1
|
Verscheure L, Vandenheede I, De Rore E, Meersseman M, Hanssens V, Meerschaert K, Stals H, Sandra P, Lynen F, Borgions F, Sandra K. 2D-CEX-FcRn-MS to Study Structure/Function Relation of mAb Charge Variants. Anal Chem 2024; 96:18122-18131. [PMID: 39470991 DOI: 10.1021/acs.analchem.4c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The automated elucidation of the interplay between monoclonal antibody (mAb) structure and function using two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) is reported. Charge variants, induced through forced degradation, are resolved by first-dimension (1D) cation-exchange chromatography (CEX) and subsequently collected in loops installed on a multiple heart-cutting valve prior to transfer to second-dimension (2D) neonatal crystallizable fragment receptor (FcRn) affinity chromatography coupled with MS. As such, binding affinity of the latter mAb variants can elegantly be assessed and a first glimpse of identity provided. To maximize MS sensitivity, charge variants are unfolded upon eluting from the 2D affinity column by postcolumn addition of a denaturing solution. Further structural details, i.e., modification sites and chain distribution, are unraveled by a multidimensional LC-MS (mD-LC-MS) setup incorporating 1D CEX and parallel online middle-up and bottom-up LC-MS analysis in the subsequent dimensions. Identified charge variants could be ranked according to their affinity for FcRn. Binding is predominantly impacted by heavy chain (HC) M253 oxidation and to a lesser extend, M429 oxidation. Oxidation of both HCs more drastically affects FcRn interaction compared to single-chain oxidation, and the more oxidation, the less binding. Other modifications, such as HC glycosylation, HC N385/390, and N326 deamidation or HC C-terminal processing, are not shown to affect binding. The streamlined platform is challenged against the established workflow involving offline collection of charge variants and structural and functional assessment by, respectively, LC-MS and enzyme-linked immunosorbent assay (ELISA). A decent correlation is demonstrated between the binding affinity measured with ELISA and 2D FcRn affinity chromatography. In addition, throughput is improved (7-fold), material requirements are substantially reduced (2 orders of magnitude), and sample preparation artifacts and loss are minimized. With the simultaneous determination of mAb structure and function, the current study takes the concept of multiattribute analysis to the next level, thereby contributing to the future development of safer and more effective antibody therapeutics.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | - Eline De Rore
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
| | | | | | | | - Hilde Stals
- Argenx, Industriepark Zwijnaarde 7, Ghent B-9052, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Filip Borgions
- Argenx, Industriepark Zwijnaarde 7, Ghent B-9052, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk B-8500, Belgium
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| |
Collapse
|
2
|
Verscheure L, Detremmerie S, Stals H, De Vos J, Sandra P, Lynen F, Borgions F, Sandra K. Multidimensional LC-MS with 1D multi-method option and parallel middle-up and bottom-up MS acquisition for in-depth characterization of antibodies. J Chromatogr A 2024; 1726:464947. [PMID: 38724406 DOI: 10.1016/j.chroma.2024.464947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Monoclonal antibodies (mAbs) are large and highly heterogeneous species typically characterized using a plethora of analytical methodologies. There is a trend within the biopharmaceutical industry to combine several of these methods in one analytical platform to simultaneously assess multiple structural attributes. Here, a protein analyzer for the fully automated middle-up and bottom-up liquid chromatography-mass spectrometry (LC-MS) analysis of charge, size and hydrophobic variants is described. The multidimensional set-up combines a multi-method option in the first dimension (1D) (choice between size exclusion - SEC, cation exchange - CEX or hydrophobic interaction chromatography - HIC) with second dimension (2D) on-column reversed-phase (RPLC) based desalting, denaturation and reduction prior to middle-up LC-MS analysis of collected 1D peaks and parallel on-column trypsin digestion of denatured and reduced peaks in the third dimension (3D) followed by bottom-up LC-MS analysis in the fourth dimension (4D). The versatile and comprehensive workflow is applied to the characterization of charge, hydrophobic and size heterogeneities associated with an engineered Fc fragment and is complemented with hydrogen-deuterium exchange (HDX) MS and FcRn affinity chromatography - native MS to explain observations in a structural/functional context.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | | | - Hilde Stals
- Argenx, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium
| | - Jelle De Vos
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | | | - Koen Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 PMCID: PMC11618781 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
4
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Tirapelle M, Chia DN, Duanmu F, Besenhard MO, Mazzei L, Sorensen E. In-silico method development and optimization of on-line comprehensive two-dimensional liquid chromatography via a shortcut model. J Chromatogr A 2024; 1721:464818. [PMID: 38564929 DOI: 10.1016/j.chroma.2024.464818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Comprehensive two-dimensional liquid chromatography (LCxLC) represents a valuable alternative to conventional single column, or one-dimensional, liquid chromatography (1D-LC) for resolving multiple components in a complex mixture in a short time. However, developing LCxLC methods with trial-and-error experiments is challenging and time-consuming, which is why the technique is not dominant despite its significant potential. This work presents a novel shortcut model to in-silico predicting retention time and peak width within an RPLCxRPLC separation system (i.e., LCxLC systems that use reversed-phase columns (RPLC) in both separation dimensions). Our computationally effective model uses the hydrophobic-subtraction model (HSM) to predict retention and considers limitations due to the sample volume, undersampling and the maximum pressure drop. The shortcut model is used in a two-step strategy for sample-dependent optimization of RPLCxRPLC separation systems. In the first step, the Kendall's correlation coefficient of all possible combinations of available columns is evaluated, and the best column pair is selected accordingly. In the second step, the optimal values of design variables, flow rate, pH and sample loop volume, are obtained via multi-objective stochastic optimization. The strategy is applied to method development for the separation of 8, 12 and 16 component mixtures. It is shown that the proposed strategy provides an easy way to accelerate method development for full-comprehensive 2D-LC systems as it does not require any experimental campaign and an entire optimization run can take less than two minutes.
