1
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Mandal D, Dey I, Ghosh C. Development of a disposable paper-based thin film solid-phase microextraction sampling kit to quantify ketone body. RSC Adv 2024; 14:32230-32238. [PMID: 39399252 PMCID: PMC11469451 DOI: 10.1039/d4ra05907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Diabetes ketoacidosis (DKA) is a life-threatening complication and requires immediate medical attention in the case of diabetes subjects, especially in the case of type 1 diabetes mellitus. In the condition of DKA, the body produces an excess amount of ketone bodies after unregulated fat degradation, causing blood to become acidic and hampering the regular metabolic activities of the body. The current diagnostic technique for DKA condition is based on monitoring ketone bodies, especially β-hydroxybutyric acid, from human urine and blood samples. The detection of serum ketone bodies in pathology is sometimes limited due to false positive results and the lack of standardization for precise quantification of analytes. In this study, a paper-based patch operating on the thin film solid-phase microextraction (TF-SPME) principle was developed and it was coupled with gas chromatography-mass spectrometry for simple quantification of β-hydroxybutyric acid (BHB) ketone body from a phosphate-buffered saline matrix. To fabricate the paper-based TF-SPME patches, a regular A4 sheet paper sheet was utilized as the substrate and uniform coating by multiwalled carbon nanotubes (MWCNT), polydimethylsiloxane (PDMS) and divinyl benzene (DVB) compounds was performed with an automatic film applicator. The 70 μm paper-based coated sheet was trimmed into 4 cm × 1 cm dimension pieces to obtain multiple patches from a single sheet. Extraction of the BHB ketone body into the closed vials was performed by exploiting the individual DVB/PDMS and DVB/CNT/PDMS paper patches followed by desorption with acetonitrile before quantification by gas chromatography-mass spectrometry analysis. Our study showed that the BHB extraction efficiency of DVB/PDMS-coated patches was higher than that of DVB/CNT/PDMS. The outcome showed a good linearity (R 2 = 0.99) within the 500-20 000 ng mL-1 concentration range of BHB by paper-based DVB/PDMS patches. This study demonstrated the feasibility of utilizing simple, cost-effective paper-based disposable TF-SPME patches as a sampling kit for future screening of diabetes ketoacidosis without the need for prolonged traditional sample preparation in pathology.
Collapse
Affiliation(s)
- Debsmita Mandal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Indrayani Dey
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Chiranjit Ghosh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Harvard Medical School 25 Shattuck Street Boston 02115 MA USA
| |
Collapse
|
3
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
5
|
Antonelli R, Setti G, Treister NS, Pertinhez TA, Ferrari E, Gallo M, Bologna-Molina R, Vescovi P, Meleti M. Salivary metabolomics in oral cancer: A systematic review. ORAL ONCOLOGY REPORTS 2024; 11:100657. [DOI: 10.1016/j.oor.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
6
|
Gouzerh F, Dormont L, Buatois B, Hervé MR, Mancini M, Maraver A, Thomas F, Ganem G. Partial role of volatile organic compounds in behavioural responses of mice to bedding from cancer-affected congeners. Biol Open 2024; 13:bio060324. [PMID: 39351636 PMCID: PMC11552615 DOI: 10.1242/bio.060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 11/13/2024] Open
Abstract
Tumours induce changes in body odours. We compared volatile organic compounds (VOCs) in soiled bedding of a lung adenocarcinoma male mouse model in which cancer had (CC) versus had not (NC) been induced by doxycycline at three conditions: before (T0), after 2 weeks (T2; early tumour development), after 12 weeks (T12; late tumour development) of the induction. In an earlier study, wild-derived mice behaviourally discriminated between CC and NC soiled bedding at T2 and T12. Here, we sought to identify VOCs present in the same soiled bedding that could have triggered the behavioural discrimination. Solid phase micro-extraction was performed to extract VOCs from 3 g-sample stimuli. While wild-derived mice could discriminate the odour of cancerous mice at a very early stage of tumour development (T2), the present study did not identify VOCs that could explain this behaviour. However, consistent with the earlier behavioural study, four VOCs, including two well-known male mouse sex pheromones, were found to be present in significantly different proportions in soiled bedding of CC as compared to NC at T12. We discuss the potential involvement of non-volatile molecules such as proteins and peptides in behavioural discrimination of early tumour development (T2), and point-out VOCs that could help diagnose cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Laurent Dormont
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Bruno Buatois
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Maxime R. Hervé
- IGEPP, Institut de génétique, environnement et protection des plantes, INRAE, Institut Agro, University of Rennes, Rennes, France
| | - Maicol Mancini
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Antonio Maraver
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| | - Guila Ganem
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
7
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
8
|
Wu SL, Zha GY, Tian KB, Xu J, Cao MG. The metabolic reprogramming of γ-aminobutyrate in oral squamous cell carcinoma. BMC Oral Health 2024; 24:418. [PMID: 38580938 PMCID: PMC10996254 DOI: 10.1186/s12903-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.
