1
|
Xu L, Zha A, Xiong X, Sun D. Determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat by ultrahigh-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9769. [PMID: 38782757 DOI: 10.1002/rcm.9769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
RATIONALE Succinic acid and lactic acid have been associated with diarrhea in weaned piglets. The level of succinic acid and lactic acid in serum, meat, and intestinal contents is important to elucidate the mechanism of diarrhea in weaned piglets. METHODS A facile method was developed for the quantification of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS). The serum samples underwent protein precipitation with methanol. The meat and intestinal contents were freeze-dried and homogenized using a tissue grinding apparatus. Methanol-water mixture (80:20, v/v) was used for homogenizing the meat, while water was used for homogenizing the intestinal contents. An additional step of protein precipitation with acetonitrile was required for the intestinal contents. The resulting solution was diluted with water before being analyzed by UHPLC/MS/MS. Separation of succinic acid and lactic acid could be achieved within 3 min using a Kinetic XB-C18 column. RESULTS The coefficients of variation for peak areas of succinic acid and lactic acid were less than 5.0%. The established method demonstrated good linearity as indicated by correlation coefficients exceeding 0.996. Additionally, satisfactory recoveries ranging from 88.58% to 108.8% were obtained. The detection limits (RS/N = 3) for succinic acid and lactic acid were determined to be 0.75 ng/mL and 0.02 μg/mL, respectively. CONCLUSION This method exhibited high sensitivity, simplicity in operation, and small sample weight, making it suitable for quantitative determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat. The method developed will provide valuable technical support in studying the metabolic mechanisms of succinic acid and lactic acid in pigs.
Collapse
Affiliation(s)
- Liwei Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Andong Zha
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xia Xiong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dehui Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
2
|
Erdemir G, Danişman-Kalindemirtaş F, Kariper İA, Kuruca DS, Özerkan D. Comparison of Selenic Acid and Pyruvic Acid-Loaded Silver Nanocarriers Impact on Colorectal Cancer Viability. J Fluoresc 2024; 34:1025-1037. [PMID: 37439920 DOI: 10.1007/s10895-023-03339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and death worldwide. As current cancer drugs are ineffective, new solutions are being sought in other fields, including nanoscience. Similarly, silver nanoparticles play an important role in the pharmaceutical industry as they act as anti-cancer agents with less harmful effects and are usually 1 to 100 nm in size. Selenic acid (SA) and pyruvic acid (PA) are involved in various metabolic pathways in cancer. For this reason, we decided to detect their influence on colorectal cancer using silver-based (Ag) nanocarriers. DLS, Zetasizer, SEM and UV-Vis analyses were used to characterize AgSA and AgPA. A UV spectrophotometer was used to analyze the release of the NPs. MTT analyses were used to measure the viability of HCT116 and HUVEC cells, and IC50 values were calculated using GraphPad Prism. The indicated dosage and particle size of AgSA NPs proved to be suitable for cytotoxicity. Moreover, injection of these nanoparticles into non-cancer cells proved safe due to their minimal toxicity. In contrast, the AgPA NPs have no cytotoxicity and induce proliferation of HCT116 cells. Finally, only the synthesised AgSA nanoparticles could be used for advanced cancer therapy, which is both inexpensive and has minimal side effects.
Collapse
Affiliation(s)
- Gökçe Erdemir
- Aziz Sancar Institute of Experimental Medicine and Research, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | | | - İshak Afşin Kariper
- Education Faculty, Department of Science Education, Erciyes University, Kayseri, Turkey
| | - Dürdane Serap Kuruca
- Faculty of Medicine, Department of Physiology, Istanbul Atlas University, İstanbul, Turkey
| | - Dilşad Özerkan
- Faculty of Engineering and Architecture, Department of Genetic and Bioengineering, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
3
|
Saw YL, Boughton JR, Wroniuk FL, Mostafa ME, Pellegrinelli PJ, Calvez SA, Kaplitz AS, Perez LJ, Edwards JL, Grinias JP. Use of N-(4-aminophenyl)piperidine derivatization to improve organic acid detection with supercritical fluid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2300343. [PMID: 37603367 DOI: 10.1002/jssc.202300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
The analysis of organic acids in complex mixtures by LC-MS can often prove challenging, especially due to the poor sensitivity of negative ionization mode required for detection of these compounds in their native (i.e., underivatized or untagged) form. These compounds have also been difficult to measure using supercritical fluid chromatography (SFC)-MS, a technique of growing importance for metabolomic analysis, with similar limitations based on negative ionization. In this report, the use of a high proton affinity N-(4-aminophenyl)piperidine derivatization tag is explored for the improvement of organic acid detection by SFC-MS. Four organic acids (lactic, succinic, malic, and citric acids) with varying numbers of carboxylate groups were derivatized with N-(4-aminophenyl)piperidine to achieve detection limits down to 0.5 ppb, with overall improvements in detection limit ranging from 25-to-2100-fold. The effect of the derivatization group on sensitivity, which increased by at least 200-fold for compounds that were detectable in their native form, and mass spectrometric detection are also described. Preliminary investigations into the separation of these derivatized compounds identified multiple stationary phases that could be used for complete separation of all four compounds by SFC. This derivatization technique provides an improved approach for the analysis of organic acids by SFC-MS, especially for those that are undetectable in their native form.
