1
|
Papapetrou P, Dimitriadis K, Galani V, Zoi V, Giannakopoulou M, Papathanasopoulou VA, Sioka C, Tsekeris P, Kyritsis AP, Lazari D, Alexiou GA. Antitumor activity of 5-hydroxy-3',4',6,7-tetramethoxyflavone in glioblastoma cell lines and its antagonism with radiotherapy. Biomol Concepts 2024; 15:bmc-2022-0039. [PMID: 38345457 DOI: 10.1515/bmc-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
5-Hydroxy-3',4',6,7-tetramethoxyflavone (TMF) is a plant-origin flavone known for its anti-cancer properties. In the present study, the cytotoxic effect of TMF was evaluated in the U87MG and T98G glioblastoma (GBM) cell lines. The effect of TMF on cell viability was assessed with trypan blue exclusion assay and crystal violet staining. In addition, flow cytometry was performed to examine its effect on the different phases of the cell cycle, and in vitro scratch wound assay assessed the migratory capacity of the treated cells. Furthermore, the effect of in vitro radiotherapy was also evaluated with a combination of TMF and radiation. In both cell lines, TMF treatment resulted in G0/G1 cell cycle arrest, reduced cell viability, and reduced cell migratory capacity. In contrast, there was an antagonistic property of TMF treatment with radiotherapy. These results demonstrated the antineoplastic effect of TMF in GBM cells in vitro, but the antagonistic effect with radiotherapy indicated that TMF should be further evaluated for its possible antitumor role post-radiotherapy.
Collapse
Affiliation(s)
| | - Kyriakos Dimitriadis
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| | | | | | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| | - Pericles Tsekeris
- Department of Radiation Oncology, University of Ioannina, Ioannina, Greece
| | | | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Hussain M, Thakur RK, Khazir J, Ahmed S, Khan MI, Rahi P, Peer LA, Shanmugam PV, Kaur S, Raina SN, Reshi ZA, Sehgal D, Rajpal VR, Mir BA. Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant. Curr Top Med Chem 2024; 24:301-342. [PMID: 37711006 DOI: 10.2174/1568026623666230914104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.
Collapse
Affiliation(s)
- Manzoor Hussain
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Srinagar, J&K, India
| | - Sajad Ahmed
- Department of Plant Biotechnology, Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | | | - Praveen Rahi
- Biological Resources Center, Institut Pasteur, University de Paris, Paris, 75015, France
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Zafar Ahmad Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Deepmala Sehgal
- Syngenta, Jeolett's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Vijay Rani Rajpal
- Department of Botany, HansRaj College, University of Delhi, Delhi, 110007, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| |
Collapse
|
3
|
Jameel S, Farooq S, Gani I, Riyaz-Ul-Hassan S, Bhat KA. Ultrasound assisted facile synthesis of Boron-Heck coupled sclareol analogs as potential antibacterial agents against Staphylococcus aureus. J Appl Microbiol 2022; 133:3678-3689. [PMID: 36064938 DOI: 10.1111/jam.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
AIM To evaluate the antimicrobial capability of sclareol and its derivatives against Staphylococcus aureus and its Methicillin-resistant strain (MRSA). METHODS AND RESULTS A new series of Boron-Heck-coupled sclareol analogs were prepared by structural modifications at C-15 terminal double bond of sclareol using ultrasonication. The structural modifications were designed to keep the stereochemistry of all the five chiral centres of sclareol intact. A two-step reaction scheme consisting of Boron-Heck coupling of sclareol followed by Wittig reaction was carried out to produce novel sclareol congeners for antintimicrobial evaluation. Three compounds SAJ-1, SAJ-2 and SB-11 exhibited strong antibacterial activity against Staphylococcus aureus and Methicillin-resistant strain (MRSA) with MIC values between 3 to 11 μM. Among all the screened compounds, SAJ-1 and SAJ-2 showed the best anti-biofilm profiles against both the strains. Moreover SAJ-1 and SAJ-2 acted synergistically with streptomycin against S. aureus while creating varying outcomes in combination with ciprofloxacin, penicillin, and ampicillin. SAJ-1 also acted synergistically with ampicillin against S. aureus, while SB-11 showed synergism with ciprofloxacin against both pathogens. Moreover, SAJ-1 and SAJ-2 also inhibited staphyloxanthin production in S. aureus and MRSA and induced post-antibiotic effects against both pathogens. CONCLUSIONS It can be inferred that SAJ-1, SAJ-2 and SB-11 may act as potential chemical entities for the development of antibacterial substances. The study revealed that SAJ-1 and SAJ-2 are most suitable sclareol analogs for further studies towards the development of antibacterial substances. SIGNIFICANCE AND IMPACT OF THE STUDY SAJ-1, SAJ-2 and SB-11 show promising antibacterial properties against Staphylococcus aureus. Efforts should be made and more research should be done, utilising in vivo models to determine their efficacy as antibiotics.