Collapse
Affiliation(s)
- Shi-Lian Wu
- School of Medicine, Lishui University, No 01, Rd Xueyuan Avenue, Lishui, 323000, Zhejiang, China
| | - Guang-Yu Zha
- School of Medicine, Lishui University, No 01, Rd Xueyuan Avenue, Lishui, 323000, Zhejiang, China
| | - Ke-Bin Tian
- School of Medicine, Lishui University, No 01, Rd Xueyuan Avenue, Lishui, 323000, Zhejiang, China
| | - Jun Xu
- School of Medicine, Lishui University, No 01, Rd Xueyuan Avenue, Lishui, 323000, Zhejiang, China
| | - Ming-Guo Cao
- School of Medicine, Lishui University, No 01, Rd Xueyuan Avenue, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
9
|
Yazicioglu O, Ucuncu MK, Guven K. Ingredients in Commercially Available Mouthwashes. Int Dent J 2024; 74:223-241. [PMID: 37709645 PMCID: PMC10988267 DOI: 10.1016/j.identj.2023.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Mouthwashes, a cornerstone of oral and dental hygiene, play a pivotal role in combating the formation of dental plaque, a leading cause of periodontal disease and dental caries. This study aimed to review the composition of mouthwashes found on retail shelves in Turkey and evaluate their prevalence and side effects, if any. METHODS The mouthwashes examined were sourced from the 5 largest chain stores in each district of Istanbul. A comprehensive list of the constituents was meticulously recorded. The research was supported by an extensive compilation of references from scholarly databases such as Google Scholar, PubMed, and ScienceDirect. Through rigorous analysis, the relative proportions of mouthwash ingredients and components were determined. RESULTS A total of 45 distinctive variations of mouthwashes, representing 17 prominent brands, were identified. Amongst the 116 ingredients discovered, 70 were evaluated for potential adverse effects and undesirable side effects. The aroma of the mouthwash (n = 45; 100%), as welll as their sodium fluoride (n = 28; 62.22%), sodium saccharin (n = 29; 64.44%), sorbitol (n = 21; 46.6%), and propylene glycol (n = 28; 62.22%) content were the main undesireable features. CONCLUSIONS The limited array of mouthwashes found on store shelves poses a concern for both oral and public health. Furthermore, the intricate composition of these products, consisting of numerous ingredients with the potential for adverse effects, warrants serious attention. Both clinicians and patients should acknowledge the importance and unwarranted side effects of the compnents of the mouthwashes.
Collapse
Affiliation(s)
- Oktay Yazicioglu
- Istanbul University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey
| | - Musa Kazim Ucuncu
- Altinbas University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey.
| | | |
Collapse
|
10
|
Nazar NSBM, Ramanathan A, Ghani WMN, Rokhani FB, Jacob PS, Sabri NEB, Hassan MS, Kadir K, Dharmarajan L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients-a systematic review with meta-analysis. Clin Oral Investig 2024; 28:98. [PMID: 38225483 DOI: 10.1007/s00784-023-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to assess the diagnostic potential of salivary metabolomics in the detection of oral potentially malignant disorders (OPMDs) and oral cancer (OC). MATERIALS AND METHODS A systematic review was performed in accordance with the 3rd edition of the Centre for Reviews and Dissemination (CRD) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic searches for articles were carried out in the PubMed, Web of Science, and Scopus databases. The quality assessment of the included studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) and the new version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. The effect size was presented using the Forest plot, whereas the presence of publication bias was examined through Begg's funnel plot. RESULTS A total of nine studies were included in the systematic review. The metabolite profiling was heterogeneous across all the studies. The expression of several salivary metabolites was found to be significantly altered in OPMDs and OCs as compared to healthy controls. Meta-analysis was able to be conducted only for N-acetylglucosamine. There was no significant difference (SMD = 0.15; 95% CI - 0.25-0.56) in the level of N-acetylglucosamine between OPMDs, OC, and the control group. CONCLUSION Evidence for N-acetylglucosamine as a salivary biomarker for oral cancer is lacking. Although several salivary metabolites show changes between healthy, OPMDs, and OC, their diagnostic potential cannot be assessed in this review due to a lack of data. Therefore, further high-quality studies with detailed analysis and reporting are required to establish the diagnostic potential of the salivary metabolites in OPMDs and OC. CLINICAL RELEVANCE While some salivary metabolites exhibit significant changes in oral potentially malignant disorders (OPMDs) and oral cancer (OC) compared to healthy controls, the current evidence, especially for N-acetylglucosamine, is inadequate to confirm their reliability as diagnostic biomarkers. Additional high-quality studies are needed for a more conclusive assessment of salivary metabolites in oral disease diagnosis.