Collapse
Affiliation(s)
- Yih Ling Saw
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - John R Boughton
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Faith L Wroniuk
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | | | - Peter J Pellegrinelli
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Samantha A Calvez
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Alexander S Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Lark J Perez
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - James L Edwards
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
4
|
Luo T, Liu J. Field and laboratory investigations on factors affecting the diel variation of arsenic in Huangshui Creek from Shimen Realgar Mine, China: implications for arsenic transport in an alkali stream. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:687-705. [PMID: 35275295 DOI: 10.1007/s10653-022-01230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The release of arsenic and related species from mining activities has been investigated widely at both seasonal and diel scales, contributing to the understanding of arsenic cycles, its ultimate fate, and enabling accurate estimates of arsenic flux in specific areas. To enrich the research in this area, a case study was undertaken in Huangshui Creek, Hunan province, China. Here, arsenic is present in the sediment at the Creek entrance to a reservoir and in the widely developed alkali realgar(α-As4S4)-calcite(CaCO3)-dolomite[CaMg(CO3)2] strata (pH 7-11). Water from different levels in the Huangshui Creek, the Creek/reservoir entrance, and the downstream reservoir together with corresponding sediments were collected and analyzed. The local algae were separated and cultured. A diel variation of arsenic (688 ug/L in AM 3:50-1152 ug/L in PM 19:50) was observed in the Creek. The largest difference in arsenic concentration between the upper and lower water body was at the mixed creek/reservoir site (364 ug/L). Laboratory experiments showed that arsenic release from Creek sediment and pristine realgar was 1.3-2.7 times and 2.0-2.3 times at 25 and 37 °C, respectively, than low-temperature samples (8 °C) over 24 h. However, temperature variation is not the only factor controlling arsenic release from Huangshui Creek. Batch experiments show that both sediment and pristine realgar can release arsenic(III). In addition, the presence of bicarbonate promotes arsenic(V) release by 15.2-24.3 times for the sediment and by 1.7-3.4 times for pristine realgar compared to the control, though it restrains arsenic(III) release. High levels of algae have a complex effect on arsenic release; it increases arsenic(V) release by accelerating dissolution of realgar but decreases arsenic(III) release through adsorption. The field observations-variation of bicarbonate (67 mg/L in day and 201 mg/L in night) and chlorophyll-a (0.06-0.87)-support that both dissolved bicarbonate and algae affect arsenic concentration. These factors establish a circadian rhythm in the Creek, which coupled with arsenic release, ultimately affect the fate of arsenic.
Collapse
Affiliation(s)
- Tanghuizi Luo
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Han S, Chen H, Su Y, Cui L, Feng P, Fu Y, Tian Y, Liu T, Hou H, Hu Q. Simultaneous quantification of nicotine salts in e-liquids by LC-MS/MS and GC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4185-4192. [PMID: 36278415 DOI: 10.1039/d2ay00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotine salts, formed by nicotine and organic acids, are commonly added to electronic cigarette liquids for their ability to provide desirable sensory effects. Analytical strategies have been developed to detect the types of organic acids and nicotine levels, but methods for directly measuring nicotine salts are still desirable. Herein, a novel approach is presented for the simultaneous quantification of non-volatile and volatile nicotine salts via liquid chromatography/tandem mass spectroscopy (LC-MS/MS) and gas chromatography/mass spectroscopy (GC-MS). This approach was validated with recovery experiments, which yielded recovery values between 92.0% and 110.8%. This method is the first technique for quantifying multiple nicotine salts that could be present in commercial e-liquids. Without using derivatization steps, different nicotine salts could be detected rapidly and conveniently. This new method was demonstrated with 10 e-cigarette liquid samples, providing satisfactory outcomes. It could be used to study organic acids and protonated nicotine in e-liquids and the release behaviour of nicotine salts in electronic cigarettes.