Collapse
Affiliation(s)
- Salman Jameel
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ifshana Gani
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Khursheed Ahmad Bhat
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
4
|
Design and synthesis of ludartin derivatives as potential anticancer agents against hepatocellular carcinoma. Med Chem Res 2022; 31:1224-1239. [PMID: 35634434 PMCID: PMC9129064 DOI: 10.1007/s00044-022-02890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023]
Abstract
Our previous study demonstrated that guaiane-type sesquiterpenoid ludartin showed potent antihepatoma activity against two human hepatocellular carcinoma cell lines, HepG2 and Huh7, with IC50 values of 32.7 and 34.3 μM, respectively. In this study, 34 ludartin derivatives were designed, synthesized and evaluated for their cytotoxic activities against HepG2 and Huh7 cell lines using an MTT assay in vitro. As a result, 17 compounds increased the activity against HepG2 cells, and 20 compounds enhanced the activity against Huh7 cells; 14 derivatives 2, 4-7, 9, 11, 17, 24, 28-30 and 32-33 were superior to ludartin on both HepG2 and Huh7 cells. In particular, dimeric derivative 33 as the most active compound showed 20-fold and 17-fold enhancement of cytotoxicity against HepG2 and Huh7 cells compared to that of ludartin. These results suggested that compound 33 could serve as a promising lead compound against liver cancer. Graphical abstract ![]()
Collapse
|
5
|
Krüzselyi D, Bakonyi J, Ott PG, Darcsi A, Csontos P, Morlock GE, Móricz ÁM. Goldenrod Root Compounds Active against Crop Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12686-12694. [PMID: 34665636 DOI: 10.1021/acs.jafc.1c03676] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root extracts of three goldenrods were screened for antimicrobial compounds. 2Z,8Z- and 2E,8Z-matricaria esters from European goldenrod (Solidago virgaurea) and E- and Z-dehydromatricaria esters from grass-leaved goldenrod (Solidago graminifolia) and first from showy goldenrod (Solidago speciosa) were identified by high-performance thin-layer chromatography combined with effect-directed analysis and high-resolution mass spectrometry or nuclear magnetic resonance spectroscopy after liquid chromatographic fractionation and isolation. Next to their antibacterial effects (against Bacillus subtilis, Aliivibrio fischeri, and Pseudomonas syringae pv. maculicola), they inhibited the crop pathogenic fungi Fusarium avenaceum and Bipolaris sorokiniana with half maximal inhibitory concentrations (IC50) between 31 and 107 μg/mL. Benzyl 2-hydroxy-6-methoxybenzoate, for the first time found in showy goldenrod root, showed the strongest antifungal effect, with IC50 of 25-26 μg/mL for both fungal strains.
