [PMID: 29625160 DOI: 10.1016/j.jconrel.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Nanoparticles have been widely used in biomedical research as drug carriers or imaging agents for living animals. Blood circulation is crucial for the delivery of nanoparticles, which enter the bloodstream through injection, inhalation, or dermal exposure. However, the clearance kinetics of nanoparticles in blood circulation has been poorly studied, mainly because of the limitations of conventional detection methods, such as insufficient blood sample volumes or low spatial-temporal resolution. In addition, formation of nanoparticle aggregates is a key determinant for biocompatibility and drug delivery efficiency. Aggregation behavior of nanoparticles in blood is studied using dynamic light scattering in serum or serum protein solutions, which is still very different from in vivo condition. In this work, we monitored the dynamics of nanoparticle concentration and formation of nanoparticle aggregates in the bloodstream in live animals using in vivo flow cytometry (IVFC). The results indicated that nanoparticles in smaller size could stay longer in the bloodstream. Polyethylene glycol (PEG)-modification could prolong circulating time and reduce the formation of aggregates in the blood circulation. Our work shows that IVFC can be a powerful tool for pharmacokinetic studies of nanoparticles and other drug carriers, assessing cell-targeting efficiency, as well as potentially measuring cardiac output and hepatic function in vivo.
Collapse
Affiliation(s)
- Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kai Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuanzhen Suo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Department of Chemistry and Chemical Biology, Harvard University, Cambridge 02138, USA
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, China.
| |
Collapse
|
23
|
Scheeren LE, Nogueira-Librelotto DR, Fernandes JR, Macedo LB, Marcolino AIP, Vinardell MP, Rolim CMB. Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1380034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laís E. Scheeren
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniele R. Nogueira-Librelotto
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Joana R. Fernandes
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Letícia B. Macedo
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ana Isa P. Marcolino
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - M. Pilar Vinardell
- Departament de Bioquimica I Fisiologia, Facultat de Farmàcia I Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Clarice M. B. Rolim
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Ak G, Yilmaz H, Güneş A, Hamarat Sanlier S. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:926-937. [DOI: 10.1080/21691401.2018.1439838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Güliz Ak
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey
| | - Habibe Yilmaz
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey
| | - Aybike Güneş
- Department of Biochemistry, Ege University Faculty of Science, Izmir, Turkey
| | | |
Collapse
|
25
|
Roszkowska A, Tascon M, Bojko B, Goryński K, Dos Santos PR, Cypel M, Pawliszyn J. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue. Talanta 2018; 183:304-310. [PMID: 29567180 DOI: 10.1016/j.talanta.2018.02.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g-1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Pedro Reck Dos Santos
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
26
|
N'Guessan A, Fattal E, Chapron D, Gueutin C, Koffi A, Tsapis N. Dexamethasone palmitate large porous particles: A controlled release formulation for lung delivery of corticosteroids. Eur J Pharm Sci 2018; 113:185-192. [DOI: 10.1016/j.ejps.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
27
|
Shah M, Bourner L, Ali S, Al-Enazy S, Youssef MM, Fisler M, Rytting E. HPLC Method Development for Quantification of Doxorubicin in Cell Culture and Placental Perfusion Media. SEPARATIONS 2018; 5. [PMID: 29984222 PMCID: PMC6035002 DOI: 10.3390/separations5010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Assessment of drug transport across the placenta is important in understanding the effect of drugs on placental and fetal health. These phenomena can be studied in both in vitro cell lines and ex vivo placental perfusions. We have successfully developed a sensitive yet simple high performance liquid chromatography (HPLC) method coupled with fluorescence detection to determine the concentration of doxorubicin (DXR) in cell culture media for transport studies in human trophoblast cells (BeWo, b30 clone) and in fetal media for placental perfusion experiments. The method was developed based on a protein precipitation technique and was validated in both media types for linearity, intra-day, and inter-day precision and accuracy. The relationship of peak area to concentration was linear with R2 values of 0.99 or greater obtained over the concentration range of 1.5 to 15,000 ng/mL. Despite the high concentrations of albumin in fetal perfusion media (30 mg/mL), the lower limits of detection and quantification for DXR were found to be 1.5 and 5 ng/mL, respectively. This analytical method may be used to study the transport of DXR across BeWo cells and human placenta during placental perfusion studies.
