1
|
Zheng R, Zhang L, Sun X, Qiao K, Sun B, Zhang Y. Key saltiness-enhancing substances in Maillard reaction products derived from chicken breast hydrolysate: Identification, saltiness-enhancing ability and mechanism. Food Chem 2024; 461:140881. [PMID: 39178547 DOI: 10.1016/j.foodchem.2024.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
This work employs a saltiness-guided separation combined with UPLC-QTOF-MS to identify the key saltiness-enhancing substances in Maillard reaction products derived from chicken breast hydrolysate (CBH-MRPs). Thirteen compounds in the U3 fraction exhibited significant saltiness-enhancing abilities, which increased the saltiness intensity of NaCl (3 g/L) from 2.80 to 3.35-3.88. Interactions between the compounds and NaCl were evaluated using the S-curve method. The results showed that five compounds (5'-GMP, 5'-IMP, L-glutamic acid, L-lactic acid, and L-carnosine) and one compound (glutamine) exhibited synergistic and additive effects with NaCl, respectively, at tested concentrations. Notably, 5'-GMP/5'-IMP/glutamine and L-carnosine/L-lactic acid demonstrated better saltiness-enhancing abilities at their suprathreshold and subthreshold levels, respectively. Molecular docking results showed that hydrogen bonding was the key force for docking. Residues Cys475, Glu378, and Trp236 were the primary binding sites of the transmembrane channel-like protein 4 (TMC4). These results contribute to a better understanding of the saltiness modulating mechanisms of CBH-MRPs.
Collapse
Affiliation(s)
- Ruiyi Zheng
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xingming Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Xiao C, Lai Z, Zhang C, Lu W, Chen D, Wang H, Cheng H, Huang L, Ye X, Liu D. Identification of salty peptides from enzymolysis extract of oyster by peptidomics and virtual screening. Food Res Int 2024; 195:114966. [PMID: 39277236 DOI: 10.1016/j.foodres.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Salty peptide as an important sodium substitute, which could reduce the risk of cardiovascular disease caused by excessive sodium intake. In this study, novel salty peptides were prepared and identified from enzymolysis extract of oysters by peptitomic identification, virtual screening and solid phase synthesis. Additionally, molecular simulation was used to study the taste mechanism of salty peptides. 316 peptides were identified in the enzymatic hydrolysates of oysters. 6 peptides, selected through virtual screening, were synthesized using solid-phase synthesis, and EK, LFE, LEY and DR were confirmed to possess a pleasing salty taste through electronic tongue evaluation. Molecular docking results indicated that these 4 peptides could enter the binding pocket within the transmembrane channel-like 4 (TMC4) cavity, wherein salt bridges, hydrogen bonds and attractive charges were the main binding forces. This study provides a rapid screening method for salty peptides in sea food products but possibly applied for other sources.
Collapse
Affiliation(s)
- Chaogeng Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zeping Lai
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
4
|
Wang H, Chen D, Lu W, Dang Y, Liu Z, Chen G, Wang B, Zhang C, Xiao C. Novel salty peptides derived from bovine bone: Identification, taste characteristic, and salt-enhancing mechanism. Food Chem 2024; 447:139035. [PMID: 38507951 DOI: 10.1016/j.foodchem.2024.139035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Excessive sodium intake is a major contributor to the incidence of cardiovascular diseases. The objective of this study was to prepare, isolate, and characterize peptides from bovine bone protein and investigate the salty/salt-enhancing mechanism of peptides. 1032 peptides were identified in the enzymatic hydrolysates of bovine bone protein and were further screened by the composition of amino acid residues and molecular docking analysis. 5 peptides were finally selected for solid-phase synthesis, and KER showed a better salty taste by sensory verification. Moreover, the synergistic effect of KER in NaCl and MSG solution could enhance the salty intensity by 65.26 %. The binding of KER to the salty receptor (TMC4) was driven by hydrogen bonding and electrostatic interactions with a binding energy of -88.0734 kcal/mol. This work may provide a new approach to efficiently screen salty peptides from natural food materials, which were expected as a taste enhancer used in salt-reducing foods.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Di Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhenmiao Liu
- Zhejiang Dingwei Food Co. Ltd., Wenzhou 325207, China
| | - Guangyin Chen
- Zhejiang Dingwei Food Co. Ltd., Wenzhou 325207, China
| | - Bin Wang
- Juhui Food Technology Co. Ltd., Chongqing 400713, China
| | - Cen Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaogeng Xiao