Collapse
Affiliation(s)
- Monica Tirapelle
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Dian Ning Chia
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Fanyi Duanmu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Maximilian O Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Luca Mazzei
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Eva Sorensen
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
6
|
Thomas R, Song D, Pourmohamad T, Kurita K, Chin S, Dai L, Goyon A, Medley CD, Gruenhagen JA, Chen T. Automated online deconjugation of antibody-drug conjugate for small molecule drug profiling. J Chromatogr A 2024; 1715:464575. [PMID: 38150875 DOI: 10.1016/j.chroma.2023.464575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.
Collapse
Affiliation(s)
- Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dong Song
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Pourmohamad
- Nonclinical Biostatistics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kenji Kurita
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Chin
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Colin D Medley
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Gruenhagen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Sadighi R, de Kleijne V, Wouters S, Lubbers K, Somsen GW, Gargano AFG, Haselberg R. Online multimethod platform for comprehensive characterization of monoclonal antibodies in cell culture fluid from a single sample injection - Intact protein workflow. Anal Chim Acta 2024; 1287:342074. [PMID: 38182339 DOI: 10.1016/j.aca.2023.342074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Therapeutic monoclonal antibodies (mAbs) comprise a large structural variability with respect to charge, size and post-translational modifications. These critical quality attributes (CQAs) need to be assessed during and after the production of mAbs. This normally requires off-line purification and sample preparation as well as several chromatographic selectivities, which makes the whole process time-consuming and error-prone. To improve on this, we developed an integrated and automated multi-dimensional analytical platform for the simultaneous assessment of multiple CQAs of mAbs in cell culture fluid (CCF) from upstream processes. RESULTS The on-line system allows mAb characterization at the intact level, combining protein A affinity chromatography (ProtA) with size-exclusion, ion-exchange, and reversed-phase liquid chromatographic modes with UV and mass spectrometric detection. Multiple heart cuts of a single mAb elution band from ProtA are stored in 20-μL loops and successively sent to the multimethod options in the second dimension. ProtA loading and elution conditions and their compatibility with second-dimension LC modes were studied and optimized. Subsequently, heart-cutting and valve-switching schemes were investigated to achieve effective and reproducible analyses. The applicability of the developed workflow was demonstrated by the direct analysis (i.e. not requiring off-line sample preparation) of a therapeutic mAb in CCF, obtaining useful information on accurate molecular mass, glycosylation, and charge and size variants of the mAb product at the same time and in just over 1 h. SIGNIFICANCE The developed multidimensional platform is the first system that allows for multiple fractions from a single ProtA band to be characterized using different chromatographic selectivities in a single run allowing direct correlation between CQAs. The performance of the system is comparable to established off-line methods, fully compatible with upstream process samples, and provides a significant time-reduction of the characterization procedure.
Collapse
Affiliation(s)
- Raya Sadighi
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands.
| | - Vera de Kleijne
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Sam Wouters
- Agilent Technologies, Hewlett-Packard-Str. 8, Waldbronn, 76337, Germany
| | - Karin Lubbers
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584 CM, Utrecht, the Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands
| | - Andrea F G Gargano
- Centre for Analytical Sciences, Amsterdam, the Netherlands; Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GE, Amsterdam, the Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Centre for Analytical Sciences, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Kumar S, Peruri V, Rathore AS. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2801-2810. [PMID: 37994779 DOI: 10.1021/jasms.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D1) and anion-exchange chromatography (AEX) in the second dimension (D2). The main peak of the CEX profile of D1 was transferred through a 2D heart-cut method to D2 for further analysis by the AEX-MS method. In the CEX method, mAb A showed 10 distinct variants, while the AEX method resulted in eight variants. However, a total of 13 variants were successfully resolved for mAb A in the 2D method. Similarly, mAb B exhibited seven variants in the CEX method and four variants in the AEX method, but the 2D-LC method revealed a total of nine variants for mAb B. Likewise, mAb C displayed seven variants in CEX and seven variants in AEX, whereas the 2D-LC method unveiled a total of 11 variants for mAb C. Additionally, native MS analysis revealed that the resolved charge variants were identified as amidation, oxidation, and isomerization of Asp variants in the main peak, which were not resolved in stand-alone methods. The present study demonstrates how 2D-LC can assist in identifying minor variations in charge distribution or conformation of mAb variants that would otherwise not be picked up by a single analytical method alone.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vineela Peruri
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Woodall DW, Thomson CA, Dillon TM, McAuley A, Green LB, Foltz IN, Bondarenko PV. Native SEC and Reversed-Phase LC-MS Reveal Impact of Fab Glycosylation of Anti-SARS-COV-2 Antibodies on Binding to the Receptor Binding Domain. Anal Chem 2023; 95:15477-15485. [PMID: 37812809 DOI: 10.1021/acs.analchem.2c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The binding affinity of monoclonal antibodies (mAbs) for their intended therapeutic targets is often affected by chemical and post-translational modifications in the antigen binding (Fab) domains. A new two-dimensional analytical approach is described here utilizing native size exclusion chromatography (SEC) to separate populations of antibodies and bound antibody-antigen complexes for subsequent characterization of these modifications by reversed-phase (RP) liquid chromatography-mass spectrometry (LC-MS) at the intact antibody level. Previously, we utilized peptide mapping to measure modifications impacting binding. However, in this study, the large size of the modification (N-glycosylation) allowed assessing its impact from small amounts (∼20 ug) of intact antibody, without the need for peptide mapping. Here, we apply the native SEC-based competitive binding assay to quickly and qualitatively investigate the effects of Fab glycosylation of four antispike protein mAbs that were developed for use in the treatment of COVID-19 disease. Three of the mAbs were observed to have consensus N-glycosylation sites (N-X-T/S) in the Fab domains, a relatively rare occurrence in therapeutic mAbs. The goal of the study was to characterize the levels of Fab glycosylation present, as well as determine the impact of glycosylation on binding to the spike protein receptor binding domain (RBD) and the ability of the mAbs to inhibit RBD-ACE2 interaction at the intact antibody level, with minimal sample treatment and preparation. The three mAbs with Fab N-glycans were found to have glycosylation profiles ranging from full occupancy at each Fab (in one mAb) to partially glycosylated with mixed populations of two, one, or no glycan moieties. Competitive SEC analysis of mAb-RBD revealed that the glycosylated antibody populations outcompete their nonglycosylated counterparts for the available RBD molecules. This competitive SEC binding analysis was applied to investigate the three-body interaction of a glycosylated mAb blocking the interaction between endogenous binding partners RBD-ACE2, finding that both glycosylated and nonglycosylated mAb populations bound to RBD with high enough affinity to block RBD-ACE2 binding.