Collapse
Affiliation(s)
- Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yue Su
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Lili Cui
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Ya'ning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Tong Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhang Z, Cheng W, Wang X, Wang M, Chen F, Cheng KW. A novel formation pathway of N ε-(carboxyethyl)lysine from lactic acid during high temperature exposure in wheat sourdough bread and chemical model. Food Chem 2022; 388:132942. [PMID: 35447583 DOI: 10.1016/j.foodchem.2022.132942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) have been the most extensively studied advanced glycation end-products (AGEs) in foods. Their formation mechanism, especially the latter, has not been clearly delineated in fermented food. In this work, the relative contents of CEL and CML were evaluated in a sourdough-bread and a silica solid chemical model. Lactic acid (LA) content in the sourdough increased with fermentation time that was accompanied by an increase in CEL, but not CML content in the bread. The role of LA as a precursor for CEL was supported by a positive significant correlation between LA and CEL contents, and further analysis using isotope-labeled LA (LA-13C3) revealed that the three carbon atoms of LA were incorporated into CEL. These findings for the first time indicate LA may function as a precursor to promote CEL formation in sourdough bread that merits further investigation.
Collapse
Affiliation(s)
- Zhongfei Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weiwei Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaowen Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Analysis of urinary organic acids by gas chromatography tandem mass spectrometry method for metabolic profiling applications. J Chromatogr A 2021; 1658:462590. [PMID: 34666271 DOI: 10.1016/j.chroma.2021.462590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
A sensitive, accurate and precise method was developed for the quantification of a large number of organic acids in human urine by GC-MS/MS. The analytes were selected based on their role as key metabolic intermediates; intermediates of Krebs cycle, fatty acid oxidation, glycolysis, down-stream metabolites of neurotransmitter synthesis and degradation, metabolites indicative of nutritional deficiencies, byproducts of microbial activity in the gastrointestinal tract (GI) etc. The most efficient sample preparation protocol was selected based on tests for extraction with different solvents such as MTBE and ethyl acetate under acidic conditions, whereas finally a more general protocol was applied with methanol. Regarding derivatization, methoxyamine with MSTFA, 1% TMCS was applied. The method was extensively validated, including stability study, ensuring accurate determination of the studied organic acids in human urine. Proof of its utility was exhibited in a set of samples from human volunteers. The method can find wide applicability in the context of metabolomics for clinical or nutritional studies.
Collapse
|
8
|
Safo L, Abdelrazig S, Grosse-Honebrink A, Millat T, Henstra AM, Norman R, Thomas NR, Winzer K, Minton NP, Kim DH, Barrett DA. Quantitative Bioreactor Monitoring of Intracellular Bacterial Metabolites in Clostridium autoethanogenum Using Liquid Chromatography-Isotope Dilution Mass Spectrometry. ACS OMEGA 2021; 6:13518-13526. [PMID: 34095647 PMCID: PMC8173575 DOI: 10.1021/acsomega.0c05588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
We report a liquid chromatography-isotope dilution mass spectrometry method for the simultaneous quantification of 131 intracellular bacterial metabolites of Clostridium autoethanogenum. A comprehensive mixture of uniformly 13C-labeled internal standards (U-13C IS) was biosynthesized from the closely related bacterium Clostridium pasteurianum using 4% 13C-glucose as a carbon source. The U-13C IS mixture combined with 12C authentic standards was used to validate the linearity, precision, accuracy, repeatability, limits of detection, and quantification for each metabolite. A robust-fitting algorithm was employed to reduce the weight of the outliers on the quantification data. The metabolite calibration curves were linear with R 2 ≥ 0.99, limits of detection were ≤1.0 μM, limits of quantification were ≤10 μM, and precision/accuracy was within RSDs of 15% for all metabolites. The method was subsequently applied for the daily monitoring of the intracellular metabolites of C. autoethanogenum during a CO gas fermentation over 40 days as part of a study to optimize biofuel production. The concentrations of the metabolites were estimated at steady states of different pH levels using the robust-fitting mathematical approach, and we demonstrate improved accuracy of results compared to conventional regression. Metabolic pathway analysis showed that reactions of the incomplete (branched) tricarboxylic acid "cycle" were the most affected pathways associated with the pH shift in the bioreactor fermentation of C. autoethanogenum and the concomitant changes in ethanol production.