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Cheng Y, Meng Y, Liu S. Diversified Techniques for Restructuring Meat Protein-Derived Products and Analogues. Foods 2024; 13:1950. [PMID: 38928891 PMCID: PMC11202613 DOI: 10.3390/foods13121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Accompanied by the rapid growth of the global population and increasing public awareness of protein-rich foods, the market demand for protein-derived products is booming. Utilizing available technologies to make full use of meat by-products, such as scraps, trimmings, etc., to produce restructured meat products and explore emerging proteins to produce meat analogues can be conducive to alleviating the pressure on supply ends of the market. The present review summarizes diversified techniques (such as high-pressure processing, ultrasonic treatment, edible polysaccharides modification, enzymatic restructuring, etc.) that have been involved in restructuring meat protein-derived products as well as preparing meat analogues identified so far and classifying them into three main categories (physical, chemical and enzymatic). The target systems, processing conditions, effects, advantages, etc., of the included techniques, are comprehensively and systemically summarized and discussed, and their existing problems or developing trends are also briefly prospected. It can be concluded that a better quality of restructured products can be obtained by the combination of different restructuring technologies. This review provides a valuable reference both for the research and industrial production of restructured meat protein-derived products and analogues.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiyun Meng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| | - Shengnan Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| |
Collapse
|
6
|
Chen S, Maulu S, Wang J, Xie X, Liang X, Wang H, Wang J, Xue M. The application of protease in aquaculture: Prospects for enhancing the aquafeed industry. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:105-121. [PMID: 38357575 PMCID: PMC10864210 DOI: 10.1016/j.aninu.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Low-fishmeal and protein-saving diets are two prominent nutritional strategies utilized to address challenges related to the scarcity and sustainability of protein sources in aquaculture. However, these diets have been associated with adverse effects on the growth performance, feed utilization, and disease resistance of aquatic animals. To mitigate these challenges, exogenous protease has been applied to enhance the quality of diets with lower protein contents or fishmeal alternatives, thereby improving the bioavailability of nutritional ingredients. Additionally, protease preparations were also used to enzymatically hydrolyze fishmeal alternatives, thus enhancing their nutritional utilization. The present review aims to consolidate recent research progress on the use of protease in aquaculture and conclude the benefits and limitations of its application, thereby providing a comprehensive understanding of the subject and identifying opportunities for future research.
Collapse
Affiliation(s)
- Shiyou Chen
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sahya Maulu
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, United Kingdom
- Centre for Innovative Approach Zambia (CIAZ), Lusaka 119825, Zambia
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoze Xie
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Lv B, Wang X, Li J, Xu Y, Jiang B, Zhao D, Li C. Proteomics analysis of the influence of proteolysis on the subsequent glycation of myofibrillar protein. Food Chem 2024; 431:137084. [PMID: 37579610 DOI: 10.1016/j.foodchem.2023.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Proteomics was used to study the influence of proteolysis on the glycation of myofibrillar proteins (MPs). Proteolysis by papain and proteinase K generated the highest level of amino acids (AAs) and peptides, respectively. Both the glycation degree (A value increased from 0.173 to 0.202-0.348) and speed (k value increased from 0.0099 to 0.0132-0.0145) were enhanced by proteolysis using papain and proteinase K. Proteomics analysis revealed that proteolysis largely enhanced the glycation site number in Lys, Arg and N-terminal residues (eg. Leu, Gly, Thr, Ala, Met, Ile, Phe and Val residues in myosin light chain). Proteolysis by papain preferentially acted on actin and therefore specifically increased the glycation sites from actin. Proteolysis reduced the level of aldehydes but enhanced the aromatic E-nose signals, possibly due to the combination of aldehydes with released AAs/peptides. The proteomics analysis helped to detail the relationship between proteolysis and subsequent glycation/flavour formation.