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Christy A Thomson
- Discovery Protein Science, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Arnold McAuley
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Lydia B Green
- Biologics Discovery, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Ian N Foltz
- Biologics Discovery, Amgen Research, Amgen Inc., Burnaby, BC V5A1 V7, Canada
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
10
|
Morales A, Candreva J, Jayarathne T, Esterman AL, Voruganti S, Flagg SC, Slaney T, Liu P, Adamo M, Patel S, Das TK, Zeng M, Li X. A comprehensive strategy for the identification of biologics by liquid-chromatography-mass spectrometry for release testing in a regulated environment. J Pharm Biomed Anal 2023; 234:115580. [PMID: 37478550 DOI: 10.1016/j.jpba.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Identification (ID) testing is a regulatory requirement for biopharmaceutical manufacturing, requiring robust, GMP-qualified assays that can distinguish the therapeutic from any other in the facility. Liquid Chromatography-Mass Spectrometry (LC-MS) is a powerful analytical tool used to identify and characterize biologics. While routinely leveraged for characterization, LC-MS is relatively rare in Quality Control (QC) settings due to its perceived complexity and scarcity of MS-trained personnel. However, employing LC-MS for identification of drug products has many advantages versus conventional ID techniques, including but not limited to its high specificity, rapid turn-around time, and ease of method execution. In this work, we outline the development and implementation of a comprehensive LC-MS based ID strategy for biologics release testing. Two main workflows (WFs) were developed: i) WF1, a subunit-based assay measuring the molecular weight of the light chain (LC) and heavy chain (HC) of an antibody upon reduction, and ii) WF2, intact mass measurement of the biologic upon N-deglycosylation by PNGase F. The proposed strategy is shown to be applicable for over 40 diverse model biologics including monoclonal antibodies (mAbs), biobetters such as antibody prodrugs/afucosylated mAbs, fusion proteins, multi-specific antibodies, Fabs, and large peptides, all with excellent mass accuracy (error typically < 20 ppm) and precision. It requires a single-step sample preparation and a single click to run and process the data upon method setup. This strategy has been successfully implemented for release testing in GMP labs. Challenges and considerations for the establishment of QC-friendly methods are discussed. It is also shown that these methods can be applied to the ID of more analytically complex biotherapeutics, such as fixed-dose combination (FDC) and drug products co-formulated with trace-level additives.
Collapse
Affiliation(s)
- Anna Morales
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Jason Candreva
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Thilina Jayarathne
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Abbie L Esterman
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Sudhakar Voruganti
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Shannon C Flagg
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Thomas Slaney
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Peiran Liu
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Michael Adamo
- Analytical Strategy and Operations, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Saileshkumar Patel
- Analytical Strategy and Operations, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Tapan K Das
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Ming Zeng
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Xue Li
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States.
| |
Collapse
|
11
|
Zheng Z, Ma M, Jia Y, Cui Y, Zhao R, Li S, Wenthur C, Li L, Li G. Expedited Evaluation of Conformational Stability-Heterogeneity Associations for Crude Polyclonal Antibodies in Response to Conjugate Vaccines. Anal Chem 2023; 95:10895-10902. [PMID: 37433088 PMCID: PMC10695093 DOI: 10.1021/acs.analchem.3c00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Conjugate vaccines have been demonstrated to be a promising strategy for immunotherapeutic intervention in substance use disorder, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. The antibodies generated following immunization with these species can provide long-lasting protection against overdose through sequestration of the abused drug in the periphery, which mitigates its ability to cross the blood-brain barrier. However, these antibodies exhibit a high degree of heterogeneity in structure. The resultant variations in chemical and structural compositions have not yet been clearly linked to the stability that directly affects their in vivo functional performance. In this work, we describe a rapid mass-spectrometry-based analytical workflow capable of simultaneous and comprehensive interrogation of the carrier protein-dependent heterogeneity and stability of crude polyclonal antibodies in response to conjugate vaccines. Quantitative collision-induced unfolding-ion mobility-mass spectrometry with an all-ion mode is adapted to rapidly assess the conformational heterogeneity and stability of crude serum antibodies collected from four different vaccine conditions, in an unprecedented manner. A series of bottom-up glycoproteomic experiments was performed to reveal the driving force underlying these observed heterogeneities. Overall, this study not only presents a generally applicable workflow for fast assessment of crude antibody conformational stability and heterogeneity at the intact protein level but also leverages carrier protein optimization as a simple solution to antibody quality control.
Collapse
Affiliation(s)
- Zhen Zheng
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rui Zhao
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuangshuang Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cody Wenthur
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
12
|
Kuhne F, Heinrich K, Winter M, Fichtl J, Hoffmann G, Zähringer F, Spitzauer K, Meier M, Khan TA, Bonnington L, Wagner K, Stracke JO, Reusch D, Wegele H, Mormann M, Bulau P. Identification of Hetero-aggregates in Antibody Co-formulations by Multi-dimensional Liquid Chromatography Coupled to Mass Spectrometry. Anal Chem 2023; 95:2203-2212. [PMID: 36669833 PMCID: PMC9893218 DOI: 10.1021/acs.analchem.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Antibody combination therapies have become viable therapeutic treatment options for certain severe diseases such as cancer. The co-formulation production approach is intrinsically associated with more complex drug product variant profiles and creates more challenges for analytical control of drug product quality. In addition to various individual quality attributes, those arising from the interactions between the antibodies also potentially emerge through co-formulation. In this study, we describe the development of a widely applicable multi-dimensional liquid chromatography coupled to tandem mass spectrometry method for antibody homo- versus hetero-aggregate characterization. The co-formulation of trastuzumab and pertuzumab was used, a challenging model system, comprising two monoclonal antibodies with very similar physicochemical properties. The data presented demonstrate the high stability of the co-formulation, where only minor aggregate formation is observed upon product storage and accelerated temperature or light-stress conditions. The results also show that the homo- and hetero-aggregates, formed in low and comparable proportions, are only marginally impacted by the formulation and product storage conditions. No preferential formation of hetero-aggregates, in comparison to the already existing pertuzumab and trastuzumab homo-aggregates, was observed.