Collapse
Affiliation(s)
- Dániel Krüzselyi
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Herman Ottó Street 15, 1022 Budapest, Hungary
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Herman Ottó Street 15, 1022 Budapest, Hungary
| | - Péter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Herman Ottó Street 15, 1022 Budapest, Hungary
| | - András Darcsi
- Pharmaceutical Chemistry and Technology Department, National Institute of Pharmacy and Nutrition, Zrínyi Street 3, 1051 Budapest, Hungary
| | - Péter Csontos
- Institute for Soil Sciences, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Herman Ottó Street 15, 1022 Budapest, Hungary
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Ágnes M Móricz
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Herman Ottó Street 15, 1022 Budapest, Hungary
| |
Collapse
|
6
|
Jameel S, Kaur L, Bhat SA, Malik FA, Bhat KA. Neuroprotective activity of natural products isolated from Senecio graciliflorus DC against corticosterone-induced impairment in SH-SY5Y cells. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2389-2399. [PMID: 34554266 DOI: 10.1007/s00210-021-02136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, β-sitosterol, 2β-(angeloyloxy)furanoeremophilane, gallic acid, 2β-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-β-D-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and β-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)-induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.
Collapse
Affiliation(s)
- Salman Jameel
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Loveleena Kaur
- Pharmacology Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, Srinagar, 190005, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Showkat Ahmad Bhat
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Fayaz A Malik
- Pharmacology Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, Srinagar, 190005, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Khursheed Ahmad Bhat
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.
| |
Collapse
|
7
|
Bhat KA, Naseer S, Gani I, Jameel S, Amin H, Bhat SA, Gupta AP. Isolation and Identification of Cytotoxic and Antimalarial Constituents from Artemisia moorcroftiana. ChemistrySelect 2021. [DOI: 10.1002/slct.202003944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Khursheed A. Bhat
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
- Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, Srinagar Jammu & Kashmir 190005 India
| | - Syed Naseer
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
| | - Ifshana Gani
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
| | - Salman Jameel
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
| | - Henna Amin
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
| | - Showkat Ahmad Bhat
- Indian Institute of Integrative Medicine (CSIR) Srinagar Jammu and Kashmir 190005 India
| | - Ajai P. Gupta
- Indian Institute of Integrative Medicine (CSIR) Jammu Jammu and Kashmir 180001 India
| |
Collapse
|
8
|
Taleghani A, Tayarani-Najaran Z. Potent Cytotoxic Natural Flavonoids: The Limits of Perspective. Curr Pharm Des 2019; 24:5555-5579. [PMID: 30799786 DOI: 10.2174/1381612825666190222142537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Besides the numerous biologic and pharmacologic functions in the human body that act as potent antioxidants, flavonoids (flavones, flavanones, flavonols, flavanols and isoflavones) are noted as cancer preventive or therapeutic agents. METHODS This review summarizes the published data using PubMed, Science Direct, and Scopus. RESULTS In this context, recognition and introduction of the most active cytotoxic flavonoids as promising agents for cancer therapy gives insight for further evaluations. However, there are some critical points that may affect the entering of flavonoids as active cytotoxic phytochemicals in the clinical phase. Issues such as the abundance of active species in nature, the methods of extraction and purification, solubility, pharmacokinetic profile, presence of the chiral moieties, method of synthesis, and structure modification may limit the entry of a selected compound for use in humans. Although plenty of basic evidence exists for cytotoxic/antitumor activity of the versatility of flavonoids for entry into clinical trials, the above-mentioned concerns must be considered. CONCLUSION This review is an effort to introduce cytotoxic natural flavonoids (IC50< 10 µM) that may have the potential to be used against various tumor cells. Also, active constituents, molecular mechanisms, and related clinical trials have been discussed as well as the limitations and challenges of using flavonoids in clinic.
