1
|
Zhao K, Zhao P, Dong J, Wei Y, Chen B, Wang Y, Pan X, Wang J. Implementation of an Integrated Dielectrophoretic and Magnetophoretic Microfluidic Chip for CTC Isolation. BIOSENSORS 2022; 12:bios12090757. [PMID: 36140142 PMCID: PMC9496341 DOI: 10.3390/bios12090757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Identification of circulating tumor cells (CTCs) from a majority of various cell pools has been an appealing topic for diagnostic purposes. This study numerically demonstrates the isolation of CTCs from blood cells by the combination of dielectrophoresis and magnetophoresis in a microfluidic chip. Taking advantage of the label-free property, the separation of red blood cells, platelets, T cells, HT-29, and MDA-231 was conducted in the microchannel. By using the ferromagnet structure with double segments and a relatively shorter distance in between, a strong gradient of the magnetic field, i.e., sufficiently large MAP forces acting on the cells, can be generated, leading to a high separation resolution. In order to generate strong DEP forces, the non-uniform electric field gradient is induced by applying the electric voltage through the microchannel across a pair of asymmetric orifices, i.e., a small orifice and a large orifice on the opposite wall of the channel sides. The distribution of the gradient of the magnetic field near the edge of ferromagnet segments, the gradient of the non-uniform electric field in the vicinity of the asymmetric orifices, and the flow field were investigated. In this numerical simulation, the effects of the ferromagnet structure on the magnetic field, the flow rate, as well as the strength of the electric field on their combined magnetophoretic and dielectrophoretic behaviors and trajectories are systemically studied. The simulation results demonstrate the potential of both property- and size-based cell isolation in the microfluidic device by implementing magnetophoresis and dielectrophoresis.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Penglu Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Jianhong Dong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Bin Chen
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Yanjuan Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Software Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Xinxiang Pan
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Maritime, Guangdong Ocean University, Zhanjiang 524000, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Correspondence:
| |
Collapse
|
2
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
3
|
Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin: Chemical versus enzymatic processes. PLoS One 2021; 16:e0257061. [PMID: 34478473 PMCID: PMC8415601 DOI: 10.1371/journal.pone.0257061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/21/2021] [Indexed: 11/19/2022] Open
Abstract
A new method for hemoglobin (Hb) deoxygenation, in suspension or within red blood cells (RBCs) is described using the commercial enzyme product, EC-Oxyrase®. The enzymatic deoxygenation method has several advantages over established deoxygenation methodologies, such as avoiding side reactions that produce methemoglobin (metHb), thus eliminating the need for an inert deoxygenation gas and airtight vessel, and facilitates easy re-oxygenation of Hb/RBCs by washing with a buffer that contains dissolved oxygen (DO). The UV-visible spectra of deoxyHb and metHb purified from human RBCs using three different preparation methods (sodium dithionite [to produce deoxyHb], sodium nitrite [to produce metHb], and EC-Oxyrase® [to produce deoxyHb]) show the high purity of deoxyHb prepared using EC-Oxyrase® (with little to no metHb or hemichrome production from side reactions). The oxyHb deoxygenation time course of EC-Oxyrase® follows first order reaction kinetics. The paramagnetic characteristics of intracellular Hb in RBCs were compared using Cell Tracking Velocimetry (CTV) for healthy and sickle cell disease (SCD) donors and oxygen equilibrium curves show that the function of healthy RBCs is unchanged after EC-Oxyrase® treatment. The results confirm that this enzymatic approach to deoxygenation produces pure deoxyHb, can be re-oxygenated easily, prepared aerobically and has similar paramagnetic mobility to existing methods of producing deoxyHb and metHb.
Collapse
|
4
|
Jia R, Ma B, Zheng C, Ba X, Wang L, Du Q. Magnetic properties of micro-particles with different shapes and postures in the high precision particles detection. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Moore LR, Mizutani D, Tanaka T, Buck A, Yazer M, Zborowski M, Chalmers JJ. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol Bioeng 2018; 115:1521-1530. [PMID: 29476625 PMCID: PMC6311700 DOI: 10.1002/bit.26581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 01/23/2023]
Abstract
The ability to separate RBCs from the other components of whole blood has a number of useful clinical and research applications ranging from removing RBCs from typical clinical blood draw, bone marrow transplants to transfusions of these RBCs to patients after significant blood loss. Viewed from a mechanistic/process perspective, there are three routine methodologies to remove RBCs: 1) RBCs lysis, 2) separation of the RBCs from the nucleated cells (i.e., stem cells) based on density differences typically facilitated through centrifugation or sedimentation agents, and 3) antibody based separation in which a targeted RBC is bound with an affinity ligand that facilitates its removal. More recently, several microfluidic based techniques have also been reported. In this report, we describe the performance of continuous RBC separation achieved by the deflection of intrinsically magnetic, deoxygenated RBCs as they flow through a magnetic energy gradient created by quadrupole magnet. This quadrupole magnetic, with aperture of 9.65 mm, has a maximum field of B0 = 1.36 T at the pole tips and a constant field gradient of B0 /r0 = 286 T/m. The annular flow channel, contained within this quadrupole magnet, is 203 mm long, has an inner radius of 3.98 mm, and an inner, outer radius of 4.36 mm, which corresponds to an annulus radius of 380 micrometer. At the entrance and exit to this annular channel, a manifold was designed which allows a cell suspension and sheath fluid to be injected, and a RBC enriched exit flow (containing the magnetically deflected RBCs) and a RBC depleted exit flow to be collected. Guided by theoretical models previously published, a limited number of operating parameters; total flow rate, flow rate ratios of flows in and flow out, and ratios of RBC to polystyrene control beads was tested. The overall performance of this system is consistent with our previously presented, theoretical models and our intuition. As expected, the normalized recovery of RBCs in the RBC exit fraction ranged from approximately 95% down to 60%, as the total flow rate through the system increased from 0.1 to 0.6 ml/min. At the cell concentrations studied, this corresponds to a flow rate of 1.5 × 106 -9 × 106 cells/min. While the throughput of these pilot scale studies are slow for practical applications, the general agreement with theory, and the small cross-sectional area in which the actual separation is achieved, 77 mm2 (annulus radius times the length), and corresponding volume of approximately 2 mls, suggests the potential to scale-up a system for practical applications exists and is actively being pursued.