Collapse
Affiliation(s)
- Felix Kuhne
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Institute
of Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Katrin Heinrich
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Martin Winter
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jürgen Fichtl
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Gabriel Hoffmann
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Franziska Zähringer
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Katharina Spitzauer
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Monika Meier
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tarik A. Khan
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Lea Bonnington
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Katharina Wagner
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jan Olaf Stracke
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma
Technical Development, Roche Diagnostics
GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Michael Mormann
- Institute
of Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Patrick Bulau
- Pharma
Technical Development, F. Hoffmann-La Roche
Ltd., 4070 Basel, Switzerland
| |
Collapse
|
13
|
Vanhoenacker G, Sandra P, Sandra K. Minimizing the Risk of Missing Critical Sample Information by Using Two-Dimensional Liquid Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.vg2884v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Analytical requirements in the biopharmaceutical, pharmaceutical, and food industries, among several others, are more demanding than ever. Chromatographic techniques are great tools to acquire detailed information on a vast number of molecules and sample types. The present challenge in research and development (R&D), as well as in quality control (QC) laboratories, is to collect as much sample information as possible. However, even with the current one-dimensional (1D) analytical portfolio, it is not possible to fully ensure that all the relevant information from a sample has been captured. This article illustrates the power of an online two-dimensional liquid chromatographic (2D-LC) setup to unravel the complexity of biopharmaceutical and pharmaceutical samples. This technology tremendously increases the resolving power in all areas where LC is applied and drastically reduces the risk of missing information about the sample.
Collapse
|
14
|
Ruppen I, Beydon ME, Solís C, Sacristán D, Vandenheede I, Ortiz A, Sandra K, Adhikary L. Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization. Biologicals 2022; 77:1-15. [DOI: 10.1016/j.biologicals.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/02/2022] Open
|
15
|
Verscheure L, Vanhoenacker G, Schneider S, Merchiers T, Storms J, Sandra P, Lynen F, Sandra K. 3D-LC-MS with 2D Multimethod Option for Fully Automated Assessment of Multiple Attributes of Monoclonal Antibodies Directly from Cell Culture Supernatants. Anal Chem 2022; 94:6502-6511. [PMID: 35442636 DOI: 10.1021/acs.analchem.1c05461] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fully automated analysis of multiple structural attributes of monoclonal antibodies (mAbs) using three-dimensional liquid chromatography-mass spectrometry (3D-LC-MS) is described. The analyzer combines Protein A affinity chromatography in the first dimension (1D) with a multimethod option in the second dimension (2D) (choice between size exclusion (SEC), cation exchange (CEX), and hydrophobic interaction chromatography (HIC)) and desalting SEC-MS in the third dimension (3D). This innovative 3D-LC-MS setup allows simultaneous and sequential assessment of mAb titer, size/charge/hydrophobic variants, molecular weight (MW), amino acid (AA) sequence, and post-translational modifications (PTMs) directly from cell culture supernatants. The reported methodology that finds multiple uses throughout the biopharmaceutical development trajectory was successfully challenged by the analysis of different trastuzumab and tocilizumab samples originating from biosimilar development programs.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | | | - Sonja Schneider
- Agilent Technologies, Hewlett-Packard Strasse 8, D-76337 Waldbronn, Germany
| | - Tom Merchiers
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Julie Storms
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Pat Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Stolz A, Neusüß C. Characterisation of a new online nanoLC-CZE-MS platform and application for the glycosylation profiling of alpha-1-acid glycoprotein. Anal Bioanal Chem 2022; 414:1745-1757. [PMID: 34881393 PMCID: PMC8791864 DOI: 10.1007/s00216-021-03814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
The ever-increasing complexity of biological samples to be analysed by mass spectrometry has led to the necessity of sophisticated separation techniques, including multidimensional separation. Despite a high degree of orthogonality, the coupling of liquid chromatography (LC) and capillary zone electrophoresis (CZE) has not gained notable attention in research. Here, we present a heart-cut nanoLC-CZE-ESI-MS platform to analyse intact proteins. NanoLC and CZE-MS are coupled using a four-port valve with an internal nanoliter loop. NanoLC and CZE-MS conditions were optimised independently to find ideal conditions for the combined setup. The valve setup enables an ideal transfer efficiency between the dimensions while maintaining good separation conditions in both dimensions. Due to the higher loadability, the nanoLC-CZE-MS setup exhibits a 280-fold increased concentration sensitivity compared to CZE-MS. The platform was used to characterise intact human alpha-1-acid glycoprotein (AGP), an extremely heterogeneous N-glycosylated protein. With the nanoLC-CZE-MS approach, 368 glycoforms can be assigned at a concentration of 50 μg/mL as opposed to the assignment of only 186 glycoforms from 1 mg/mL by CZE-MS. Additionally, we demonstrate that glycosylation profiling is accessible for dried blood spot analysis (25 μg/mL AGP spiked), indicating the general applicability of our setup to biological matrices. The combination of high sensitivity and orthogonal selectivity in both dimensions makes the here-presented nanoLC-CZE-MS approach capable of detailed characterisation of intact proteins and their proteoforms from complex biological samples and in physiologically relevant concentrations.