Collapse
Affiliation(s)
- Laudina Safo
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Salah Abdelrazig
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Thomas Millat
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Anne M. Henstra
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Rupert Norman
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Neil R. Thomas
- Biodiscovery
Institute, School of Chemistry, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Klaus Winzer
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Dong-Hyun Kim
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - David A. Barrett
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
- . Phone: +44(0)115 9515062
| |
Collapse
|
9
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
10
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
11
|
Deciphering the Key Pharmacological Pathways and Targets of Yisui Qinghuang Powder That Acts on Myelodysplastic Syndromes Using a Network Pharmacology-Based Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8877295. [PMID: 33488754 PMCID: PMC7787775 DOI: 10.1155/2020/8877295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/21/2023]
Abstract
Background Yisui Qinghuang powder (YSQHP) is an effective traditional Chinese medicinal formulation used for the treatment of myelodysplastic syndromes (MDS). However, its pharmacological mechanism of action is unclear. Materials and Methods In this study, the active compounds of YSQHP were screened using the traditional Chinese medicine systems pharmacology (TCMSP) and HerDing databases, and the putative target genes of YSQHP were predicted using the STITCH and DrugBank databases. Then, we further screened the correlative biotargets of YSQHP and MDS. Finally, the compound-target-disease (C-T-D) network was conducted using Cytoscape, while GO and KEGG analyses were conducted using R software. Furthermore, DDI-CPI, a web molecular docking analysis tool, was used to verify potential targets and pathways. Finally, binding site analysis was performed to identify core targets using MOE software. Results Our results identified 19 active compounds and 273 putative target genes of YSQHP. The findings of the C-T-D network revealed that Rb1, CASP3, BCL2, and MAPK3 showed the most number of interactions, whereas indirubin, tryptanthrin, G-Rg1, G-Rb1, and G-Rh2 showed the most number of potential targets. The GO analysis showed that 17 proteins were related with STPK activity, PUP ligase binding, and kinase regulator activity. The KEGG analysis showed that PI3K/AKT, apoptosis, and the p53 pathways were the main pathways involved. DDI-CPI identified the top 25 proteins related with PI3K/AKT, apoptosis, and the p53 pathways. CASP8, GSK3B, PRKCA, and VEGFR2 were identified as the correlative biotargets of DDI-CPI and PPI, and their binding sites were found to be indirubin, G-Rh2, and G-Rf. Conclusion Taken together, our results revealed that YSQHP likely exerts its antitumor effects by binding to CASP8, GSK3B, PRKCA, and VEGFR2 and by regulating the apoptosis, p53, and PI3K/AKT pathways.
Collapse
|
12
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
13
|
An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker. Anal Bioanal Chem 2019; 412:657-667. [DOI: 10.1007/s00216-019-02273-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/05/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
|
14
|
Yuan Y, Jiang M, Zhang H, Liu J, Zhang M, Hu P. Simultaneous quantification of urinary purines and creatinine by ultra high performance liquid chromatography with ultraviolet spectroscopy and quadrupole time‐of‐flight mass spectrometry: Method development, validation, and application to gout study. J Sep Sci 2019; 42:2523-2533. [PMID: 31144454 DOI: 10.1002/jssc.201900170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yuan Yuan
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
| | - Min Jiang
- Department of RheumatologyJiujiang First People's Hospital Jiujiang P. R. China
| | - Hongyang Zhang
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai P. R. China
| | - Ju Liu
- Department of RheumatologyJiujiang First People's Hospital Jiujiang P. R. China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai P. R. China
| | - Ping Hu
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
| |
Collapse
|
15
|
Quantification of phenolic acid metabolites in humans by LC-MS: a structural and targeted metabolomics approach. Bioanalysis 2019; 10:1591-1608. [PMID: 30295550 DOI: 10.4155/bio-2018-0140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM Co-metabolism between a human host and the gastrointestinal microbiota generates many small phenolic molecules such as 3-hydroxy-3-(3-hydroxyphenyl)propanoic acid (3,3-HPHPA), which are reported to be elevated in schizophrenia and autism. Characterization of these chemicals, however, has been limited by analytic challenges. METHODOLOGY/RESULTS We applied HPLC to separate and quantify over 50 analytes, including multiple structural isomers of 3,3-HPHPA in human cerebrospinal fluid, serum and urine. Confirmation of identity was provided by NMR, by MS and other detection methods. The highly selective methods support rapid quantification of multiple metabolites and exhibit superior chromatographic behavior. CONCLUSION An improved ultra-HPLC-MS/MS and structural approaches can accurately quantify 3,3-HPHPA and related analytes in human biological matrices.