Collapse
Affiliation(s)
- Mansi Shah
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1062, USA
| | - Luke Bourner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
| | - Shariq Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
| | - Sanaalarab Al-Enazy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
| | - Menatallah M. Youssef
- Department of Pharmaceutical Analytical Chemistry, Ain-Shams University, Cairo 1156, Egypt
| | - Morgan Fisler
- Department of Obstetrics & Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erik Rytting
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1062, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
- Correspondence:
| |
Collapse
|
28
|
Purohit MP, Verma NK, Kar AK, Singh A, Ghosh D, Patnaik S. Inhibition of Thioredoxin Reductase by Targeted Selenopolymeric Nanocarriers Synergizes the Therapeutic Efficacy of Doxorubicin in MCF7 Human Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36493-36512. [PMID: 28945070 DOI: 10.1021/acsami.7b07056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing evidence suggests selenium nanoparticles (Se NPs) as potential cancer therapeutic agents and emerging drug delivery carriers, yet, the molecular mechanism of their anticancer activity still remains unclear. Recent studies indicate thioredoxin reductase (TrxR), a selenoenzyme, as a promising target for anticancer therapy. The present study explored the TrxR inhibition efficacy of Se NPs as a plausible factor impeding tumor growth. Hyaluronic acid (HA)-functionalized selenopolymeric nanocarriers (Se@CMHA NPs) were designed wielding chemotherapeutic potential for target specific Doxorubicin (DOX) delivery. Se@CMHA nanocarriers are thoroughly characterized asserting their chemical and physical integrity and possess prolonged stability. DOX-loaded selenopolymeric nanocarriers (Se@CMHA-DOX NPs) exhibited enhanced cytotoxic potential toward human cancer cells compared to free DOX in an equivalent concentration eliciting its selectivity. In first-of-its-kind findings, selenium as Se NPs in these polymeric carriers progressively inhibit TrxR activity, further augmenting the anticancer efficacy of DOX through a synergistic interplay between DOX and Se NPs. Detailed molecular studies on MCF7 cells also established that upon exposure to Se@CMHA-DOX NPs, MCF7 cells endure G2/M cell cycle arrest and p53-mediated caspase-independent apoptosis. To gauge the relevance of the developed nanosystem in in vivo settings, three-dimensional tumor sphere model mimicking the overall tumor environment was also performed, and the results clearly depict the effectiveness of our nanocarriers in reducing tumor activity. These findings are reminiscent of the fact that our Se@CMHA-DOX NPs could be a viable modality for effective cancer chemotherapy.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | - Neeraj K Verma
- BBD University, School of Dental Sciences , Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Aditya K Kar
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | | | - Debabrata Ghosh
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
29
|
Zhang RX, Zhang T, Chen K, Cheng J, Lai P, Rauth AM, Pang KS, Wu XY. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J Vis Exp 2017. [PMID: 29053672 DOI: 10.3791/56159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Combination chemotherapy is frequently used in the clinic for cancer treatment; however, associated adverse effects to normal tissue may limit its therapeutic benefit. Nanoparticle-based drug combination has been shown to mitigate the problems encountered by free drug combination therapy. Our previous studies have shown that the combination of two anticancer drugs, doxorubicin (DOX) and mitomycin C (MMC), produced a synergistic effect against both murine and human breast cancer cells in vitro. DOX and MMC co-loaded polymer-lipid hybrid nanoparticles (DMPLN) bypassed various efflux transporter pumps that confer multidrug resistance and demonstrated enhanced efficacy in breast tumor models. Compared to conventional solution forms, such superior efficacy of DMPLN was attributed to the synchronized pharmacokinetics of DOX and MMC and increased intracellular drug bioavailability within tumor cells enabled by the nanocarrier PLN. To evaluate the pharmacokinetics and bio-distribution of co-administered DOX and MMC in both free solution and nanoparticle forms, a simple and efficient multi-drug analysis method using reverse-phase high performance liquid chromatography (HPLC) was developed. In contrast to previously reported methods that analyzed DOX or MMC individually in the plasma, this new HPLC method is able to simultaneously quantitate DOX, MMC and a major cardio-toxic DOX metabolite, doxorubicinol (DOXol), in various biological matrices (e.g., whole blood, breast tumor, and heart). A dual fluorescent and ultraviolet absorbent probe 4-methylumbelliferone (4-MU) was used as an internal standard (I.S.) for one-step detection of multiple drug analysis with different detection wavelengths. This method was successfully applied to determine the concentrations of DOX and MMC delivered by both nanoparticle and solution approaches in whole blood and various tissues in an orthotopic breast tumor murine model. The analytical method presented is a useful tool for pre-clinical analysis of nanoparticle-based delivery of drug combinations.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Tian Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - King Chen