Collapse
Affiliation(s)
- Nur Syahirah Binti Mohd Nazar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Wan Maria Nabillah Ghani
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faezah Binti Rokhani
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Pulikkotil Shaju Jacob
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Nurul Elma Binti Sabri
- Department of Agrotechnology and Bioscience, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | - Mohd Sukri Hassan
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
11
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
12
|
Gouzerh F, Vigo G, Dormont L, Buatois B, Hervé MR, Mancini M, Maraver A, Thomas F, Ganem G. Urinary VOCs as biomarkers of early stage lung tumour development in mice. Cancer Biomark 2024; 39:113-125. [PMID: 37980646 PMCID: PMC11002722 DOI: 10.3233/cbm-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-induced death. In addition to prevention and improved treatment, it has increasingly been established that early detection is critical to successful remission. OBJECTIVE The aim of this study was to identify volatile organic compounds (VOCs) in urine that could help diagnose mouse lung cancer at an early stage of its development. METHODS We analysed the VOC composition of urine in a genetically engineered lung adenocarcinoma mouse model with oncogenic EGFR doxycycline-inducible lung-specific expression. We compared the urinary VOCs of 10 cancerous mice and 10 healthy mice (controls) before and after doxycycline induction, every two weeks for 12 weeks, until full-blown carcinomas appeared. We used SPME fibres and gas chromatography - mass spectrometry to detect variations in cancer-related urinary VOCs over time. RESULTS This study allowed us to identify eight diagnostic biomarkers that help discriminate early stages of cancer tumour development (i.e., before MRI imaging techniques could identify it). CONCLUSION The analysis of mice urinary VOCs have shown that cancer can induce changes in odour profiles at an early stage of cancer development, opening a promising avenue for early diagnosis of lung cancer in other models.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Gwenaëlle Vigo
- CREEC/MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Laurent Dormont
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno Buatois
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Maxime R. Hervé
- IGEPP, Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes, Rennes, France
| | - Maicol Mancini
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Antonio Maraver
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Guila Ganem
- ISEM, Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
13
|
Li LJ, Chu CH, Yu OY. Application of Zeolites and Zeolitic Imidazolate Frameworks in Dentistry-A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2973. [PMID: 37999327 PMCID: PMC10675649 DOI: 10.3390/nano13222973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Zeolites and zeolitic imidazolate frameworks (ZIFs) are crystalline aluminosilicates with porous structure, which are closely linked with nanomaterials. They are characterized by enhanced ion exchange capacity, physical-chemical stability, thermal stability and biocompatibility, making them a promising material for dental applications. This review aimed to provide an overview of the application of zeolites and ZIFs in dentistry. The common zeolite compounds for dental application include silver zeolite, zinc zeolite, calcium zeolite and strontium zeolite. The common ZIFs for dental application include ZIF-8 and ZIF-67. Zeolites and ZIFs have been employed in various areas of dentistry, such as restorative dentistry, endodontics, prosthodontics, implantology, periodontics, orthodontics and oral surgery. In restorative dentistry, zeolites and ZIFs are used as antimicrobial additives in dental adhesives and restorative materials. In endodontics, zeolites are used in root-end fillings, root canal irritants, root canal sealers and bone matrix scaffolds for peri-apical diseases. In prosthodontics, zeolites can be incorporated into denture bases, tissue conditioners, soft denture liners and dental prostheses. In implantology, zeolites and ZIFs are applied in dental implants, bone graft materials, bone adhesive hydrogels, drug delivery systems and electrospinning. In periodontics, zeolites can be applied as antibacterial agents for deep periodontal pockets, while ZIFs can be embedded in guided tissue regeneration membranes and guided bone regeneration membranes. In orthodontics, zeolites can be applied in orthodontic appliances. Additionally, for oral surgery, zeolites can be used in oral cancer diagnostic marker membranes, maxillofacial prosthesis silicone elastomer and tooth extraction medicines, while ZIFs can be incorporated to osteogenic glue or used as a carrier for antitumour drugs. In summary, zeolites have a broad application in dentistry and are receiving more attention from clinicians and researchers.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China; (L.J.L.); (C.-H.C.)
| |
Collapse
|
14
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
15
|
Azorín C, López-Juan AL, Aparisi F, Benedé JL, Chisvert A. Determination of hexanal and heptanal in saliva samples by an adapted magnetic headspace adsorptive microextraction for diagnosis of lung cancer. Anal Chim Acta 2023; 1271:341435. [PMID: 37328243 DOI: 10.1016/j.aca.2023.341435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
In this work, an analytical method for the determination of two endogenous aldehydes (hexanal and heptanal) as lung cancer biomarkers in saliva samples is presented for the first time. The method is based on a modification of magnetic headspace adsorptive microextraction (M-HS-AME) followed by gas chromatography coupled to mass spectrometry (GC-MS). For this purpose, an external magnetic field generated by a neodymium magnet is used to hold the magnetic sorbent (i.e., CoFe2O4 magnetic nanoparticles embedded into a reversed-phase polymer) in the headspace of a microtube to extract the volatilized aldehydes. Subsequently, the analytes are desorbed in the appropriate solvent and the extract is injected into the GC-MS system for separation and determination. Under the optimized conditions, the method was validated and showed good analytical features in terms of linearity (at least up to 50 ng mL-1), limits of detection (0.22 and 0.26 ng mL-1 for hexanal and heptanal, respectively), and repeatability (RSD ≤12%). This new approach was successfully applied to saliva samples from healthy volunteers and those with lung cancer, obtaining notably differences between both groups. These results reveal the prospect of the method as potential diagnostic tool for lung cancer by saliva analysis. This work contributes to the Analytical Chemistry field presenting a double novelty: on the one hand, the use of M-HS-AME in bioanalysis is unprecedentedly proposed, thus expanding the analytical potential of this technique, and, on the other hand, the determination of hexanal and heptanal is carried out in saliva samples for the first time.