Collapse
Affiliation(s)
- Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Golestan Province, Gonbad Kavus, P.O. Box 163, Iran
| | - Zahra Tayarani-Najaran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Shakeel-u-Rehman, Bhat KA, Lone SH, Malik FA. Click chemistry inspired facile synthesis and bioevaluation of novel triazolyl analogs of D-(+)-pinitol. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Improved Production of Industrially Important Essential Oils Through Elicitation in the Adventitious Roots of Artemisia amygdalina. PLANTS 2019; 8:plants8100430. [PMID: 31635139 PMCID: PMC6843893 DOI: 10.3390/plants8100430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/03/2022]
Abstract
The limited production of bioactive essential oils in natural plants does not meet the increasing worldwide market demand. Plant cell culture technology can be used for the higher production of industrially important essential oils. In the present study, a suitable method for production of essential oils was developed through establishment and elicitation of adventitious roots (AR) in a medicinally important plant Artemisia amygdalina D. The results indicated that leaf explants cultured on solid Murashige and Skoog (MS) media supplemented with 1.0 mg/L α- naphthalene acetic acid (NAA) and 4% sucrose instigated the higher AR induction frequency (90 ± 4.25) and maximum AR biomass (fresh biomass: 17.7 g/L). Furthermore, in the AR when transiently elicited with different elicitors for different time periods, methyl jasmonate (Me-J: 0.5 mg/L) resulted in the higher production of total phenolic content (TPC: 3.6 mg), total flavonoid content (TFC: 2.3 mg) and phenylalanine ammonia-lyase (PAL: 4.8 U/g×FW) activity, respectively. Nonetheless, considerable levels of the major bioactive compounds such as α-thujene (6.8%), α-pinene (8.3%), 1,8-cineole (16.2%), camphor (8.4%) and verbenole (10.2%) were recorded in the Me-J treated AR. Thus, a feasible protocol for production of essential oils through AR in A. amygdalina was established, which can be exploited for commercial production of the industrially important terpenes.
Collapse
|
11
|
Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, Salehi B, Setzer WN, Sharifi-Rad J. Bioactive Compounds and Health Benefits ofArtemisiaSpecies. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19850354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Artemisia L. is a genus of small herbs and shrubs found in northern temperate regions. It belongs to the important family Asteraceae, one of the most numerous plant groupings, which comprises about 1000 genera and over 20000 species. Artemisia has a broad spectrum of bioactivity, owing to the presence of several active ingredients or secondary metabolites, which work through various modes of action. It has widespread pharmacological activities and has been used as traditional medicine since ancient times as an anthelmintic, antispasmodic, antirheumatic, and antibacterial agent and for the treatment of malaria, hepatitis, cancer, inflammation, and menstrual-related disorders. This review comprises the updated information about the ethnomedical uses and health benefits of various Artemisia spp. and general information about bioactive compounds and free radicals.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar, India
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Abhay P. Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar, India
| | - Raffaele Pezzani
- OU Endocrinology, Department of Medicine (DIMED), University of Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | | | - Sergey Plygun
- All-Russian Research Institute of Phytopathology, Moscow Region, Russia
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel, Russia
- European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical SciencesBam, Iran
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, MB, Canada
| |
Collapse
|
12
|
Sajjad N, Wani A, Sharma A, Ali R, Hassan S, Hamid R, Habib H, Ganai BA. Artemisia amygdalina Upregulates Nrf2 and Protects Neurons Against Oxidative Stress in Alzheimer Disease. Cell Mol Neurobiol 2019; 39:387-399. [PMID: 30725250 DOI: 10.1007/s10571-019-00656-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer disease is a complex neurodegenerative disorder. It is the common form of dementia in elderly people. The etiology of this disease is multifactorial, pathologically it is accompanied with accumulation of amyloid beta and neurofibrillary tangles. Accumulation of amyloid beta and mitochondrial dysfunction leads to oxidative stress. In this study, neuroprotective effect of Artemisiaamygdalina against H2O2-induced death was studied in differentiated N2a and SH-SY5Ycells. Cells were treated with H2O2 to induce toxicity which was attenuated by Artemisia amygdalina. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. It controls the basal and induced expression of antioxidant response element-dependent genes. Further, we demonstrated that Artemisia amygdalina protects neurons through upregulation of Nrf2 pathway. Moreover, reactive oxygen species and mitochondrial membrane potential loss formed by H2O2 was attenuated by Artemisia amygdalina. Thus, Artemisia amygdalina may have the possibility to be a therapeutic agent for Alzheimer disease.