- Department of Pharmaceutical Sciences, University of Toronto
| | - Ji Cheng
- Department of Pharmaceutical Sciences, University of Toronto
| | - Paris Lai
- Department of Pharmaceutical Sciences, University of Toronto
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Xiao Yu Wu
- Department of Pharmaceutical Sciences, University of Toronto;
| |
Collapse
|
30
|
Electrochemical sensing of doxorubicin in unprocessed whole blood, cell lysate, and human plasma samples using thin film of poly-arginine modified glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:790-802. [DOI: 10.1016/j.msec.2017.03.257] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 11/22/2022]
|
31
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Dos Santos Ferreira D, Jesus de Oliveira Pinto BL, Kumar V, Cardoso VN, Fernandes SO, Souza CM, Cassali GD, Moore A, Sosnovik DE, Farrar CT, Leite EA, Alves RJ, de Oliveira MC, Guimarães AR, Caravan P. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:1693-1701. [PMID: 28343016 PMCID: PMC5483199 DOI: 10.1016/j.nano.2017.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Chemotherapy for bone tumors is a major challenge because of the inability of therapeutics to penetrate dense bone mineral. We hypothesize that a nanostructured formulation with high affinity for bone could deliver drug to the tumor while minimizing off-target toxicity. Here, we evaluated the efficacy and toxicity of a novel bone-targeted, pH-sensitive liposomal formulation containing doxorubicin in an animal model of bone metastasis. Biodistribution studies with the liposome showed good uptake in tumor, but low accumulation of doxorubicin in the heart. Mice treated with the bone-targeted liposome formulation showed a 70% reduction in tumor volume, compared to 35% reduction for free doxorubicin at the same dose. Both cardiac toxicity and overall mortality were significantly lower for animals treated with the bone-targeted liposomes compared to free drug. Bone-targeted, pH-sensitive, doxorubicin containing liposomes represent a promising approach to selectively delivering doxorubicin to bone tumors while minimizing cardiac toxicity.
Collapse
Affiliation(s)
- Diego Dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Bruno Luís Jesus de Oliveira Pinto
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Vidhya Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicology Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Simone Odília Fernandes
- Department of Clinical and Toxicology Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Cristina Maria Souza
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Geovanni Dantas Cassali
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Anna Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Ricardo José Alves
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Mônica Cristina de Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
33
|
Khaliq NU, Oh KS, Sandra FC, Joo Y, Lee J, Byun Y, Kim IS, Kwon IC, Seo JH, Kim SY, Yuk SH. Assembly of polymer micelles through the sol-gel transition for effective cancer therapy. J Control Release 2017; 255:258-269. [DOI: 10.1016/j.jconrel.2017.04.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/02/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
|
34
|
Paziewska−Nowak A, Jankowska−Śliwińska J, Dawgul M, Pijanowska DG. Selective Electrochemical Detection of Pirarubicin by Means of DNA-modified Graphite Biosensor. ELECTROANAL 2017. [DOI: 10.1002/elan.201700067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Agnieszka Paziewska−Nowak
- Nalecz Institute of Biocybernetics and Biomedical Engineering; PAS; Trojdena St. 4 02-109 Warsaw Poland
| | | | - Marek Dawgul
- Nalecz Institute of Biocybernetics and Biomedical Engineering; PAS; Trojdena St. 4 02-109 Warsaw Poland
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering; PAS; Trojdena St. 4 02-109 Warsaw Poland
| |
Collapse
|
35
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|
36
|
Hajian R, Tayebi Z, Shams N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal 2016; 7:27-33. [PMID: 29404015 PMCID: PMC5686857 DOI: 10.1016/j.jpha.2016.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/10/2016] [Accepted: 07/16/2016] [Indexed: 11/02/2022] Open
Abstract
In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin (DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode (Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V (vs. Ag/AgCl) in Britton Robinson (B-R) buffer (pH 4.0, 0.1 M). The electrochemical parameters including pH, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05-4.0 µg/mL with the detection limit of 0.002 µg/mL. The number of electron transfers (n) and electron transfer-coefficient (α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of doxorubicin in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant (Kb) of 1.12×105 L/mol.