Collapse
Affiliation(s)
- Cristian Azorín
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Andreu L López-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Francisco Aparisi
- Medical Oncology service. Biomarkers and Precision Medicine Unit (UBYMP). La Fe Hospital. La Fe Health Research Institute (IISLAFE), Valencia, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
16
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Riccio G, Berenguer CV, Perestrelo R, Pereira F, Berenguer P, Ornelas CP, Sousa AC, Vital JA, Pinto MDC, Pereira JAM, Greco V, Câmara JS. Differences in the Volatilomic Urinary Biosignature of Prostate Cancer Patients as a Feasibility Study for the Detection of Potential Biomarkers. Curr Oncol 2023; 30:4904-4921. [PMID: 37232828 DOI: 10.3390/curroncol30050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed.
Collapse
Affiliation(s)
- Giulia Riccio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina V Berenguer
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Pedro Berenguer
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
- RO-RAM-Registo Oncológico da Região Autónoma da Madeira, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Cristina P Ornelas
- Centro de Saúde do Bom Jesus, SESARAM, EPERAM, Rua das Hortas, nº67, 9050-024 Funchal, Portugal
| | - Ana Célia Sousa
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - João Aragão Vital
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Maria do Carmo Pinto
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Jorge A M Pereira
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - José S Câmara
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
18
|
da Costa BRB, da Silva RR, Bigão VLCP, Peria FM, De Martinis BS. Hybrid volatilomics in cancer diagnosis by HS-GC-FID fingerprinting. J Breath Res 2023; 17. [PMID: 36634358 DOI: 10.1088/1752-7163/acb284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Assessing volatile organic compounds (VOCs) as cancer signatures is one of the most promising techniques toward developing non-invasive, simple, and affordable diagnosis. Here, we have evaluated the feasibility of employing static headspace extraction (HS) followed by gas chromatography with flame ionization detector (GC-FID) as a screening tool to discriminate between cancer patients (head and neck-HNC,n= 15; and gastrointestinal cancer-GIC,n= 19) and healthy controls (n= 37) on the basis of a non-target (fingerprinting) analysis of oral fluid and urine. We evaluated the discrimination considering a single bodily fluid and adopting the hybrid approach, in which the oral fluid and urinary VOCs profiles were combined through data fusion. We used supervised orthogonal partial least squares discriminant analysis for classification, and we assessed the prediction power of the models by analyzing the values of goodness of prediction (Q2Y), area under the curve (AUC), sensitivity, and specificity. The individual models HNC urine, HNC oral fluid, and GIC oral fluid successfully discriminated between healthy controls and positive samples (Q2Y = 0.560, 0.525, and 0.559; AUC = 0.814, 0.850, and 0.926; sensitivity = 84.8, 70.2, and 78.6%; and specificity = 82.3; 81.5; 87.5%, respectively), whereas GIC urine was not adequate (Q2Y = 0.292, AUC = 0.694, sensitivity = 66.1%, and specificity = 77.0%). Compared to the respective individual models, Q2Y for the hybrid models increased (0.623 for hybrid HNC and 0.562 for hybrid GIC). However, sensitivity was higher for HNC urine and GIC oral fluid than for hybrid HNC (75.6%) and hybrid GIC (69.8%), respectively. These results suggested that HS-GC-FID fingerprinting is suitable and holds great potential for cancer screening. Additionally, the hybrid approach tends to increase the predictive power if the individual models present suitable quality parameter values. Otherwise, it is more advantageous to use a single body fluid for analysis.
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Ricardo Roberto da Silva
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Vítor Luiz Caleffo Piva Bigão
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Fernanda Maris Peria
- Division of Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto CEP 14049-900, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil
| |
Collapse
|
19
|
Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites 2022; 12:metabo12111072. [DOI: 10.3390/metabo12111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Volatile organic compounds (VOCs) are a differentiated class of molecules, continuously generated in the human body and released as products of metabolic pathways. Their concentrations vary depending on pathophysiological conditions. They are detectable in a wide variety of biological samples, such as exhaled breath, faeces, and urine. In particular, urine represents an easily accessible specimen widely used in clinics. The most used techniques for VOCs detections are expensive and time-consuming, thus not allowing for rapid clinical analysis. In this perspective, the aim of this study is a comprehensive characterisation of the urine volatilome by the development of an alternative rapid analytical method. Briefly, 115 urine samples are collected; sample treatment is not needed. VOCs are detected in the urine headspace using gas chromatography coupled to ion mobility spectrometry (GC–IMS) by an extremely fast analysis (10 min). The method is analytically validated; the analysis is sensitive and robust with results comparable to those reported with other techniques. Twenty-three molecules are identified, including ketones, aldehydes, alcohols, and sulphur compounds, whose concentration is altered in several pathological states such as cancer and metabolic disorders. Therefore, it opens new perspectives for fast diagnosis and screening, showing great potential for clinical applications.