Collapse
|
16
|
Khamis MM, Adamko DJ, Purves RW, El-Aneed A. Quantitative determination of potential urine biomarkers of respiratory illnesses using new targeted metabolomic approach. Anal Chim Acta 2018; 1047:81-92. [PMID: 30567667 DOI: 10.1016/j.aca.2018.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/16/2022]
Abstract
The diagnosis of asthma and chronic obstructive pulmonary disease (COPD) can be challenging due to the overlap in their clinical presentations in some patients. There is a need for a more objective clinical test that can be routinely used in primary care settings. Through an untargeted 1H NMR urine metabolomic approach, we identified a set of endogenous metabolites as potential biomarkers for the differentiation of asthma and COPD. A subset of these potential biomarkers contains 7 highly polar metabolites of diverse physicochemical properties. To the best of our knowledge, there is no liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that evaluated more than two of the target metabolites in a single analytical run. The target metabolites belong to the families of monosaccharides, organic acids, amino acids, quaternary ammonium compounds and nucleic acids, rendering hydrophilic interaction liquid chromatography (HILIC) an ideal technology for their quantification. Since a clinical decision is to be made from patients data, a fully validated analytical method is required for biomarker validation. Method validation for endogenous metabolites is a daunting task since current guidelines were designed for exogenous compounds. As such, innovative approaches were adopted to meet the validation requirements. Herein, we describe a sensitive HILIC-MS/MS method for the quantification of the 7 endogenous urinary metabolites. Detection was achieved in the multiple reaction monitoring (MRM) mode with polarity switching, using quadrupole-linear ion trap instrument (QTRAP 6500) as well as single ion monitoring in the negative-ion mode. The method was fully validated according to the regulatory guidelines. Linearity was established between 6 and 21000 ng/mL and quality control samples demonstrated acceptable intra- and inter-day accuracy (85.7%-112%), intra- and inter-day precision (CV% <11.5%) as well as stability under various storage and sample processing conditions. To illustrate the method's applicability, the validated method was applied to the analysis of a small set of urine samples collected from asthma and COPD patients. Preliminary modelling of separation was generated using partial least square discriminant analysis (R2 0.752 and Q2 0.57). The adequate separation between patient samples confirms the diagnostic potential of these target metabolites as a proof-of-concept for the differentiation between asthma and COPD. However, more patient urine samples are needed in order to increase the statistical power of the analytical model.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W Purves
- Canadian Food Inspection Agency (CFIA), Saskatoon, SK, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
Combination of LC/MS and GC/MS based metabolomics to study the hepatotoxic effect of realgar nanoparticles in rats. Chin J Nat Med 2018; 15:684-694. [PMID: 28991530 DOI: 10.1016/s1875-5364(17)30098-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Realgar nanoparticles (NPs) are increasingly used as therapeutic agents for their enhanced anti-proliferation effect and cytotoxicity on cancer cells. However, the alteration of particle size may enhance biological reactivity as well as toxicity. A LC/MS and GC/MS based metabolomics approach was employed to explore the mechanism of realgar NPs-induced hepatotoxicity and identify potential biomarkers. Male Sprague-Dawley rats were administrated intragastrically with realgar or realgar NPs at a dose of 1.0 g·kg-1·d-1 for 28 days and toxic effects of realgar NPs on liver tissues were examined by biochemical indicator analysis and histopathologic examination. Increased levels of serum enzymes and high hepatic steatosis were discovered in the realgar NPs treated group. Multivariate data analysis revealed that rats with realgar NPs-induced hepatotoxicity could be distinctively differentiated from the animals in the control and realgar treated groups. In addition, 21 and 32 endogenous metabolites were apparently changed in the serum and live extracts, respectively. Realgar NPs might induce free fatty acid and triglyceride accumulation, resulting in hepatotoxicity. In conclusion, the present study represents the first comprehensive LC/MS- and GC/MS-based metabolomics analysis of realgar NPs-induced hepatotoxicity, which may help further research of nanotoxicity.
Collapse
|
18
|
Chiu M, Taurino G, Bianchi MG, Ottaviani L, Andreoli R, Ciociola T, Lagrasta CAM, Tardito S, Bussolati O. Oligodendroglioma Cells Lack Glutamine Synthetase and Are Auxotrophic for Glutamine, but Do not Depend on Glutamine Anaplerosis for Growth. Int J Mol Sci 2018; 19:E1099. [PMID: 29642388 PMCID: PMC5979401 DOI: 10.3390/ijms19041099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
In cells derived from several types of cancer, a transcriptional program drives high consumption of glutamine (Gln), which is used for anaplerosis, leading to a metabolic addiction for the amino acid. Low or absent expression of Glutamine Synthetase (GS), the only enzyme that catalyzes de novo Gln synthesis, has been considered a marker of Gln-addicted cancers. In this study, two human cell lines derived from brain tumors with oligodendroglioma features, HOG and Hs683, have been shown to be GS-negative. Viability of both lines depends from extracellular Gln with EC50 of 0.175 ± 0.056 mM (Hs683) and 0.086 ± 0.043 mM (HOG), thus suggesting that small amounts of extracellular Gln are sufficient for OD cell growth. Gln starvation does not significantly affect the cell content of anaplerotic substrates, which, consistently, are not able to rescue cell growth, but causes hindrance of the Wnt/β-catenin pathway and protein synthesis attenuation, which is mitigated by transient GS expression. Gln transport inhibitors cause partial depletion of intracellular Gln and cell growth inhibition, but do not lower cell viability. Therefore, GS-negative human oligodendroglioma cells are Gln-auxotrophic but do not use the amino acid for anaplerosis and, hence, are not Gln addicted, exhibiting only limited Gln requirements for survival and growth.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Laura Ottaviani
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Tecla Ciociola
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Costanza A M Lagrasta
- Laboratory of Anatomical Pathology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback road, Glasgow G611BD, UK.