Collapse
Affiliation(s)
- Reza Hajian
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
| | - Zahra Tayebi
- Department of Chemistry, College of Science, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
| | - Nafiseh Shams
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Doxorubicin/heparin composite nanoparticles for caspase-activated prodrug chemotherapy. Biomaterials 2016; 101:131-42. [PMID: 27286189 DOI: 10.1016/j.biomaterials.2016.05.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022]
Abstract
Caspase-activated prodrug chemotherapy is introduced and demonstrated using the composite nanoparticles (NPs), which deliver doxorubicin (DOX) and DEVD-S-DOX together to the tumor tissue. DEVD-S-DOX, DOX linked to a peptide moiety (DEVD), is a prodrug that is cleaved into free DOX by caspase-3 upon apoptosis. DEVD-S-DOX has no therapeutic efficacy, but it changes into free DOX with the expression of caspase-3. With the accumulation of the composite NPs in the tumor tissue by the enhanced permeation and retention (EPR) effect, a small exposure of DOX in the tumor cells initiated apoptosis in a localized area of the tumor tissue, which induced caspase-3 activation. Cleavage of DEVD-S-DOX into free DOX by caspase-3 continued with repetitive activation of caspase-3 and cleavage of DEVD-S-DOX at the tumor site. The composite NPs were characterized with transmittance electron microscopy (TEM) and particle size analyzer. We then evaluated the nanoparticle drug release, therapeutic efficacy, and in vivo biodistribution for tumor targeting using a non-invasive live animal imaging technology and the quantification of DOX with high performance liquid chromatography. DOX-induced apoptosis-targeted chemotherapy (DIATC) was verified by in vitro/in vivo DEVD-S-DOX response to free DOX and cellular uptake behavior of the composite NPs with flow cytometry analysis. Significant antitumor efficacy with minimal cardiotoxicity was also observed, which supported DIATC for improved chemotherapy.
Collapse
|
38
|
A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:638-50. [DOI: 10.1016/j.msec.2016.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 01/03/2016] [Indexed: 11/17/2022]
|
39
|
Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm 2016; 42:1590-9. [PMID: 26942448 DOI: 10.3109/03639045.2016.1160103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Targeted hepatocellular carcinoma (HCC) therapy was carried out to improve the efficacy of liver cancers. The aim of this study was to develop transferrin (Tf) modified, self-assembled polymeric nanoparticles for co-delivery doxorubicin (DOX) and cisplatin (DDP), to achieve combination tumor therapy. METHODS Tf modified polyethylene glycol (PEG) containing DOX prodrug (Tf-PEG-DOX) was synthesized. DDP containing poly(lactic-co-glycolic) acid (PLGA) materials (PLGA-DDP) were prepared. Tf modified DOX and DDP loaded PLGA nanoparticles (Tf-DOX/DDP NPs) were prepared by using nanoprecipitation method. The particles sizes, zeta potentials, drug loading effects were characterized. The cytotoxicity of the NPs was evaluated in human hepatoma carcinoma cell lines (HepG2 cells), and in vivo anti-tumor was observed in mice bearing human HepG2 cells model. RESULTS Tf-DOX/DDP NPs displayed higher cytotoxicity and enhanced antitumor activity both in vitro and in vivo over their non-modified and single drug loaded counterparts. CONCLUSION Tf-DOX/DDP NPs can achieve outstanding anti-tumor activity due to the combination effect of two drugs and the active targeting ability of Tf ligands. The self-assembled polymeric nanomedicine could act as an efficient therapy method for HCC treatment.