Collapse
Affiliation(s)
- Alexander Stolz
- Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany.
| |
Collapse
|
17
|
Chapel S, Rouvière F, Guibal P, Mathieu D, Heinisch S. Development of a sub-hour on-line comprehensive cation exchange chromatography x RPLC method hyphenated to HRMS for the characterization of lysine-linked antibody-drug conjugates. Talanta 2021; 240:123174. [PMID: 35026643 DOI: 10.1016/j.talanta.2021.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
This study details the development of on-line two-dimensional liquid chromatography (2D-LC) methods combining cation-exchange chromatography (CEX) and reversed-phase liquid chromatography (RPLC) for the separation of the charge variants of a lysine-linked antibody-drug conjugate (ADC). This combination gives an excellent example of the potential benefits of 2D-LC approaches for the analysis of such complex protein formats. CEX is considered the reference technique for the separation of protein charge variants but its retention mechanism usually requires the use of a high concentration of non-volatile salts, which impedes its compatibility with MS detection. In this context, the use of an on-line 2D-LC-MS approach not only allows on-line desalting and indirect coupling of CEX with mass spectrometry (MS) detection but it also provides increased and complementary information within a single analysis. The first part of this study was devoted to the choice of stationary phases and the optimization of chromatographic conditions in both dimensions. Based on the results obtained in 1D-CEX with ultraviolet detection (UV) and 1D-RPLC with UV and high-resolution mass spectrometry (HRMS) detections, an on-line comprehensive two-dimensional liquid chromatography method combining CEX and RPLC was developed. The last part of this study was devoted to the identification of the separated species using HRMS detection and in the comparison of three ADC samples exposed to different durations of thermal stress.
Collapse
Affiliation(s)
- Soraya Chapel
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Florent Rouvière
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Pierre Guibal
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Delphine Mathieu
- Sanofi Aventis R&D, 1 Impasse des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
18
|
Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization. Biologicals 2021; 73:41-56. [PMID: 34593306 DOI: 10.1016/j.biologicals.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.
Collapse
|
19
|
Verscheure L, Cerdobbel A, Sandra P, Lynen F, Sandra K. Monoclonal antibody charge variant characterization by fully automated four-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1653:462409. [PMID: 34325295 DOI: 10.1016/j.chroma.2021.462409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Fully automated characterization of monoclonal antibody (mAb) charge variants using four-dimensional liquid chromatography-mass spectrometry (4D-LC-MS) is reported and illustrated. Charge variants resolved by cation-exchange chromatography (CEX) using a salt- or pH-gradient are collected in loops installed on a multiple heart-cutting valve and consequently subjected to online desalting, denaturation, reduction and trypsin digestion prior to LC-MS based peptide mapping. This innovation which substantially reduces turnaround time, sample manipulation, loss and artefacts and increases information gathering, is described in great technical detail, and applied to characterize the charge heterogeneity associated with three therapeutic mAbs. Sequence coverages > 95% are obtained for major and minor charge variants (> 1.0%). Post-translational modifications (PTMs) and modification sites are readily revealed in a repeatable manner including unstable succinimide intermediates which are not maintained when performing classical in-solution overnight digestion of offline collected CEX peaks.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - An Cerdobbel
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium.
| |
Collapse
|
20
|
Shi RL, Xiao G, Dillon TM, McAuley A, Ricci MS, Bondarenko PV. Identification of critical chemical modifications by size exclusion chromatography of stressed antibody-target complexes with competitive binding. MAbs 2021; 13:1887612. [PMID: 33616001 PMCID: PMC7899689 DOI: 10.1080/19420862.2021.1887612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications (attributes) in the binding regions of stressed therapeutic proteins may affect binding to target and efficacy of therapeutic proteins. The method presented here describes the criticality assessment of therapeutic antibody modifications by size-exclusion chromatography (SEC) of competitive binding between a stressed antibody and its target, human epidermal growth factor receptor-2 (HER2), followed by SEC fractionation and peptide mapping characterization of bound and unbound antibodies. When stressed antibody and its target were mixed at a stoichiometric molar ratio of 1:2, only antibody-receptor complex eluted from SEC, indicating that binding was not decreased to break the complex. When a smaller amount of the receptor was provided (1:1), the antibody species with modifications reducing binding eluted as unbound from SEC, while the antibody-receptor complex eluted as the bound fraction. Peptide mapping revealed ratios of modifications between unbound and bound fractions. Statistical analysis after triplicate measurements (n = 3) indicated that heavy chain (HC) D102 isomerization and light chain (LC) N30 deamidation were four-fold higher in unbound fraction with high statistical significance. Although HC N55 deamidation and M107 oxidation were also abundant, they were not statistically different between unbound and bound. Our findings agree with previously published potency measurements of collected CEX fractions and the crystal structure of antibody and HER2. Overall, competitive SEC of stressed antibody-receptor mixture followed by peptide mapping is a useful tool in revealing critical residues and modifications involved in the antibody-target binding, even if they elute as a complex from SEC when mixed at 1:2 stoichiometric ratio.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Arnold McAuley
- Drug Product Technologies, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Margaret S Ricci
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA.,Drug Product Technologies, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| |
Collapse
|
21
|
Cordova JC, Sun S, Bos J, Thirumalairajan S, Ghone S, Hirai M, Busse RA, der Hardt JSV, Schwartz I, Zhou J. Development of a Single-Step Antibody-Drug Conjugate Purification Process with Membrane Chromatography. J Clin Med 2021; 10:jcm10030552. [PMID: 33540865 PMCID: PMC7867349 DOI: 10.3390/jcm10030552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Membrane chromatography is routinely used to remove host cell proteins, viral particles, and aggregates during antibody downstream processing. The application of membrane chromatography to the field of antibody-drug conjugates (ADCs) has been applied in a limited capacity and in only specialized scenarios. Here, we utilized the characteristics of the membrane adsorbers, Sartobind® S and Phenyl, for aggregate and payload clearance while polishing the ADC in a single chromatographic run. The Sartobind® S membrane was used in the removal of excess payload, while the Sartobind® Phenyl was used to polish the ADC by clearance of unwanted drug-to-antibody ratio (DAR) species and aggregates. The Sartobind® S membrane reproducibly achieved log-fold clearance of free payload with a 10 membrane-volume wash. Application of the Sartobind® Phenyl decreased aggregates and higher DAR species while increasing DAR homogeneity. The Sartobind® S and Phenyl membranes were placed in tandem to simplify the process in a single chromatographic run. With the optimized binding, washing, and elution conditions, the tandem membrane approach was performed in a shorter timescale with minimum solvent consumption and high yield. The application of the tandem membrane chromatography system presents a novel and efficient purification scheme that can be realized during ADC manufacturing.