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
19
|
Hydrophilic interaction chromatography and evaporative light scattering detection for the determination of polar analytes in Belgian endive. Food Chem 2017; 229:296-303. [DOI: 10.1016/j.foodchem.2017.02.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
|
20
|
Boháčová I, Halko R, Jandera P. The effects of temperature and mobile phase on the retention of aliphatic carboxylic acids in hydrophilic interaction chromatography on zwitterionic stationary phases. J Sep Sci 2016; 39:4732-4739. [DOI: 10.1002/jssc.201601049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Iveta Boháčová
- Faculty of Natural Sciences, Department of Analytical Chemistry; Comenius University in Bratislava; Bratislava Slovakia
| | - Radoslav Halko
- Faculty of Natural Sciences, Department of Analytical Chemistry; Comenius University in Bratislava; Bratislava Slovakia
| | - Pavel Jandera
- Faculty of Chemical Technology; Department of Analytical Chemistry; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
21
|
UPLC-MS/MS determination of ptaquiloside and pterosin B in preserved natural water. Anal Bioanal Chem 2016; 408:7981-7990. [DOI: 10.1007/s00216-016-9895-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/07/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
22
|
Tang DQ, Zou L, Yin XX, Ong CN. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. MASS SPECTROMETRY REVIEWS 2016; 35:574-600. [PMID: 25284160 DOI: 10.1002/mas.21445] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/28/2014] [Indexed: 05/14/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) is an emerging separation mode of liquid chromatography (LC). Using highly hydrophilic stationary phases capable of retaining polar/ionic metabolites, and accompany with high organic content mobile phase that offer readily compatibility with mass spectrometry (MS) has made HILIC an attractive complementary tool to the widely used reverse-phase (RP) chromatographic separations in metabolomic studies. The combination of HILIC and RPLC coupled with an MS detector expands the number of detected analytes and provides more comprehensive metabolite coverage than use of only RP chromatography. This review describes the recent applications of HILIC-MS/MS in metabolomic studies, ranging from amino acids, lipids, nucleotides, organic acids, pharmaceuticals, and metabolites of specific nature. The biological systems investigated include microbials, cultured cell line, plants, herbal medicine, urine, and serum as well as tissues from animals and humans. Owing to its unique capability to measure more-polar biomolecules, the HILIC separation technique would no doubt enhance the comprehensiveness of metabolite detection, and add significant value for metabolomic investigations. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:574-600, 2016.
Collapse
Affiliation(s)
- Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical College, Xuzhou, 221044, China
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
| | - Ll Zou
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| | - Xiao-Xing Yin
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
| | - Choon Nam Ong
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
23
|
Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 2016; 128:667-79. [PMID: 27268090 DOI: 10.1182/blood-2016-01-690743] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.
Collapse
|
24
|
Shahdousti P, Shojaee R, Aghamohammadi M, Harooni B. Lactic Acid Determination in Human Plasma Using Ultrasound-Assisted Emulsification Microextraction Followed by Gas Chromatography. Aust J Chem 2016. [DOI: 10.1071/ch15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A rapid, sensitive, and accurate analytical method was developed for determination of lactic acid (LA) in human plasma to monitor lactic acidosis. This method was based on an ultrasound-assisted emulsification microextraction (USAEME) method followed by gas chromatography with flame ionization detection (GC–FID). Derivatization of LA was carried out by a low density alcoholic solvent which performs both as an extraction solvent and derivatization agent, simultaneously. In this procedure, 100 μL of binary mixtures of pentan-1-ol with toluene (70 : 30, v/v %) was slowly injected into a 10 mL acidified aqueous sample of LA placed into an ultrasonic water bath. The resulting emulsion was centrifuged and after derivatization, 2 μL of organic phase was analysed by GC–FID. The effective variables were evaluated to optimize the efficiency of USAEME. Under the optimum conditions, good linearity in the range of 0.06–7.77 mmol L–1 was obtained with a correlation coefficient (R2) of 0.991 and a limit of detection (LOD) of 0.04 mmol L–1 for water samples. The inter-day and intra-day repeatability of the proposed method in human plasma were evaluated in terms of the relative standard deviation (RSD %) and were found to be <10 %. The results revealed that the USAEME–GC–FID method can be applied successfully for determination of LA in human plasma samples with satisfactory accuracy and precision.