Collapse
Affiliation(s)
- Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Abubakar Wani
- PK-PD- Toxicology and Formulation, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ankita Sharma
- PK-PD- Toxicology and Formulation, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Rohaya Ali
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Sumaya Hassan
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Rabia Hamid
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Huma Habib
- Department of Biochemistry, Islamia College of Science and Commerce, Srinagar, 190002, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
13
|
Lone SH, Bhat MA, Lone RA, Jameel S, Lone JA, Bhat KA. Hemisynthesis, computational and molecular docking studies of novel nitrogen containing steroidal aromatase inhibitors: testolactam and testololactam. NEW J CHEM 2018. [DOI: 10.1039/c8nj00063h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined DFT and molecular docking studies of synthesized steroidal lactams reveal their potential as aromatase inhibitors.
Collapse
Affiliation(s)
- Shabir H. Lone
- Department of Chemistry
- Govt Degree College Khanabal
- Anantnag
- India
| | - Muzzaffar A. Bhat
- Department of Chemistry
- Islamic University of Science and Technology
- Awantipora
- India
| | - Rayees A. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Salman Jameel
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Javeed A. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| |
Collapse
|
14
|
Lone SH, Jameel S, Bhat MA, Lone RA, Butcher RJ, Bhat KA. Synthesis of an unusual quinazoline alkaloid: theoretical and experimental investigations of its structural, electronic, molecular and biological properties. RSC Adv 2018; 8:8259-8268. [PMID: 35542000 PMCID: PMC9082197 DOI: 10.1039/c8ra00138c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/16/2018] [Indexed: 11/21/2022] Open
Abstract
An unusual quinazoline alkaloid (1) was obtained when 2-aminobenzaldehyde was refluxed with pyrrolidine in ethanol for 12 h. The synthesized compound was characterized using spectral data analysis augmented with X-ray and literature precedent. Single crystal analysis depicted four conformations differing slightly in bond angles and bond lengths. Compound 1 crystallizes in a triclinic crystal system with a P1̄ space group having two molecules within the unit cell. The experimentally obtained parameters were compared to those obtained theoretically, which depicted a good agreement. Using the DFT/B3LYP/6-31G (d,p) level of theory, HOMO–LUMO energy gap, molecular electrostatic potential (MEP), vibrational (IR) and NMR analyses were carried out. The HOMO–LUMO energy gap allowed the calculation of chemical hardness, chemical inertness, electronegativity and the electrophilicity index of the molecule, which depicted its potential kinetic stability and reactivity. Prediction of activity spectra of the target compound revealed that compound 1 possesses notable antineoplastic activity with Pa = 0.884. The molecule was therefore evaluated against various cancerous cell lines in an in vitro SRB assay which depicted that compound 1 possesses the highest growth inhibition activity against THP-1 cell lines with an IC50 of 7 μM. A comparative overview of theoretical and experimental studies concerning the electronic, structural and biological domains of the synthesized unusual quinazoline alkaloid is presented.![]()
Collapse
Affiliation(s)
| | - Salman Jameel
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| | - Muzzaffar A. Bhat
- Department of Chemistry
- Islamic University of Science and Technology
- Awantipora
- India
| | - Rayees A. Lone
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| | | | - Khursheed A. Bhat
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| |
Collapse
|
15
|
Naseer S, Bhat KA, Qadri M, Riyaz-Ul-Hassan S, Malik FA, Khuroo MA. Bioactivity-Guided Isolation, Antimicrobial and Cytotoxic Evaluation of Secondary Metabolites fromCladosporium tenuissimumAssociated with Pinus wallichiana. ChemistrySelect 2017. [DOI: 10.1002/slct.201601942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Syed Naseer
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Masroor Qadri
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Fayaz A. Malik
- Cancer pharmacology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Mohammad A. Khuroo