Collapse
Affiliation(s)
- Lee R Moore
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Daichi Mizutani
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
- Department of Chemistry, Mie University, Japan
| | - Tomoya Tanaka
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
- Department of Chemistry, Mie University, Japan
| | - Amy Buck
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Mark Yazer
- Department of Pathology, University of Pittsburgh and The Institute for Transfusion Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey J Chalmers
- William G. Lowrie Department of Chemica, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Abdel Fattah AR, Mishriki S, Kammann T, Sahu RP, Geng F, Puri IK. Gadopentatic acid affects in vitro proliferation and doxorubicin response in human breast adenocarcinoma cells. Biometals 2018; 31:605-616. [PMID: 29728885 DOI: 10.1007/s10534-018-0109-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Contrasting agents (CAs) that are administered to patients during magnetic resonance imaging to facilitate tumor identification are generally considered harmless. However, gadolinium (Gd) based contrast agents can be retained in the body, inflicting specific cell line cytotoxicity. We investigate the effect of Gadopentatic acid (Gd-DTPA) on human breast adenocarcinoma MCF-7 cells. These cells exhibit a toggle switch response: exposure to 0.1 and 1 mM concentrations of Gd-DTPA enhances proliferation, which is hindered at a higher 10 mM concentration. Proliferation is enhanced when cells transition to 3D morphologies in post confluent conditions. The proliferation dependence on the concentration of CA is absent for Hs 578T and MDA-MB-231 triple negative cell lines. MCF-7 cells reveal a double toggle switch related to the expression of VEGF, which goes through high-low-high downregulation when cells are exposed to 0.1, 1, and 10 mM Gd-DTPA, respectively. Finally, doxorubicin drug response is assessed, which also reveals a double toggle switch behavior, where drug cytotoxicity exhibits a nonlinear dependence on the CA concentration. A toggle switch in cell characteristics that are exposed to 1 mM of Gd-DTPA amplifies the importance of this threshold, affecting several cell behaviors if surpassed. This work emphasizes the important effects that CAs can have on cells, specifically Gd-DTPA on MCF-7 cells, and the implications for cell growth and drug response during clinical and synthetic biology procedures.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Sarah Mishriki
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Tobias Kammann
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rakesh P Sahu
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Fei Geng
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Ishwar K Puri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
7
|
Abdel Fattah AR, Mishriki S, Kammann T, Sahu RP, Geng F, Puri IK. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces. Biomater Sci 2018; 6:683-694. [DOI: 10.1039/c7bm01050h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Label-free cell magnetic manipulations facilitate fast and new experimental setups and reveal novel observations in synthetic biology.
Collapse
Affiliation(s)
| | - Sarah Mishriki
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - Tobias Kammann
- Faculty of Biological Sciences
- Friedrich-Schiller-University Jena
- Germany
| | - Rakesh P. Sahu
- Department of Mechanical Engineering
- McMaster University
- Hamilton
- Canada
| | - Fei Geng
- Department of Mechanical Engineering
- McMaster University
- Hamilton
- Canada
| | - Ishwar K. Puri
- Department of Mechanical Engineering
- McMaster University
- Hamilton
- Canada
- School of Biomedical Engineering
| |
Collapse
|
8
|
Megías R, Arco M, Ciriza J, Saenz del Burgo L, Puras G, López-Viota M, Delgado ÁV, Dobson JP, Arias JL, Pedraz JL. Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 2017; 518:270-280. [DOI: 10.1016/j.ijpharm.2016.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/20/2022]
|
9
|
Abdel Fattah AR, Meleca E, Mishriki S, Lelic A, Geng F, Sahu RP, Ghosh S, Puri IK. In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomater Sci Eng 2016; 2:2133-2138. [DOI: 10.1021/acsbiomaterials.6b00614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Elvira Meleca
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Sarah Mishriki
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Alina Lelic
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Fei Geng
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Rakesh P. Sahu
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Suvojit Ghosh
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Ishwar K. Puri
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|