Collapse
Affiliation(s)
- Bowen Lv
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoqing Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaxin Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yao Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Boya Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Key Laboratory of Meat Products Processing, MOA, Nanjing 210095, PR China; Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
8
|
Zhang Y, Yao Y, Zhou T, Zhang F, Xia X, Yu J, Song S, Hayat K, Zhang X, Ho CT. Light-Colored Maillard Peptides: Formation from Reduced Fluorescent Precursors of Browning and Enhancement of Saltiness Perception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20251-20259. [PMID: 38060299 DOI: 10.1021/acs.jafc.3c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The browning formation and taste enhancement of peptides derived from soybean, peanut, and corn were studied in the light-colored Maillard reaction compared with the deep-colored reaction. The fluorescent compounds, as the browning precursors, were accumulated during the early Maillard reaction of peptides and subsequently degraded into dark substances, which resulted in a higher browning degree of deep-colored Maillard peptides (MPs), especially for the MPs derived from corn peptide. However, the addition of l-cysteine in light-colored Maillard reaction reduced the formation of deoxyosones and short-chain reactive α-dicarbonyls, thereby weakening the generation of fluorescent compounds and inhibited the browning of MPs. Synchronously, the peptides were thermally degraded into small peptides and amino acids, which were consumed less during light-colored thermal reaction due to its shorter reaction time at high temperature compared with deep-colored ones, thus contributing to a stronger saltiness perception of light-colored MPs than deep-colored MPs. Besides, the Maillard reaction products derived from soybean and peanut peptides possessed an obvious "kokumi" taste, making them suitable for enhancing the soup flavors.
Collapse
Affiliation(s)
- Yanqun Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Qiang Wang Flavouring Food Co., Ltd., Anhui Province Key Laboratory of Functional Compound Seasoning, No. 1 Shengli Road, Jieshou 236500, Anhui, P.R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
9
|
Wu J, Huang P, Feng Y, Cui C, Xu J, Li L. Enhancing Kokumi Sensation and Reducing Bitterness in Acid-Hydrolyzed Vegetable Proteins through Lactate and Thermal Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19694-19704. [PMID: 38016698 DOI: 10.1021/acs.jafc.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Previous studies have demonstrated that thermal processing in the presence of lactate and amino acids can produce taste-active N-lactoyl amino acids. This study aimed to investigate the impact of lactate and thermal processing on the sensory characteristics of acid-hydrolyzed vegetable proteins (aHVP). The results showed that the processed aHVP exhibited enhanced kokumi, a milder umami taste, and reduced bitterness on treatment with 1% lactate at 110 °C for 3 h or 3% lactate at 120 °C for 2 h compared to the unprocessed samples. Partial or orthogonal least-squares discriminant analysis and variable importance in projection (VIP) analyses revealed the significant contributions of N-,l-Lac-l-hydrophobic AAs [-Met, -Ile, -Leu, -Val, and -Phe (VIP > 1.2)] to the observed differences between the processed and unprocessed samples. Electronic tongue analysis confirmed the sensory findings and indicated a decrease in the aftertaste of bitterness in the processed samples. Furthermore, the study identified the sensory characteristics of N-l-Lac-l-Met, -Ile, and -Leu, highlighting their potential to enhance salty, umami, and kokumi perception in simulated broth. Furthermore, the study incorporated the addition of bitter amino acids (Val, Ile, Leu, Tyr, Phe, Lys, His, and Arg) and the aforementioned N-l-Lac-l-AAs to aHVP, providing further evidence for their contributions to bitterness and aftertaste-B as well as the kokumi differences, respectively. This study provides valuable insights into the sensory effects of lactate and thermal processing on aHVP, facilitating the development of improved taste-enhancing strategies.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Panchaonan Huang
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Yunzi Feng
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
10
|
Wang X, Zhang D, Guo Q, Pu Y, Huang A, Fan J. Identification and Characterization of Novel Umami Peptides from Protein Hydrolysates of Morchella esculenta and Their Interaction with T1R1/T1R3 Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14046-14056. [PMID: 37709731 DOI: 10.1021/acs.jafc.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The study aimed to explore umami peptides derived from protein hydrolysates of Morchella esculenta. According to the electronic tongue and sensory evaluation, the ultrafiltration fractions (<3 kDa) of the protein hydrolysates exhibited the strongest umami taste. The overall flavor of the screened fractions was significantly improved after the Maillard reaction, based on the electronic nose and electronic tongue analyses, and the content of total free amino acid increased from 387.35 to 589.30 μg/mL. A total of 37 peptides with high confidence were identified from the fractions using LC-MS/MS. Additionally, two novel umami peptides were screened through bioinformatics and molecular docking, and their recognition threshold was 0.43 (EYPPLGRFA) and 0.52 mmol/L (TVIDAPGHRDFI), respectively. In addition, molecular docking analysis revealed that the key binding sites, such as Ser148, Leu51, Arg327, and Leu468 in T1R1/T1R3 contributed to docking, and hydrogen bonding and hydrophobic interactions were the dominant interaction forces between the two umami peptides and T1R1/T1R3 receptor. This study contributes to the development and utilization of Morchella esculenta in flavored foods.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Dan Zhang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qihong Guo