Collapse
Affiliation(s)
- Xiaoran Zhang
- a Ji'nan Central Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Jinxiu Li
- b Department of Pharmacy , Binzhou People ' s Hospital , Binzhou , People's Republic of China
| | - Meixing Yan
- c Department of Pharmacy , Qingdao Municipal Hospital , Qingdao , People's Republic of China
| |
Collapse
|
40
|
Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 2016; 34:414-8. [PMID: 26974511 DOI: 10.1038/nbt.3506] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
The efficacy of cancer drugs is often limited because only a small fraction of the administered dose accumulates in tumors. Here we report an injectable nanoparticle generator (iNPG) that overcomes multiple biological barriers to cancer drug delivery. The iNPG is a discoidal micrometer-sized particle that can be loaded with chemotherapeutics. We conjugate doxorubicin to poly(L-glutamic acid) by means of a pH-sensitive cleavable linker, and load the polymeric drug (pDox) into iNPG to assemble iNPG-pDox. Once released from iNPG, pDox spontaneously forms nanometer-sized particles in aqueous solution. Intravenously injected iNPG-pDox accumulates at tumors due to natural tropism and enhanced vascular dynamics and releases pDox nanoparticles that are internalized by tumor cells. Intracellularly, pDox nanoparticles are transported to the perinuclear region and cleaved into Dox, thereby avoiding excretion by drug efflux pumps. Compared to its individual components or current therapeutic formulations, iNPG-pDox shows enhanced efficacy in MDA-MB-231 and 4T1 mouse models of metastatic breast cancer, including functional cures in 40-50% of treated mice.
Collapse
Affiliation(s)
- Rong Xu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Xiaoyong Deng
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhenhua Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lingxiao Chen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Yi Huang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Eugene Koay
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Yu Huang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, The University of Texas-Houston Medical School, Houston, Texas, USA
| | - Joe E Ensor
- Houston Methodist Cancer Center, Houston, Texas, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
41
|
Amjadi M, Jalili R. Molecularly imprinted polymer-capped nitrogen-doped graphene quantum dots as a novel chemiluminescence sensor for selective and sensitive determination of doxorubicin. RSC Adv 2016. [DOI: 10.1039/c6ra18184h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecularly imprinted polymer-capped nitrogen-doped graphene quantum dots (MIP@NGQDs) were prepared via a simple sol–gel process and used for chemiluminescence detection of doxorubicin.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166616471
- Iran
| | - Roghayeh Jalili
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166616471
- Iran
| |
Collapse
|
42
|
KOZIOLOVA E, JANOUSKOVA O, CHYTIL P, STUDENOVSKY M, KOSTKA L, ETRYCH T. Nanotherapeutics With Anthracyclines: Methods of Determination and Quantification of Anthracyclines in Biological Samples. Physiol Res 2015; 64:S1-10. [DOI: 10.33549/physiolres.933140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anthracyclines, e.g. doxorubicin, pirarubicin, are widely used as cytostatic agents in the polymer nanotherapeutics designed for the highly effective antitumor therapy with reduced side effects. However, their precise dosage scheme needs to be optimized, which requires an accurate method for their quantification on the cellular level in vitro during nanocarrier development and in body fluids and tissues during testing in vivo. Various methods detecting the anthracycline content in biological samples have already been designed. Most of them are highly demanding and they differ in exactness and reproducibility. The cellular uptake and localization is predominantly observed and determined by microscopy techniques, the anthracycline content is usually quantified by chromatographic analysis using fluorescence detection. We reviewed and compared published methods concerning the detection of anthracycline nanocarriers.
Collapse
Affiliation(s)
- E. KOZIOLOVA
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
43
|
Electrodepositing of copper nanowires on layered double hydroxide film modified glassy carbon electrode for the determination of doxorubicin. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Taei M, Hasanpour F, Salavati H, Mohammadian S. Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1588-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Evtugyn G, Porfireva A, Stepanova V, Budnikov H. Electrochemical Biosensors Based on Native DNA and Nanosized Mediator for the Detection of Anthracycline Preparations. ELECTROANAL 2015. [DOI: 10.1002/elan.201400564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Tran TH, Nguyen CT, Gonzalez-Fajardo L, Hargrove D, Song D, Deshmukh P, Mahajan L, Ndaya D, Lai L, Kasi RM, Lu X. Long Circulating Self-Assembled Nanoparticles from Cholesterol-Containing Brush-Like Block Copolymers for Improved Drug Delivery to Tumors. Biomacromolecules 2014; 15:4363-75. [DOI: 10.1021/bm5013822] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thanh-Huyen Tran
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chi Thanh Nguyen
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Laura Gonzalez-Fajardo
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Derek Hargrove
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Donghui Song
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Prashant Deshmukh
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lalit Mahajan
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dennis Ndaya
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Laijun Lai
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rajeswari M. Kasi
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiuling Lu
- Department of Pharmaceutical
Sciences, ‡Polymer Program, Institute of Materials
Science, §Department of Chemistry, ∥Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
47
|
Singh-Moon RP, Roblyer DM, Bigio IJ, Joshi S. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:96003. [PMID: 25199058 PMCID: PMC4157604 DOI: 10.1117/1.jbo.19.9.096003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 05/18/2023]
Abstract
We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a crosscorrelation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.