Collapse
|
20
|
Advances in the Diagnosis, Monitoring, and Progression of Oral Cancer through Saliva: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2739869. [DOI: 10.1155/2022/2739869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/27/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The early detection of cancer, and in particular oral cancer, has been a priority objective of study in recent years. Saliva has been proposed as an easy-to-obtain means of providing the necessary information to diagnose malignant lesions in the oral cavity, since it can be obtained very easily and completely noninvasively. There are a number of molecules, known as biomarkers, which may be involved in the malignant transformation of oral lesions, and which have different natures. The involvement of proteins (“proteomics”), metabolites (“metabolomics”), and even certain genes in the structural changes of altered tissue has been investigated in order to establish validated parameters for the early diagnosis of oral cancer. In addition, the development of new analytical assay methods that can reduce costs and obtain better results in terms of sensitivity and specificity has been a key point in recent research in this field. Even though there are numerous biomarkers with results showing high sensitivity and specificity, there is still a need for more studies, with a larger sample and with analytical methods that can constitute a real advance in time and cost. Although salivary biomarkers are a promising new diagnostic tool for oral cancer, for the moment they do not replace biopsy as the “gold standard”.
Collapse
|
21
|
da Costa NL, de Sá Alves M, de Sá Rodrigues N, Bandeira CM, Oliveira Alves MG, Mendes MA, Cesar Alves LA, Almeida JD, Barbosa R. Finding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma - A data mining approach. Comput Biol Med 2022; 143:105296. [PMID: 35149458 DOI: 10.1016/j.compbiomed.2022.105296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Data mining has proven to be a reliable method to analyze and discover useful knowledge about various diseases, including cancer research. In particular, data mining and machine learning algorithms to study oral squamous cell carcinoma (OSCC), the most common form of oral cancer, is a new area of research. This malignant neoplasm can be studied using saliva samples. Saliva is an important biofluid that must be used to verify potential biomarkers associated with oral cancer. In this study, first, we provide an overview of OSSC diagnoses based on machine learning and salivary metabolites. To our knowledge, this is the first study to apply advanced data mining techniques to diagnose OSCC. Then, we give new results of classification and feature selection algorithms used to identify potential salivary biomarkers of OSCC. To accomplish this task, we used the filter feature selection random forest importance algorithm and a wrapper methodology to evaluate the importance of metabolites obtained from gas chromatography mass-spectrometry (GC-MS) in the context of differentiation of OSCC and the control group. Salivary samples (n = 68) were collected for the control group, and the OSCC group were from patients matched for gender, age, and smoking habit. The classification process occurred based on Random Forest (RF) classification algorithm along with 10-cross validation. The results showed that glucuronic acid, maleic acid, and batyl alcohol can classify the samples with an area under the curve (AUC) of 0.91 versus an AUC of 0.76 using all 51 metabolites analyzed. The methodology used in this study can assist healthcare professionals and be adopted to discover diagnostic biomarkers for other diseases.
Collapse
Affiliation(s)
- Nattane Luíza da Costa
- Informatics Nucleo, Goiano Federal Institute of Education, Science and Technology, Campus Urutaí, Urutaí-GO, Brazil.
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Nayara de Sá Rodrigues
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Celso Muller Bandeira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Mônica Ghislaine Oliveira Alves
- Technology Reaearch Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes, Brazil; School of Medicine, Anhembi Morumbi University, São José dos Campos, Brazil.
| | | | - Levy Anderson Cesar Alves
- School of Dentistry, Universidade Paulista, São Paulo, Brazil; School of Dentistry, Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil.
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Rommel Barbosa
- Instituto de Informática, Universidade Federal de Goiás, Goiânia-GO, Brazil.
| |
Collapse
|
22
|
Nijakowski K, Gruszczyński D, Kopała D, Surdacka A. Salivary Metabolomics for Oral Squamous Cell Carcinoma Diagnosis: A Systematic Review. Metabolites 2022; 12:metabo12040294. [PMID: 35448481 PMCID: PMC9029144 DOI: 10.3390/metabo12040294] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer in which the consumption of tobacco and alcohol is considered to be the main aetiological factor. Salivary metabolome profiling could identify novel biochemical pathways involved in the pathogenesis of various diseases. This systematic review was designed to answer the question “Are salivary metabolites reliable for the diagnosis of oral squamous cell carcinoma?”. Following the inclusion and exclusion criteria, nineteen studies were included (according to PRISMA statement guidelines). In all included studies, the diagnostic material was unstimulated whole saliva, whose metabolome changes were determined by different spectroscopic methods. At the metabolic level, OSCC patients differed significantly not only from healthy subjects but also from patients with oral leukoplakia, lichen planus or other oral potentially malignant disorders. Among the detected salivary metabolites, there were the indicators of the impaired metabolic pathways, such as choline metabolism, amino acid pathways, polyamine metabolism, urea cycle, creatine metabolism, glycolysis or glycerolipid metabolism. In conclusion, saliva contains many potential metabolites, which can be used reliably to early diagnose and monitor staging in patients with OSCC. However, further investigations are necessary to confirm these findings and to identify new salivary metabolic biomarkers.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Correspondence:
| | - Dawid Gruszczyński
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (D.G.); (D.K.)