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yuehong Pu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
11
|
González-López N, Insuasty-Cepeda DS, Huertas-Ortiz KA, Reyes-Calderón JE, Martínez-Ramírez JA, Fierro-Medina R, Jenny Rivera-Monroy Z, García-Castañeda JE. Gradient Retention Factor Concept Applied to Method Development for Peptide Analysis by Means of RP-HPLC. ACS OMEGA 2022; 7:44817-44824. [PMID: 36530233 PMCID: PMC9753532 DOI: 10.1021/acsomega.2c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Using the van Deemter model, the efficiency of three stationary phase systems in the analysis of a mixture of synthetic peptides was evaluated: (i) monolithic, (ii) packed, and (iii) core-shell columns, and it was shown that the efficiency of the monolithic column is superior to the others, specifically using it, the lowest values of H min (0.03 and 0.1 mm) were obtained, and additionally its efficiency was not significantly affected by increasing the flow. Using the concept of the gradient retention factor (k*), a method for chromatographic separation of a peptide complex mixture was designed, implemented, and optimized and then transferred from a packed column to a monolithic one. The results showed that it was possible to separate all components of the mixture using both evaluated columns; moreover, the analysis time was reduced from 70 to 10 min, conserving the critical pair resolution (1.4), by the transfer method using the k* concept. The method developed was tested against a mixture of doping peptides, showing that this method is efficient for separating peptides of various natures. This investigation is very useful for the development of methods for the analysis of complex peptide mixtures since it provides a systematic approach that can be extrapolated to different types of columns and instrumentation.
Collapse
Affiliation(s)
- Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | | | - Kevin Andrey Huertas-Ortiz
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Juan Esteban Reyes-Calderón
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | - Ricardo Fierro-Medina
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | | |
Collapse
|
12
|
Volatilomic evaluation of protein hydrolysates from free-range chicken bones treated with hot-pressure process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Zhang Z, Blank I, Wang B, Cao Y. Changes in odorants and flavor profile of heat‐processed beef flavor during storage. J Food Sci 2022; 87:5208-5224. [DOI: 10.1111/1750-3841.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients Beijing Technology & Business University (BTBU) Beijing China
| | - Imre Blank
- Zhejiang Yiming Food Co. LTD Shanghai China
| | - Bei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients Beijing Technology & Business University (BTBU) Beijing China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients Beijing Technology & Business University (BTBU) Beijing China
| |
Collapse
|
14
|
Le B, Yu B, Amin MS, Liu R, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Liu S, Sun H, Ma G, Zhang T, Wang L, Pei H, Li X, Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front Nutr 2022; 9:973677. [PMID: 36172529 PMCID: PMC9511141 DOI: 10.3389/fnut.2022.973677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
During food processing, especially heating, the flavor and color of food change to a great extent due to Maillard reaction (MR). MR is a natural process for improving the flavor in various model systems and food products. Maillard reaction Products (MRPs) serve as ideal materials for the production of diverse flavors, which ultimately improve the flavor or reduce the odor of raw materials. Due to the complexity of the reaction, MR is affected by various factors, such as protein source, hydrolysis conditions, polypeptide molecular weight, temperature, and pH. In the recent years, much emphasis is given on conditional MR that could be used in producing of flavor-enhancing peptides and other compounds to increase the consumer preference and acceptability of processed foods. Recent reviews have highlighted the effects of MR on the functional and biological properties, without elaborating the flavor compounds obtained by the MR. In this review, we have mainly introduced the Maillard reaction-derived flavors (MF), the main substances producing MF, and detection methods. Subsequently, the main factors influencing MF, from the selection of materials (sugar sources, protein sources, enzymatic hydrolysis methods, molecular weights of peptides) to the reaction conditions (temperature, pH), are also described. In addition, the existing adverse effects of MR on the biological properties of protein are also pointed out.