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India, Institute's publication No. IIIM/1962/2016
| |
Collapse
|
16
|
Lone SH, Bhat KA, Khuroo MA. Arglabin: From isolation to antitumor evaluation. Chem Biol Interact 2015; 240:180-98. [DOI: 10.1016/j.cbi.2015.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
|
17
|
Lai CS, Wu JC, Ho CT, Pan MH. Disease chemopreventive effects and molecular mechanisms of hydroxylated polymethoxyflavones. Biofactors 2015; 41:301-13. [PMID: 26453173 DOI: 10.1002/biof.1236] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023]
Abstract
Recent increasing attention in research of polymethoxyflavones (PMFs) from Citrus genus because of their wide range of biological properties has been reported in various studies. Hydroxylated PMFs are unique flavones and recognized as the methoxy group of PMFs that is substituted for hydroxyl one. Hydroxylated PMFs are naturally existed in citrus peel and other plants as well as occurred as metabolites of their PMFs counterparts. Several in vitro and in vivo studies have documented the chemopreventive effects of hydroxylated PMFs including anti-cancer, anti-inflammation, anti-atherosclerosis, and neuroprotection. They function to regulate cell death, proliferation, differentiation, repair, and metabolism through acting on modulation of signaling cascade, gene transcription, and protein function and enzyme activity. The mechanisms of action of hydroxylated PMFs in disease chemoprevention depend on their structure, the number, and position of hydroxyl group. Although the efficacy of hydroxylated PMFs in chemoprevention and the oral bioavailability requires further investigation, they still provide great promise for improving human health. This review highlights the recent published data of hydroxylated PMFs with chemopreventive potential and the underlying mechanism involved.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Naseer S, Lone SH, Lone JA, Khuroo MA, Bhat KA. LC–MS guided isolation, quantification and antioxidant evaluation of bioactive principles from Epimedium elatum. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 989:62-70. [DOI: 10.1016/j.jchromb.2015.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
19
|
Lone SH, Bhat KA. Hemisynthesis of a naturally occurring clinically significant antitumor arglabin from ludartin. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.02.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Lone SH, Bhat KA. Phytosterols as precursors for the synthesis of aromatase inhibitors: Hemisynthesis of testololactone and testolactone. Steroids 2015; 96:164-8. [PMID: 25697056 DOI: 10.1016/j.steroids.2015.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
Using β-sitosterol and stigmasterol as precursor materials, a concise and efficient hemisynthesis of aromatase inhibitors: testololactone and testolactone was accomplished in a well-established reaction scheme. It involves highly effective Oppaneur oxidation of both β-sitosterol as well as stigmasterol to generate the required enone moiety in ring 'A' of the desired steroid system. The Oppaneur oxidation products of both β-sitosterol and stigmasterol were then subjected to oxidative cleavage of the side chain to produce 4-androstene-3,17-dione. Baeyer-Villiger oxidation of 4-androstene-3,17-dione using m-CPBA yielded testololactone. Dehydrogenation of 4-androstene-3,17-dione using phenylselenyl chloride in ethyl acetate followed by selenoxide elimination with H2O2 in dichloromethane furnished androstenedienone. Baeyer-Villiger oxidation of the resulting androstenedienone yielded the desired testolactone (overall yield 33%). This expeditious reaction scheme may be exploited for the bulk production of aromatase inhibitors (especially testolactone marketed under the brand name Teslac) from the most abundant and naturally occurring phytosterols like β-sitosterol.
Collapse
Affiliation(s)
- Shabir H Lone
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Srinagar, 190005 Jammu and Kashmir, India
| | - Khursheed A Bhat
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Srinagar, 190005 Jammu and Kashmir, India.
| |
Collapse
|
21
|
Ivanescu B, Miron A, Corciova A. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:247685. [PMID: 26495156 PMCID: PMC4606394 DOI: 10.1155/2015/247685] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 05/07/2023]
Abstract
Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation.