| | - Dariusz Kopała
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (D.G.); (D.K.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
23
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
24
|
|
25
|
Mohamed N, van de Goor R, El-Sheikh M, Elrayah O, Osman T, Nginamau ES, Johannessen AC, Suleiman A, Costea DE, Kross KW. Feasibility of a Portable Electronic Nose for Detection of Oral Squamous Cell Carcinoma in Sudan. Healthcare (Basel) 2021; 9:healthcare9050534. [PMID: 34063592 PMCID: PMC8147635 DOI: 10.3390/healthcare9050534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is increasing at an alarming rate particularly in low-income countries. This urges for research into noninvasive, user-friendly diagnostic tools that can be used in limited-resource settings. This study aims to test and validate the feasibility of e-nose technology for detecting OSCC in the limited-resource settings of the Sudanese population. METHODS Two e-nose devices (Aeonose™, eNose Company, Zutphen, The Netherlands) were used to collect breath samples from OSCC (n = 49) and control (n = 35) patients. Patients were divided into a training group for building an artificial neural network (ANN) model and a blinded control group for model validation. The Statistical Package for the Social Sciences (SPSS) software was used for the analysis of baseline characteristics and regression. Aethena proprietary software was used for data analysis using artificial neural networks based on patterns of volatile organic compounds. RESULTS A diagnostic accuracy of 81% was observed, with 88% sensitivity and 71% specificity. CONCLUSIONS This study demonstrates that e-nose is an efficient tool for OSCC detection in limited-resource settings, where it offers a valuable cost-effective strategy to tackle the burden posed by OSCC.
Collapse
Affiliation(s)
- Nazar Mohamed
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Center for International Health (CIH), University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Rens van de Goor
- Department of Otolaryngology—Head and Neck Surgery, Bernhoven Hospital, P.O. Box 707, 5400 AS Uden, The Netherlands;
- Department of Otolaryngology—Head and Neck Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Mariam El-Sheikh
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Osman Elrayah
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Tarig Osman
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
| | - Elisabeth Sivy Nginamau
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
| | - Anne Christine Johannessen
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
| | - Ahmed Suleiman
- Department of Oral and Maxillofacial Surgery and Department of Basic Sciences, University of Khartoum, P.O. Box 321, 11111 Khartoum, Sudan; (M.E.-S.); (O.E.); (A.S.)
| | - Daniela Elena Costea
- Center for Cancer Biomarkers (CCBIO) and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway; (N.M.); (T.O.); (E.S.N.); (A.C.J.)
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, N-5020 Bergen, Norway
- Correspondence: (D.E.C.); (K.W.K); Tel.: +47-5597-2565 (D.E.C.); +33-7-68-19-05-57 (K.W.K.)
| | - Kenneth W. Kross
- Department of Otolaryngology—Head and Neck Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Policlinique Saint Odilon, 32 Rue Professeur Etienne Sorrel, 03000 Moulins, France
- Correspondence: (D.E.C.); (K.W.K); Tel.: +47-5597-2565 (D.E.C.); +33-7-68-19-05-57 (K.W.K.)
| |
Collapse
|
26
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
27
|
Yin G, Huang J, Guo W, Huang Z. Metabolomics of Oral/Head and Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:277-290. [PMID: 33791989 DOI: 10.1007/978-3-030-51652-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Oral/head and neck cancer is the sixth most common human malignancies in the world. Despite the treatment advances in surgery, chemotherapy, and radiotherapy, the patient survival has not been significantly improved in the past several decades. As a new methodological approach, metabolomics may help reveal the metabolic reprogramming mechanisms underlying head and neck cancer cell proliferation, invasion, and metastasis and may be used to identify metabolite biomarkers for clinical applications of the disease. In this chapter, we briefly review recent metabolomic applications in head and neck cancer.
Collapse
Affiliation(s)
- Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Jafari Z, Hadjmohammadi MR. Polyvinylidene difluoride film with embedded poly(amidoamine) modified graphene oxide for extraction of chlorpyrifos and diazinon. Mikrochim Acta 2021; 188:37. [PMID: 33427963 DOI: 10.1007/s00604-020-04694-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
An effective, sensitive, relatively fast, and cost-effective method was developed to determine two types of selected organophosphorus pesticides (OPPs) including diazinon and chlorpyrifos in apple, peach, and four different water samples (river, sea, well, and agriculture wastewater samples) through applying poly(amidoamine)@graphene oxide-reinforced polyvinylidene difluoride thin-film microextraction (PAMAM@GO-PVDF-TFME). The extracted analytes were desorbed via organic solvent and determined using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The strong interactions between the sorbent and selected analytes (coordination bonds, intermolecular hydrogen bonding, π-π interactions, and hydrophobic effects) made this TFME capable of high extraction performance and capacity. Several factors involved in the PAMAM@GO-PVDF-TFME experiments such as desorption volume, desorption time, sample pH, extraction time, and stirring rate were screened via Plackett-Burman design and then optimized through Box-Behnken design with the purpose of reaching the highest extraction efficiency. The above method showed a good linear range (0.5-500 μg L-1 and 1-500 μg L-1) with the coefficient of determination better 0.9944, low limits of determination (0.12 and 0.20 μg L-1), good enrichment factors (99 and 98), acceptable extraction recoveries (99 and 98%), and good spiking recoveries (90-98%) under the optimized condition at three different spike levels for chlorpyrifos and diazinon, respectively. The results confirmed that the presented method would be promising for the determination of various types of these pesticides in environmental and beverage samples.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayii Boulevard, Babolsar, 47416-95447, Iran
| | - Mohammad Reza Hadjmohammadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayii Boulevard, Babolsar, 47416-95447, Iran.