Collapse
Affiliation(s)
- Juan Carlos Cordova
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Sheng Sun
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Jeffrey Bos
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Srinath Thirumalairajan
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
- Seagen, 21717 30th Drive S.E., Bothell, WA 98021, USA
| | - Sanjeevani Ghone
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
| | - Miyako Hirai
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Ricarda A. Busse
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Julia S. v. der Hardt
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany; (M.H.); (R.A.B.); (J.S.v.d.H.)
| | - Ian Schwartz
- Sartorius North America Inc., 565 Johnson Avenue, Bohemia, NY 11716, USA;
| | - Jieyu Zhou
- Abzena, 360 George Patterson Boulevard, Bristol, PA 19007, USA; (J.C.C.); (S.S.); (J.B.); (S.T.); (S.G.)
- Correspondence: ; Tel.: +1-215-788-3603
| |
Collapse
|
22
|
Camperi J, Goyon A, Guillarme D, Zhang K, Stella C. Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst 2021; 146:747-769. [DOI: 10.1039/d0an01963a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents an overview of current analytical trends in antibody characterization by multidimensional LC-MS approaches.
Collapse
Affiliation(s)
- Julien Camperi
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Alexandre Goyon
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- 1206 Geneva
- Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO)
| | - Kelly Zhang
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Cinzia Stella
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| |
Collapse
|
23
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
24
|
Wicht K, Baert M, Kajtazi A, Schipperges S, von Doehren N, Desmet G, de Villiers A, Lynen F. Pharmaceutical impurity analysis by comprehensive two-dimensional temperature responsive × reversed phase liquid chromatography. J Chromatogr A 2020; 1630:461561. [PMID: 32992220 DOI: 10.1016/j.chroma.2020.461561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
In this study, the possibilities of temperature responsive × reversed phase liquid chromatography (TRLC × RPLC) are assessed in terms of pharmaceutical impurity analysis. Due to the increased peak capacity per unit time they offer, two-dimensional LC approaches are gaining relevance for the analysis of complex drug formulations. Because the latter depicts a larger predisposition for the occurrence of an increased number of impurities, current 1D-HPLC approaches often prove insufficient. Since many LC × LC methods are limited by modulation, solvent compatibility, orthogonality, and sensitivity issues, the combination of TRLC × RPLC is explored in this work for pharmaceutical impurity analysis. As this combination of a purely aqueous separation with RPLC allows for systematic and optimization-free refocusing in the second dimension, it opens possibilities for generic LC × LC requiring minimal to no method development, in this way overcoming a major perceived contemporary hurdle of LC × LC. The approach is demonstrated with a representative mixture of 17 solutes comprising 11 corticosteroids and 6 progestogens. Orthogonality and peak capacities were assessed on three RP core-shell column selectivities (Poroshell EC-C18, phenyl-hexyl and PFP). Although the TRLC × EC-C18 combination offered somewhat better orthogonality, the combination with the PFP column proved the best for the separation at hand. Depending on the composition of the mixture, the use of full, shifted, or segmented gradients allowed facile optimization of the separation. The developed platform allowed detection of the impurities at the 0.05% level compared to a selected main compound, while also opening up possibilities for analysis of formulations comprising two active ingredients.
Collapse
Affiliation(s)
- Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Mathijs Baert
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Ardiana Kajtazi
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Sonja Schipperges
- Agilent Technologies, Hewlett Packard St 8, D-76337 Waldbronn, Germany
| | | | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - André de Villiers
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, ZA-7602 Matieland, South Africa
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
A selective comprehensive reversed-phase×reversed-phase 2D-liquid chromatography approach with multiple complementary detectors as advanced generic method for the quality control of synthetic and therapeutic peptides. J Chromatogr A 2020; 1627:461430. [DOI: 10.1016/j.chroma.2020.461430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023]
|
26
|
Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Wasalathanthri DP, Rehmann MS, Song Y, Gu Y, Mi L, Shao C, Chemmalil L, Lee J, Ghose S, Borys MC, Ding J, Li ZJ. Technology outlook for real‐time quality attribute and process parameter monitoring in biopharmaceutical development—A review. Biotechnol Bioeng 2020; 117:3182-3198. [DOI: 10.1002/bit.27461] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Matthew S. Rehmann
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Yuanli Song
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Yan Gu
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Luo Mi
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Chun Shao
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Letha Chemmalil
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Jongchan Lee
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Michael C. Borys
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Julia Ding
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| | - Zheng Jian Li
- Biologics Process Development Bristol‐Myers Squibb Company Devens Massachusetts
| |
Collapse
|
28
|
Bridging size and charge variants of a therapeutic monoclonal antibody by two-dimensional liquid chromatography. J Pharm Biomed Anal 2020; 183:113178. [PMID: 32086124 DOI: 10.1016/j.jpba.2020.113178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies are heterogeneous in nature and may contain numerous variants with differences in size, charge, and hydrophobicity, which may impact clinical efficacy, immunogenicity, and safety. Characterization of antibody variants is necessary to build structure-function correlation and establish a proper control strategy. Isolation and enrichment of variants by conventional chromatographic peak fractionation is labor-intensive and time-consuming. The instability of fractions during isolation and subsequent characterization may also be a concern. Hence, it is desirable to analyze antibody variants in an online and real-time manner. Here we demonstrate a 2D-LC methodology - multiple heart-cutting IEC-SEC- as an investigational tool to facilitate a charge variant characterization study. Both IEC modes - anion exchange (AEX) and cation exchange (CEX) chromatography are discussed. Using this approach, direct bridging of size and charge variants of an antibody molecule was achieved without offline peak fractionation. It was observed that antibody aggregates elute late on both the AEX and CEX columns, presumably due to secondary hydrophobic interactions. Additionally, we overcame the solvent mismatch issue and developed a 2D SEC-IEC method to confirm the bridging results. This is the first reported SEC-IEC 2D-LC application for the characterization of antibody size and charge variants.