Collapse
Affiliation(s)
- Bianca Ivanescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
- *Bianca Ivanescu:
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
| | - Andreia Corciova
- Department of Drug Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
| |
Collapse
|
22
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:185676. [PMID: 24967338 PMCID: PMC4055220 DOI: 10.1155/2014/185676] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
Artemisia species have been extensively used for the management of diabetes in folklore medicine. The current study was designed to investigate the antidiabetic and antihyperlipidemic effects of Artemisia amygdalina. Petroleum ether, ethyl acetate, methanol, and hydroethanolic extracts of Artemisia amygdalina were tested for their antidiabetic potentials in diabetic rats. The effect of extracts was observed by checking the biochemical, physiological, and histopathological parameters in diabetic rats. The hydroethanolic and methanolic extracts each at doses of 250 and 500 mg/kg b. w significantly reduced glucose levels in diabetic rats. The other biochemical parameters like cholesterol, triglycerides, low density lipoproteins (LDL), serum creatinine, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), and alkaline phosphatise (ALP), were found to be reduced by the hydroethanolic and methanolic extracts. The extracts also showed reduction in the feed and water consumption of diabetic rats when compared with the diabetic control. The histopathological results of treated groups showed the regenerative/protective effect on β-cells of pancreas in diabetic rats. The current study revealed the antidiabetic potential of Artemisia amygdalina being effective in hyperglycemia and that it can effectively protect against other metabolic aberrations caused by diabetes in rats, which seems to validate its therapeutic traditional use.
Collapse
|
24
|
Lone SH, Bhat KA, Bhat HM, Majeed R, Anand R, Hamid A, Khuroo MA. Essential oil composition of Senecio graciliflorus DC: comparative analysis of different parts and evaluation of antioxidant and cytotoxic activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:919-925. [PMID: 24629598 DOI: 10.1016/j.phymed.2014.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/04/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
The essential oil of different parts of Senecio graciliflorus DC was obtained by hydrodistillation and analysed by GC-FID and GC-MS for the first time. A total of 17, 20, 19 and 17 constituents were identified comprising 99.90, 95.50, 98.93 and 95.96% of the essential oil of flower, leaf, stem and root parts of Senecio graciliflorus respectively. Monoterpene hydrocarbons predominated in the essential oil with 85.28% in flower, 57.53% in leaf, 67.74% in stem and 64.98% in root oil. α-pinene, cis-ocimene, 1,2,3-trimethylcyclohexane and β-pinene were the major constituents of the essential oil. The flower essential oil exhibited a strong antioxidant potential displaying IC50 values of 21.6±0.6 and 26.0±1.0μg/ml in DPPH and hydroxyl radical assays respectively. On the other hand the essential oil of flower and root displayed highest cytotoxicity against lung (A-549) cancer cell lines (IC50=19.1±0.9 and 21.3±1.1μg/ml respectively. This study which represents the first report of the essential oil composition and bioevaluation of Senecio graciliflorus, can serve as a new source of cytotoxic and antioxidant activity.
Collapse
Affiliation(s)
- Shabir H Lone
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Srinagar 190005, Jammu and Kashmir, India
| | - Khursheed A Bhat
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Srinagar 190005, Jammu and Kashmir, India.
| | - Haroon M Bhat
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Srinagar 190005, Jammu and Kashmir, India
| | - Rabiya Majeed
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu 180001, Jammu and Kashmir, India
| | - Rajneesh Anand
- Instrumentation Division, Indian Institute of Integrative Medicine (CSIR), Jammu 180001, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu 180001, Jammu and Kashmir, India
| | - Mohd A Khuroo
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
25
|
Sofi SN, Shakeel-u-Rehman, Qazi PH, Lone SH, Bhat HM, Bhat KA. ISOLATION, IDENTIFICATION, AND SIMULTANEOUS QUANTIFICATION OF FIVE MAJOR FLAVONOIDS IN EPIMEDIUM ELATUM BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.765465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shahnawaz N. Sofi
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| | - Shakeel-u-Rehman
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| | - Parvaiz H. Qazi
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| | - Shabir H. Lone
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| | - Haroon M. Bhat
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| | - Khursheed A. Bhat
- a Bioorganic Chemistry Division , Indian Institute of Integrative Medicine (CSIR) SanatNagar , Srinagar , India
| |
Collapse
|
26
|
Lone SH, Bhat KA, Majeed R, Hamid A, Khuroo MA. Click chemistry inspired facile synthesis and bioevaluation of novel triazolyl analogs of Ludartin. Bioorg Med Chem Lett 2014; 24:1047-51. [DOI: 10.1016/j.bmcl.2014.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 12/26/2022]
|