Collapse
|
25
|
Zou H, Xiang M, Ye X, xiong Y, Xie B, Shao J. Reduction of urinary uric acid excretion in patients with proteinuria. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1006:59-64. [DOI: 10.1016/j.jchromb.2015.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
|
26
|
Zhou W, Zhu B, Liu F, Lyu C, Zhang S, Yan C, Cheng Y, Wei H. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:379-86. [DOI: 10.1016/j.jchromb.2015.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
|
27
|
Xuan G, Lu X, Wang J, Lin H, Liu H. Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi. Photochem Photobiol Sci 2015; 14:1163-8. [PMID: 25959227 DOI: 10.1039/c5pp00118h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, highly sensitive and selective bacterial luminescence method for the detection of pyruvic acid (PA) is reported here. This method is based on a reaction system catalyzed by lactate dehydrogenase (LDH) with the bacterial luciferase-FMN:NADH oxidoreductase bioluminescence system in vitro. The reduced nicotinamide adenine dinucleotide (NADH) involved in the LDH reaction system could be quantitatively analyzed by the bioluminescence system. A good linear relationship between the luminescence intensity and pyruvic acid concentration was exhibited within the range of 0.00014-0.001 mol l(-1), and the pyruvic acid detection limit was found to be 8.537 × 10(-5) mol l(-1). This method was successfully applied to the detection of PA in quail serum with a good recovery of over 70%.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | | | |
Collapse
|
28
|
Zhang X, Hou H, Xiong W, Hu Q. Development of a method to detect three monohydroxylated polycyclic aromatic hydrocarbons in human urine by liquid chromatographic tandem mass spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:514320. [PMID: 25973283 PMCID: PMC4418005 DOI: 10.1155/2015/514320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
A liquid chromatographic tandem mass spectrometry method (LC-MS/MS) for the simultaneous determination of 1-hydroxypyrene (1-OHP), 3-hydroxybenzo[a]pyrene (3-OHBaP), and 3-hydroxybenz[a]anthracene (3-OHBaA) in human urine has been developed. With the exception of 3-OHBaP at a low spiking level, the average recoveries were greater than 80%. The method has good accuracy (72.1-107.7%) and reproducibility (1.8-11.4%) and was successfully used to study the uptake of pyrene, benzo[a]pyrene, and benzo[a]anthracene from cigarette smoke. The results indicated that urinary 1-OHP concentration in the smoking group (66.58 ± 70.91 ng/g creatinine) was higher than that observed in the nonsmoking group (58.16 ± 49.48 ng/g creatinine). Urinary 3-OHBaA concentrations in nonsmokers and smokers with 8 mg and 10 mg tar cigarettes were 10.98 ± 4.39 ng/g creatinine, 11.01 ± 13.30 ng/g creatinine, and 9.17 ± 12.89 ng/g creatinine, respectively. Urinary 3-OHBaP concentrations in nonsmokers and smokers with 8 mg and 13 mg tar cigarettes were 1.30 ± 0.20 ng/g creatinine, 2.83 ± 1.78 ng/g creatinine, and 6.00 ± 4.44 ng/g creatinine, respectively. Urinary 1-OHP levels exhibited a significant correlation with BaP yield in cigarette smoke under the Canadian intense smoking condition (y = 3.5563x + 30.171, R (2) = 0.9916, n = 227).
Collapse
Affiliation(s)
- Xiaotao Zhang
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Wei Xiong
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| |
Collapse
|
29
|
Evaluation of sample preparation and chromatographic separation for the parallel determination of taurine and edaravone in rat tissues using HILIC-MS/MS. Anal Bioanal Chem 2015; 407:4143-53. [DOI: 10.1007/s00216-015-8635-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
30
|
Determination of α-ketoglutaric and pyruvic acids in urine as potential biomarkers for diabetic II and liver cancer. Bioanalysis 2015; 7:713-23. [DOI: 10.4155/bio.14.307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: A simple and sensitive hollow fiber-liquid phase microextraction with in situ derivatization method was developed for the determination of α-ketoglutaric (α-KG) and pyruvic acids (PA) in small-volume urine samples. 2,4,6-trichloro phenyl hydrazine was used as derivatization agent. Results: Under the optimum extraction conditions, enrichment factors of 742 and 400 for α-KG and PA, respectively, were achieved. Calibration curves were linear over the range 1 to 1000 ng/ml (r2 ≥ 0.998). Detection and quantitation limits were 0.03 and 0.02, and 0.10 and 0.05 ng/ml for α-KG and PA, respectively. Conclusion: The concentrations in diabetic II and liver cancer samples were significantly lower than those from healthy people, showing their potential as biomarkers for these diseases.
Collapse
|
31
|
Liu Z, Rochfort S. Recent progress in polar metabolite quantification in plants using liquid chromatography–mass spectrometry. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:816-825. [PMID: 25340205 DOI: 10.1111/jipb.12181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era. Although separate liquid chromatography (LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades, a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography–mass spectrometry (GC–MS) techniques. The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC–MS based methods for multi-target quantification of polar metabolites. Although various LC–MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices, currently there is no consensus LC–MS method that is widely used in plant metabolomics studies. The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted. The aim of this review is to provide plant scientists, with limited to moderate experience in analytical chemistry, with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC–MS techniques.