Collapse
|
29
|
Koshel B, Birdsall R, Chen W. Two-dimensional liquid chromatography coupled to mass spectrometry for impurity analysis of dye-conjugated oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1137:121906. [PMID: 31877427 DOI: 10.1016/j.jchromb.2019.121906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
Two-dimensional liquid chromatography coupled to mass spectrometry (2D-LC/MS) has been successfully implemented for several biopharmaceutical applications, but applications for oligonucleotide analysis have been relatively unexplored. When analyzing oligonucleotides in one-dimension, selecting an ion-pairing agent often requires a balance between acceptable chromatographic and mass spectrometric performance. When oligonucleotides are modified or conjugated to include extremely hydrophobic groups, such as fluorophores, the separation mechanism is further complicated by the impact the fluorophore has on retention. Triethylamine (TEA) buffered in hexafluoroisopropanol (HFIP) is the most commonly used ion-pairing agent for analyses requiring mass spectrometry, but the elution order of dye-conjugated failed sequences relative to the main peak is not length-based compared to what would be predicted for unconjugated oligonucleotides having the same sequence. Hexylammonium acetate (HAA) offers more efficient ion-pairing for a length-based separation, but MS response is compromised due to ion suppression. In this study, 2D-LC/MS is used to show that dye-conjugated oligonucleotide failed sequences can be resolved from the parent oligonucleotide using a strong ion-pairing agent in the first-dimension and further identified using a weaker but MS compatible ion-pairing agent in the second-dimension, results that are not achievable in a one-dimensional analysis. More specifically, a heart-cut configuration using ion-pair reversed-phase chromatography in both the first and second dimension (IP-RP - IP-RP) is used to transfer the n-1 impurity from a length-based separation in the first-dimension to a second-dimension analysis for identity confirmation using a single quadrupole detector. Identical C18 column chemistry is used in both the first and second dimension to exploit changes in selectivity that are due to mobile phase selection. The n-1 impurity from the two-dimensional analysis can be detected at low nanogram levels, comparable to results achieved in a one-dimensional dilution series, which approaches the limit of detection of the instrumentation. This work has future applicability to more complex impurity profiling using high-resolution instrumentation, where a more extensive set of impurities could not be evaluated using one-dimensional techniques.
Collapse
Affiliation(s)
- Brooke Koshel
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States.
| | - Robert Birdsall
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States.
| | - Weibin Chen
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States.
| |
Collapse
|
30
|
A generic method for intact and subunit level characterization of mAb charge variants by native mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1133:121814. [DOI: 10.1016/j.jchromb.2019.121814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
|
31
|
Two-Dimensional Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Analysis of ADCs. Methods Mol Biol 2019. [PMID: 31643056 DOI: 10.1007/978-1-4939-9929-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
From a structural point of view, the complete characterization of ADCs is a challenging task due to their high complexity. ADCs combine the heterogeneity of the initial antibody to the variability associated with the conjugation strategy, the manufacturing process, and the storage. Given the inherent complexity of these biomolecules, online comprehensive two-dimensional liquid chromatography (LC × LC) is an attractive technique to address the challenges associated with ADC characterization. Compared to conventional one-dimensional liquid chromatography techniques (1D-LC), LC × LC combines two different and complementary separation systems. In the context of ADC analysis, LC × LC has been proven to be a rapid and efficient analytical tool: (1) to provide a higher resolving power by increasing the overall peak capacity and thus allowing to gain more information within a single run and (2) to allow mass spectrometry (MS) coupling with some chromatographic techniques that are not MS-compatible and hence to facilitate the structural elucidation of ADCs. In this chapter, we present the coupling of different chromatographic techniques including hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC), ion exchange chromatography (IEX), and hydrophilic liquid chromatography (HILIC). The interest of HIC × SEC, SEC × SEC, HIC × RPLC, IEX × RPLC, RPLC × RPLC, and HILIC × RPLC, all hyphenated to high-resolution mass spectrometry (HRMS), is discussed in the context of the characterization of ADCs.
Collapse
|
32
|
Zhou K, Cao X, Bautista J, Chen Z, Hershey N, Ludwig R, Tao L, Zeng M, Das TK. Structure-Function Assessment and High-Throughput Quantification of Site-Specific Aspartate Isomerization in Monoclonal Antibody Using a Novel Analytical Tool Kit. J Pharm Sci 2019; 109:422-428. [PMID: 31469998 DOI: 10.1016/j.xphs.2019.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Isomerization of surface-exposed aspartic acid (Asp) in the complementarity-determining regions of therapeutic proteins could potentially impact their target binding affinity because of the sensitive location, and often requires complex analytical tactics to understand its effect on structure-function and stability. Inaccurate quantitation of Asp-isomerized variants, especially the succinimide intermediate, presents major challenge in understanding Asp degradation kinetics, its stability, and consequently establishing a robust control strategy. As a practical solution to this problem, a comprehensive analytical tool kit has been developed, which provides a solution to fully characterize and accurately quantify the Asp-related product variants. The toolkit offers a combination of 2 steps, an ion-exchange chromatography method to separate and enrich the isomerized variants in the folded structure for structure-function evaluation and a novel focused peptide mapping method to quantify the individual complementarity-determining region isomerization components including the unmodified Asp, succinimide, and isoaspartate. This novel procedure allowed an accurate quantification of each Asp-related variant and a comprehensive assessment of the functional impact of Asp isomerization, which ultimately helped to establish an appropriate control strategy for this critical quality attribute.
Collapse
Affiliation(s)
- Kaimeng Zhou
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Xiang Cao
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, LLC, 200 Great Valley Pkwy, Malvern, Pennsylvania 19355
| | - James Bautista
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Zhi Chen
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | - Neil Hershey
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, LLC, 200 Great Valley Pkwy, Malvern, Pennsylvania 19355
| | - Richard Ludwig
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| | - Li Tao
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| | - Ming Zeng
- Drug Product Science and Technology, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901.