| |
Collapse
|
30
|
Segers K, Slosse A, Viaene J, Bannier MAGE, Van de Kant KDG, Dompeling E, Van Eeckhaut A, Vercammen J, Vander Heyden Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021; 225:122080. [PMID: 33592793 DOI: 10.1016/j.talanta.2021.122080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/26/2023]
Abstract
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Amorn Slosse
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Michiel A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Kim D G Van de Kant
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Edward Dompeling
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Joeri Vercammen
- Interscience Expert Center (IS-X), Avenue Jean-Etienne Lenoir 2, 1348, Louvain-la-Neuve, Belgium; Industrial Catalysis and Adsorption Technology (INCAT), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
31
|
Evaluation of salivary VOC profile composition directed towards oral cancer and oral lesion assessment. Clin Oral Investig 2021; 25:4415-4430. [PMID: 33387033 DOI: 10.1007/s00784-020-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Endogenous substances have been analyzed in biological samples in order to be related with metabolic dysfunctions and diseases. The study aimed to investigate profiles of volatile organic compounds (VOCs) from fresh and incubated saliva donated by healthy controls, individuals with oral tissue lesions and with oral cancer, in order to assess case-specific biomarkers of oxidative stress. MATERIALS AND METHODS VOCs were pre-concentrated using headspace-solid phase microextraction and analyzed using gas chromatography-mass spectrometry. Then, VOCs positively modulated by incubation process were subtracted, yielding profiles with selected features. Principal component analysis and hierarchical cluster analysis were used to inspect data distribution, while univariate statistics was applied to indicate potential markers of oral cancer. Machine learning algorithm was implemented, aiming multiclass prediction. RESULTS The removal of bacterial contribution to VOC profiles allowed the obtaining of more specific case-related patterns. Artificial neural network model included 9 most relevant compounds (1-octen-3-ol, hexanoic acid, E-2-octenal, heptanoic acid, octanoic acid, E-2-nonenal, nonanoic acid, 2,4-decadienal and 9-undecenoic acid). Model performance was assessed using 10-fold cross validation and receiver operating characteristic curves. Obtained overall accuracy was 90%. Oral cancer cases were predicted with 100% of sensitivity and specificity. CONCLUSIONS The selected VOCs were ascribed to lipid oxidation mechanism and presented potential to differentiate oral cancer from other inflammatory conditions. CLINICAL RELEVANCE These results highlight the importance of interpretation of saliva composition and the clinical value of salivary VOCs. Elucidated metabolic alterations have the potential to aid the early detection of oral cancer and the monitoring of oral lesions.
Collapse
|
32
|
Abstract
Introduction: Saliva is an ideal biofluid that can be collected in a noninvasive manner, enabling safe and frequent screening of various diseases. Recent studies have revealed that salivary metabolomics analysis has the potential to detect both oral and systemic cancers. Area covered: We reviewed the technical aspects, as well as applications, of salivary metabolomics for cancer detection. The topics include the effects of preconditioning and the method of sample collection, sample storage, processing, measurement, data analysis, and validation of the results. We also examined the rational relationship between salivary biomarkers and tumors distant from the oral cavity. A strategy to establish standard operating protocols for obtaining reproducible quantification data is also discussed Expert opinion: Salivary metabolomics reflects oral and systematic health status, which potently enables cancer detection. The sensitivity and specificity of each marker and their combinations have been well evaluated, but a validation study is required. Further, the standard operating protocol for each procedure should be established to obtain reproducible data before clinical usage.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Centre for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University , Tokyo, Japan.,Institute for Advanced Biosciences, Keio University , Yamagata, Japan
| |
Collapse
|
33
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|
34
|
Diagnostic and Prognostic Value of Salivary Biochemical Markers in Oral Squamous Cell Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10100818. [PMID: 33066436 PMCID: PMC7602212 DOI: 10.3390/diagnostics10100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
The purpose of the work is a comprehensive assessment of biochemical saliva markers for the diagnosis and prognosis of oral cancer. The group of patients included 68 patients with oral squamous cell carcinoma, 50 with non-cancerous diseases of the oral cavity, and 114 healthy volunteers. Before the start of treatment, 23 biochemical parameters of saliva were determined. Participants were monitored for six years to assess survival rates. The statistical analysis was performed by means of Statistica 10.0 and R package. A complex of metabolic changes occurring in saliva in oral cancer is described. It was shown that none of the studied parameters could be used to diagnose oral cancer in an independent variant; the use of combinations of parameters is more informative. The high prognostic value of the content of malondialdehyde (MDA) and the Na/K-ratio in saliva before treatment was established. Thus, the content of MDA ˂ 7.34 nmol/mL and the Na/K-ratio > 1.09 c.u. is a prognostically unfavorable factor (HR = 7.88, 95% CI 1.10-54.62, p = 0.01876), which may be useful for optimizing the treatment of patients with oral cancer. It has been shown that saliva has great potential for the development of diagnostic and prognostic tests for oral cancer.