Collapse
|
16
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
17
|
Chen W, Li W, Wu D, Zhang Z, Chen H, Zhang J, Wang C, Wu T, Yang Y. Characterization of novel umami-active peptides from Stropharia rugoso-annulata mushroom and in silico study on action mechanism. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
19
|
Ma T, Wang Q, Wei P, Zhu K, Feng A, He Y, Wang J, Shen X, Cao J, Li C. EGCG-gelatin biofilm improved the protein degradation, flavor and micromolecule metabolites of tilapia fillets during chilled storage. Food Chem 2021; 375:131662. [PMID: 34865925 DOI: 10.1016/j.foodchem.2021.131662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
The protein degradation, flavor and micromolecule metabolites changes of (-)-epigallocatechin gallate (EGCG)-gelatin biofilm treatment (EGT) on chilled tilapia fillets in 21 days were investigated. Morphology observations revealed EGT protected good connective myofibrillar protein. It maintained protein secondary structure by significantly increasing the proportion of α-helix (15.20%) and decreasing the ratio of random coils (22.02%) in the EGT group compared to the control (CON) group (P < 0.05). Metabolomics with UHPLC-Q-TOF/MS analysis indicated a distinct separation between the CON and treatment groups at the end of storage. Small peptides analysis demonstrated that the EGT group increased the level of sweet peptides. Additionally, the EGT group significantly reduced the formation of amino acid derivatives and esters and off-flavor development. Overall, EGT effectively improved flavor, inhibited fish protein oxidation/degradation, and verified metabolomics results. This study unveiled the potential of metabolomics to analyze metabolites determined by tilapia and monitor the changes during storage.
Collapse
Affiliation(s)
- Tingting Ma
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Aiguo Feng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanfu He
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and ministerial co-constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and ministerial co-constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Zhang N, Yang Y, Wang W, Fan Y, Liu Y. A potential flavor seasoning from aquaculture by-products: An example of Takifugu obscurus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Begum N, Raza A, Song H, Iftikhar M, Zhang Y, Zhang L, Liu P. Fractionation and identification of flavor peptides from bovine bone extract after enzymatic hydrolysis and Maillard reaction by consecutive chromatography. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nabila Begum
- Laboratory of Molecular Sensory Science Beijing Innovation Center of Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Ali Raza
- Laboratory of Molecular Sensory Science Beijing Innovation Center of Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Huanlu Song
- Laboratory of Molecular Sensory Science Beijing Innovation Center of Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology & Business University Beijing China
| | - Maryam Iftikhar
- Laboratory of Molecular Sensory Science Beijing Innovation Center of Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Yu Zhang
- Laboratory of Molecular Sensory Science Beijing Innovation Center of Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Lei Zhang
- Fushun Dufengxuan Gushen Biotechnology Co., Ltd. Fushun China
| | - Peng Liu
- Fushun Dufengxuan Gushen Biotechnology Co., Ltd. Fushun China
| |
Collapse
|
22
|
Cui H, Yu J, Zhai Y, Feng L, Chen P, Hayat K, Xu Y, Zhang X, Ho CT. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Han JR, Du YN, Song L, Song YK, Yan JN, Jiang XY, Wu HT, Zhu BW. Structural characteristics and improved in vitro hepatoprotective activities of Maillard reaction products of decapeptide IVTNWDDMEK and ribose. J Food Sci 2021; 86:4001-4016. [PMID: 34318481 DOI: 10.1111/1750-3841.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