| | - Tapan K Das
- Biophysical and Chemical Characterization Center of Excellence, Bristol-Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, New Jersey 08534
| |
Collapse
|
33
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
34
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
35
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
36
|
Recent Advances in Two-Dimensional Liquid Chromatography for the Characterization of Monoclonal Antibodies and Other Therapeutic Proteins. ADVANCES IN CHROMATOGRAPHY 2019. [DOI: 10.1201/9780429026171-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
38
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
39
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
40
|
Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 2018; 10:513-538. [PMID: 29513619 PMCID: PMC5973765 DOI: 10.1080/19420862.2018.1438797] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Biologics Analytical Operations, Pharmaceutical & Biologics Development, Gilead Sciences, Ocean Ranch Blvd, Oceanside, CA
| | - Stephen Gozo
- Analytical Research & Development-Biologics, Celgene Corporation, Morris Avenue, Summit, NJ
| | - Amit Katiyar
- Analytical Development, Bristol-Myers Squibb, Pennington Rocky Road, Pennington, NJ
| | - Shara Dellatore
- Biologics & Vaccines Bioanalytics, MRL, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ USA
| | - Yune Kune
- Fortress Biologicals, Sawyer Road, Suite, Waltham, MA
| | - Ram Bhat
- Millennium Research laboratories, New Boston Street, Woburn, MA
| | - Joanne Sun
- Product Development, Innovent Biologics, Dongping Street, Suzhou Industrial Park, China
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Old Saw Mill River Road, Tarrytown, NY
| | - Dongdong Wang
- Analytical Department, BioAnalytix, Inc., Memorial Drive, Cambridge, MA
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | | | - Cory King
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Bruce Mason
- Pre-formulation, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alain Beck
- Analytical Chemistry, NBEs, Center d'Immunologie Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| |
Collapse
|
41
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
42
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
43
|
Sandra K, Steenbeke M, Vandenheede I, Vanhoenacker G, Sandra P. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection. J Chromatogr A 2017; 1523:283-292. [DOI: 10.1016/j.chroma.2017.06.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022]
|
44
|
Simulation of elution profiles in liquid chromatography − II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. J Chromatogr A 2017; 1523:162-172. [DOI: 10.1016/j.chroma.2017.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022]
|
45
|
Venkatramani C, Huang SR, Al-Sayah M, Patel I, Wigman L. High-resolution two-dimensional liquid chromatography analysis of key linker drug intermediate used in antibody drug conjugates. J Chromatogr A 2017; 1521:63-72. [DOI: 10.1016/j.chroma.2017.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
46
|
Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J 2017; 13. [PMID: 28862393 DOI: 10.1002/biot.201700476] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Indexed: 02/04/2023]
Abstract
Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.
Collapse
Affiliation(s)
- Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
47
|
Stoll DR, Shoykhet K, Petersson P, Buckenmaier S. Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography. Anal Chem 2017; 89:9260-9267. [DOI: 10.1021/acs.analchem.7b02046] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, Minnesota 56082, United States
| | - Konstantin Shoykhet
- R&D and Marketing GmbH & Co KG, Agilent Technologies, Hewlett-Packard-Str. 8, 76337 Waldbronn, Germany
| | - Patrik Petersson
- Global
Research, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Stephan Buckenmaier
- R&D and Marketing GmbH & Co KG, Agilent Technologies, Hewlett-Packard-Str. 8, 76337 Waldbronn, Germany
| |
Collapse
|
48
|
Bobály B, Fleury-Souverain S, Beck A, Veuthey JL, Guillarme D, Fekete S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal 2017; 147:493-505. [PMID: 28688616 DOI: 10.1016/j.jpba.2017.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
Antibody Drug Conjugates (ADCs) are innovative biopharmaceuticals gaining increasing attention over the last two decades. The concept of ADCs lead to new therapy approaches in numerous oncological indications as well in infectious diseases. Currently, around 60 CECs are in clinical trials indicating the expanding importance of this class of protein therapeutics. ADCs show unprecedented intrinsic heterogeneity and address new quality attributes which have to be assessed. Liquid chromatography is one of the most frequently used analytical method for the characterization of ADCs. This review summarizes recent results in the chromatographic characterization of ADCs and supposed to provide a general overview on the possibilities and limitations of current approaches for the evaluation of drug load distribution, determination of average drug to antibody ratio (DARav), and for the analysis of process/storage related impurities. Hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC) and multidimensional separations are discussed focusing on the analysis of marketed ADCs. Fundamentals and aspects of method development are illustrated with applications for each technique. Future perspectives in hydrophilic interaction chromatography (HILIC), HIC, SEC and ion exchange chromatography (IEX) are also discussed.
Collapse
Affiliation(s)
- Balázs Bobály
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
49
|
Alekseychyk L, Su C, Becker GW, Treuheit MJ, Razinkov VI. High-Throughput Screening and Analysis of Charge Variants of Monoclonal Antibodies in Multiple Formulations. SLAS DISCOVERY 2017; 22:1044-1052. [PMID: 28570837 DOI: 10.1177/2472555217711666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among different biopharmaceutical products, monoclonal antibodies (mAbs) show a high level of complexity, including heterogeneity due to differences in size, hydrophobicity, charge, and so forth. Such heterogeneity can be related to both cell-based production and any of the stages of purification, storage, and delivery that the mAb is subjected to. Choosing the right formulation composition providing both physical and chemical stabilities can be a very challenging process, especially when done in the limited time frame required for a typical drug development cycle. Charge variants, a common type of heterogeneity for mAbs, are easy to detect by ion exchange, specifically cation exchange chromatography (CEX). We have developed and implemented a high-throughput CEX-based approach for the rapid screening and analysis of charge modifications in multiple formulation conditions. In this work, 96 different formulations of antistreptavidin IgG1 and IgG2 molecules were automatically prepared and analyzed after incubation at high temperature. Design of experiment and statistical analysis tools have been utilized to determine the major formulation factors responsible for chemical stability of antibodies. Regression models were constructed to find the optimal formulation conditions. The methodology can be applied to different stages of preformulation and formulation development of mAbs.
Collapse
Affiliation(s)
| | - Cheng Su
- 2 Biostatistics, Amgen Inc., San Francisco, CA, USA
| | | | | | | |
Collapse
|
50
|
Sarrut M, Rouvière F, Heinisch S. Theoretical and experimental comparison of one dimensional versus on-line comprehensive two dimensional liquid chromatography for optimized sub-hour separations of complex peptide samples. J Chromatogr A 2017; 1498:183-195. [DOI: 10.1016/j.chroma.2017.01.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/11/2017] [Accepted: 01/22/2017] [Indexed: 01/15/2023]
|