Collapse
|
32
|
Gu L, Wang X, Zhang Y, Jiang Y, Lu H, Bi K, Chen X. Determination of 12 potential nephrotoxicity biomarkers in rat serum and urine by liquid chromatography with mass spectrometry and its application to renal failure induced by Semen Strychni. J Sep Sci 2014; 37:1058-66. [PMID: 24610835 DOI: 10.1002/jssc.201400053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 01/20/2023]
Abstract
In previous nephrotoxicity metabonomic studies, several potential biomarkers were found and evaluated. To investigate the relationship between the nephrotoxicity biomarkers and the therapeutic role of Radix Glycyrrhizae extract on Semen Strychni-induced renal failure, 12 typical biomarkers are selected and a simple LC-MS method has been developed and validated. Citric acid, guanidinosuccinic acid, taurine, guanidinoacetic acid, uric acid, creatinine, hippuric acid, xanthurenic acid, kynurenic acid, 3-indoxyl sulfate, indole-3-acetic acid, and phenaceturic acid were separated by a Phenomenex Luna C18 column and a methanol/water (5 mM ammonium acetate) gradient program with a runtime of 20 min. The prepared calibration curves showed good linearity with regression coefficients all above 0.9913. The absolute recoveries of analytes from serum and urine were all more than 70.4%. With the developed method, analytes were successfully determined in serum and urine samples within 52 days. Results showed that guanidinosuccinic acid, guanidinoacetic acid, 3-indoxyl sulfate, and indole-3-acetic acid (only in urine) were more sensitive than the conventional renal function markers in evaluating the therapeutic role of Radix Glycyrrhizae extract on Semen Strychni-induced renal failure. The method could be further used in predicting and monitoring renal failure cause by other reasons in the following researches.
Collapse
Affiliation(s)
- Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Tang DQ, Bian TT, Zheng XX, Li Y, Wu XW, Li YJ, Du Q, Jiang SS. LC-MS/MS methods for the determination of edaravone and/or taurine in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 28:1173-82. [DOI: 10.1002/bmc.3139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/25/2013] [Accepted: 12/22/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Dao-quan Tang
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou 221004 China
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Ting-ting Bian
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Xiao-xiao Zheng
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Ying Li
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Xiao-wen Wu
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Yin-jie Li
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Qian Du
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Shui-shi Jiang
- Nanjing Yoko Pharmaceutical Co. Ltd; Nanjing 210046 China
| |
Collapse
|
34
|
Cui J, Zhang J, Zhu X, Bai F, Feng Y, Guan W, Cui Q. Separation and Quantification of Water-Soluble Cellular Metabolites inClostridium thermocellumusing Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.811680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 2013; 13:3371-86. [PMID: 24155035 PMCID: PMC4265265 DOI: 10.1002/pmic.201300192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘-OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC-MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics-based studies. Limitations and requirements are discussed as well as extensions to the LC-MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC-MS, CE-MS or NMR.
Collapse
Affiliation(s)
- Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
36
|
Marrubini G, Pedrali A, Hemström P, Jonsson T, Appelblad P, Massolini G. Column comparison and method development for the analysis of short-chain carboxylic acids by zwitterionic hydrophilic interaction liquid chromatography with UV detection. J Sep Sci 2013; 36:3493-502. [DOI: 10.1002/jssc.201300551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/25/2022]
Affiliation(s)
| | - Alice Pedrali
- Department of Drug Sciences; University of Pavia; Pavia Italy
| | | | | | | | | |
Collapse
|
37
|
Hydrophilic interaction liquid chromatography coupled with MS/MS to detect and quantify dicarboxyethyl glutathione, a metabolic biomarker of the fumarate hydratase deficient cancer cell. J Sep Sci 2013; 36:3303-9. [DOI: 10.1002/jssc.201300602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 01/17/2023]
|
38
|
Huang Y, Tian Y, Li G, Li Y, Yin X, Peng C, Xu F, Zhang Z. Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and 1H NMR based metabolomics. Anal Bioanal Chem 2013; 405:4811-22. [PMID: 23479124 DOI: 10.1007/s00216-013-6842-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
Abstract
As an arsenical, realgar (As4S4) is known as a poison and paradoxically as a therapeutic agent. However, a complete understanding of the precise biochemical alterations accompanying the toxicity and therapy effects of realgar is lacking. Using a combined ultrafast liquid chromatography (UFLC) coupled with ion trap time-of-flight mass spectrometry (IT-TOF/MS) and (1)H NMR spectroscopy based metabolomics approach, we were able to delineate significantly altered metabolites in the urine samples of realgar-treated rats. The platform stability of the liquid chromatography LC/MS and NMR techniques was systematically investigated, and the data processing method was carefully optimized. Our results indicate significant perturbations in amino acid metabolism, citric acid cycle, choline metabolism, and porphyrin metabolism. Thirty-six metabolites were proposed as potential safety biomarkers related to disturbances caused by realgar, and glycine and serine are expected to serve as the central contacts in the metabolic pathways related to realgar-induced disturbance. The LC/MS and NMR based metabolomics approach established provided a systematic and holistic view of the biochemical effects of realgar on rats, and might be employed to investigate other drugs or xenobiotics in the future.
Collapse
Affiliation(s)
- Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|