Here, a novel decapeptide IVTNWDDMEK with Maillard reactivity derived from scallop Chlamys farreri mantle was identified. The structural characteristics and in vitro hepatoprotective effects of IVTNWDDMEK conjugated with ribose were further investigated. The changes in decapeptide structures were determined by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and atomic force microscopy (AFM), and the modification sites induced by Maillard reaction of IVTNWDDMEK and ribose were monitored by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Maillard reaction products (MRPs) of IVTNWDDMEK-ribose demonstrate hepatoprotective benefits through the suppression of DNA damage and apoptosis induced by oxidative stress in human HepG2 cells in addition to enhancing the antioxidant activities. Moreover, after treatment with decapeptide-ribose MRPs, the activities of cellular antioxidative enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx) were remarkably increased, while the content of malondialdehyde (MDA) was decreased compared with H2 O2 - treated group, thereby enhancing the intracellular antioxidant defenses. These findings demonstrate the potential utilization of decapeptide IVTNWDDMEK-ribose MRPs as food antioxidants to suppress oxidative damage. PRACTICAL APPLICATION: In recent years, several food-derived bioactive peptides and their derivatives are regarded as good dietary antioxidants for reducing oxidative stress and improving liver function. Here, a novel Maillard reactive decapeptide IVTNWDDMEK, identified from scallop mantle hydrolysates by peptidomics in the previous study was synthesized. Then, the correlation between intercellular antioxidant activities and chemical structure changes of IVTNWDDMEK-ribose Maillard reaction conjugates was further studied. The preferable hepatoprotective activities of decapeptide IVTNWDDMEK-ribose MRPs indicated that these MRPs could be potentially utilized as food antioxidants or additives in the production of nutritional foods.
Collapse
Affiliation(s)
- Jia-Run Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou Zhejiang, China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Yu-Kun Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Xin-Yu Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| |
Collapse
|
24
|
Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, Chen J. Synthetic biology for future food: Research progress and future directions. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Yin M, Fu X, Wang X. Key lipid molecules in hepatopancreas of Eriocheir sinensis: Identification and thermal oxidative degradation characteristics. J Food Biochem 2021; 45:e13734. [PMID: 33990974 DOI: 10.1111/jfbc.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
The hepatopancreas of Eriocheir sinensis are the key parts that form its unique flavor. Lipids are important parts of hepatopancreas; hence, this study used UHPLC-Q E Orbitrap mass spectrometer to investigate the changes in the lipid composition of crabs formed from thermal oxidation system. The results demonstrated that key lipids in the hepatopancreas of female Chinese mitten crabs were phosphatidylethanolamine (PE) and free fatty acid (FFA) during the steaming process. The key fatty acids of PE were C18:1, C18:3, C20:3, C20:4, C20:5, and C22:6. The degradation rate of C24:0 in FFA was greater than the synthesis rate. Principal component analysis, partial least square analysis combined with hierarchical cluster analysis found that PE (16:0/20:5), PE (18:1/20:4), PE (16:0/22:6), PE (16:0/20:4), PE (16:0 /16:1), PE (16:0/18:2), PE (18:0/20:5), PE (18:0/22:6), PE (18:0/20:4), PE (16:0/18:1), PE (18:0/18:2), PE (18:0/22:5), and PE (18:0/18:1) were the key PE molecular species. Simulating thermal oxidation to understand the dynamic change mechanism of lipids is meaningful for processing of Chinese mitten crab products and catering to public sensory orientation. PRACTICAL APPLICATIONS: In this study, the UHPLC-Q E Orbitrap method was used to detect and analyze the molecular species changes of Eriocheir sinensis in the simulated thermal oxidation system, and systematically analyzed the law of changes. Based on these results, we can expand our understanding of the changing characteristics of the hepatopancreas and pancreas of the river crab and provide a direction for the formation mechanism of the aroma substances of E. sinensis during the heat treatment and the improvement of the quality of its products.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xueyan Fu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
26
|
Chen X, Zou Y, Wang D, Xiong G, Xu W. Effects of ultrasound pretreatment on the extent of Maillard reaction and the structure, taste and volatile compounds of chicken liver protein. Food Chem 2020; 331:127369. [DOI: 10.1016/j.foodchem.2020.127369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/22/2022]
|
27
|