Collapse
Affiliation(s)
- Rajinder P. Singh-Moon
- Columbia University College of Physicians and Surgeons, Department of Anesthesiology, 630 West 168th Street, New York, New York 10032, United States
| | - Darren M. Roblyer
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, Massachusetts 02215, United States
| | - Irving J. Bigio
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, Massachusetts 02215, United States
- Boston University, Department of Electrical Engineering, 44 Cummington Street, Boston, Massachusetts 02215, United States
| | - Shailendra Joshi
- Columbia University College of Physicians and Surgeons, Department of Anesthesiology, 630 West 168th Street, New York, New York 10032, United States
- Address all correspondence to: Shailendra Joshi, E-mail:
| |
Collapse
|
48
|
Candido CD, Campos ML, Correa Vidigal Assumpção JU, Pestana KC, Padilha EC, Carlos IZ, Peccinini RG. Biocompatible microemulsion modifies the tissue distribution of doxorubicin. J Pharm Sci 2014; 103:3297-301. [PMID: 25100266 DOI: 10.1002/jps.24106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 11/08/2022]
Abstract
The incorporation of doxorubicin (DOX) in a microemulsion (DOX-ME) has shown beneficial consequences by reducing the cardiotoxic effects of DOX. The aim of this study was to determine the distribution of DOX-ME in Ehrlich solid tumor (EST) and the heart, and compare it with that of free DOX. The distribution study was conducted with female Swiss mice with EST (n = 7 per group; 20-25 g). Animals received a single dose (10 mg/kg, i.p.) of DOX or DOX-ME 7 days after tumor inoculation. Fifteen minutes after administration, the animals were sacrificed, and the tumor and heart tissues were taken for immediate analysis by ultra-performance liquid chromatography. No difference was observed in DOX concentration in tumor tissue between DOX and DOX-ME administration. However, the most remarkable result in this study was the statistically significant reduction in DOX concentration in heart tissue of animals given DOX-ME. Mean DOX concentration in heart tissue was 0.92 ± 0.54 ng mg(-1) for DOX-ME and 1.85 ± 0.34 ng mg(-1) for free DOX. In conclusion, DOX-ME provides a better tissue distribution profile, with a lower drug concentration in heart tissue but still comparable tumor drug concentration, which indicates that antitumor activity would not be compromised.
Collapse
Affiliation(s)
- Caroline Damico Candido
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14801-902, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:178-95. [PMID: 24907751 DOI: 10.1016/j.msec.2014.04.049] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/04/2014] [Accepted: 04/18/2014] [Indexed: 12/21/2022]
Abstract
Nanoengineered drug delivery systems (nDDS) have been successfully used as clinical tools for not only modulation of pharmacological drug release profile but also specific targeting of diseased tissues. Until now, encapsulation of anti-cancer molecules such as paclitaxel, vincristin and doxorubicin has been the main target of nDDS, whereby liposomes and polymer-drug conjugates remained as the most popular group of nDDS used for this purpose. The success reached by these nanocarriers can be imitated by careful selection and optimization of the different factors that affect drug release profile (i.e. type of biomaterial, size, system architecture, and biodegradability mechanisms) along with the selection of an appropriate manufacture technique that does not compromise the desired release profile, while it also offers possibilities to scale up for future industrialization. This review focuses from an engineering perspective on the different parameters that should be considered before and during the design of new nDDS, and the different manufacturing techniques available, in such a way to ensure success in clinical application.
Collapse
Affiliation(s)
- Betiana Felice
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina.; START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602
| | - Molamma P Prabhakaran
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602.
| | - Andrea P Rodríguez
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina
| | - Seeram Ramakrishna
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602; Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
50
|
Rezaei B, Askarpour N, Ensafi AA. A novel sensitive doxorubicin impedimetric immunosensor based on a specific monoclonal antibody–gold nanoaprticle–sol–gel modified electrode. Talanta 2014; 119:164-9. [DOI: 10.1016/j.talanta.2013.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/26/2022]
|