Wang L, Qiao K, Huang Y, Zhang Y, Xiao J, Duan W. Optimization of beef broth processing technology and isolation and identification of flavor peptides by consecutive chromatography and LC-QTOF-MS/MS. Food Sci Nutr 2020; 8:4463-4471. [PMID: 32884726 PMCID: PMC7455977 DOI: 10.1002/fsn3.1746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 11/29/2022] Open
Abstract
To investigate the flavor peptides of beef broth obtained under optimized stewing conditions, separation procedures such as ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography were employed to isolate the umami taste peptides. Sensory evaluation was combined with liquid chromatography-mass spectrometry to detect the flavor peptides. The optimization of the stewing process conditions was studied using the orthogonal method, which indicated that time had the most significant effect on the taste efficiency of sensory evaluation, followed by the mixed spices, sucrose, and salt. The optimized cooking conditions included 3.5 hr of cooking time, 1.800 g of sucrose, 2.125 g of salt, and 1.500 g of mixed spices. The results showed that six peptides, including SDEEVEH, AEVPEVH, GVDNPGHP, GSDGSVGPVGP, SDGSVGPVGP, and DEAGPSIVH, were detected in sample X1M1; and seven peptides, including VAPEEHPT, VVSNPVDIL, VGGNVDYK, PFGNTHN, EAGPSIVHR, VDFDDIQK, and DEAGPSIVH, were detected in sample X2M2. This study compared the flavor peptides in stewed beef before and after the optimization, and thus provided a basis for the improvement of beef processing technology.
Collapse
Affiliation(s)
- Linhan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
- School of International StudiesShandong Youth University of Political ScienceJinanChina
| | - Kaina Qiao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Yan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Junfei Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Wen Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Key Laboratory of Flavor ChemistryBeijing Laboratory for Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
28
|
Zhang G, Zhao X, Li X, Du G, Zhou J, Chen J. Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Li X, Xie X, Wang J, Xu Y, Yi S, Zhu W, Mi H, Li T, Li J. Identification, taste characteristics and molecular docking study of novel umami peptides derived from the aqueous extract of the clam meretrix meretrix Linnaeus. Food Chem 2019; 312:126053. [PMID: 31884298 DOI: 10.1016/j.foodchem.2019.126053] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
Abstract
To understand the delicious taste of the clam M. meretrix Linnaeus, the putative umami peptides from the aqueous extract of the cooked clam were obtained by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptide fraction with the most intense umami taste was screened by sensory and electronic tongue analysis. Seven novel peptides, GLLPDGTPR, RPNPFENR, STMLLESER, ANPGPVRDLR, QVAIAHRDAK, VLPTDQNFILR, and VTADESQQDVLK, were identified and synthesized to verify their taste characteristics. The taste activity prediction and the sensory evaluation of the synthetic peptides revealed that those peptides were umami and umami-enhancing peptides. Docking of the synthesized peptides with the umami taste receptor T1R1/T1R3 indicated that the peptides could enter the binding pocket in the Venus flytrap domain of the T1R3 cavity, wherein Asp196 and Glu128 may play key roles in the synergism of umami taste and hydrogen bonding and electrostatic interactions are important interaction forces.
Collapse
Affiliation(s)
- Xuepeng Li
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Xiaoxia Xie
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jinxiang Wang
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China.
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Wenhui Zhu
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Tingting Li
- College of Life Science, Dalian Nationalities University, Dalian 116029, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
30
|
Huang Y, Duan W, Wang L, Xiao J, Zhang Y. Orthogonal optimization of beef stir-fried process followed by isolation and identification of the umami peptides by consecutive chromatography and LC-Q-TOF/MS. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1677705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Wen Duan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Linhan Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Junfei Xiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|