Collapse
|
35
|
Vitório JG, Duarte-Andrade FF, Dos Santos Fontes Pereira T, Fonseca FP, Amorim LSD, Martins-Chaves RR, Gomes CC, Canuto GAB, Gomez RS. Metabolic landscape of oral squamous cell carcinoma. Metabolomics 2020; 16:105. [PMID: 33000429 DOI: 10.1007/s11306-020-01727-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Head and neck cancers are the seventh most common type of cancer worldwide, with almost half of the cases affecting the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, showing poor prognosis and high mortality. OSCC molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Metabolomics is a recently developed sub-area of omics sciences focused on the comprehensive analysis of small molecules involved in several biological pathways by high throughput technologies. AIM OF REVIEW This review summarizes and evaluates studies focused on the metabolomics analysis of OSCC and oral premalignant disorders to better interpret the complex process of oral carcinogenesis. Additionally, the metabolic biomarkers signatures identified so far are also included. Moreover, we discuss the limitations of these studies and make suggestions for future investigations. KEY SCIENTIFIC CONCEPTS Although many questions about the metabolic features of OSCC have already been answered in metabolomic studies, further validation and optimization are still required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Larissa Stefhanne Damasceno Amorim
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil.
| |
Collapse
|
36
|
Vogel P, Lazarou C, Gazeli O, Brandt S, Franzke J, Moreno-González D. Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Anal Chem 2020; 92:9722-9729. [PMID: 32579344 DOI: 10.1021/acs.analchem.0c01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new soft ionization device for mass spectrometry is presented using the flexible microtube plasma under controlled atmospheric conditions. The controlled atmosphere flexible microtube plasma consists of the plasma source itself connected to a gas chromatograph and a mass spectrometer using a borosilicate glass cross piece. Controlled atmosphere, for example, nitrogen and/or an oxygen mixture, is introduced to the system to create a clean ionization environment. Reproducibility issues are discussed, and solutions are presented manipulating the gas flow in the cross piece. A proof of concept is shown using a ketone mixture introduced to the mass spectrometer to optimize atmospheric conditions. Furthermore, application of the presented device for the sensitive and nonfragmenting ionization of volatile organic biomarkers relevant for cancer is carried out. Sample treatment for human saliva is described, and relevant candidate biomarkers are measured in the saliva matrix, showing a very good ionization efficiency and neglectable matrix effects with limits of detection below 80 ppt.
Collapse
Affiliation(s)
- Pascal Vogel
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - Constantinos Lazarou
- FOSS Research Centre for Sustainable Energy, PV Technology, University of Cyprus, 75 Kallipoleos Street, Nicosia 1678, Cyprus
| | - Odhisea Gazeli
- FOSS Research Centre for Sustainable Energy, PV Technology, University of Cyprus, 75 Kallipoleos Street, Nicosia 1678, Cyprus
| | - Sebastian Brandt
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - Joachim Franzke
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - David Moreno-González
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| |
Collapse
|
37
|
Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules 2020; 25:E3098. [PMID: 32646009 PMCID: PMC7412334 DOI: 10.3390/molecules25133098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Fostered by the advances in the instrumental and analytical fields, in recent years the analysis of volatile organic compounds (VOCs) has emerged as a new frontier in medical diagnostics. VOCs analysis is a non-invasive, rapid and inexpensive strategy with promising potential in clinical diagnostic procedures. Since cellular metabolism is altered by diseases, the resulting metabolic effects on VOCs may serve as biomarkers for any given pathophysiologic condition. Human VOCs are released from biomatrices such as saliva, urine, skin emanations and exhaled breath and are derived from many metabolic pathways. In this review, the potential of VOCs present in saliva will be explored as a monitoring tool for several oral diseases, including gingivitis and periodontal disease, dental caries, and oral cancer. Moreover, the analytical state-of-the-art for salivary volatomics, e.g., the most common extraction techniques along with the current challenges and future perspectives will be addressed unequivocally.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Priscilla Porto-Figueira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - Pritam Sukul
- Department of Anaesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - José S. Câmara
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
38
|
Tanaka M, Hsuan C, Oeki M, Shen W, Goda A, Tahara Y, Onodera T, Sanematsu K, Rikitake T, Oki E, Ninomiya Y, Kurebayashi R, Sonoda H, Maehara Y, Toko K, Matsui T. Identification of characteristic compounds of moderate volatility in breast cancer cell lines. PLoS One 2020; 15:e0235442. [PMID: 32598404 PMCID: PMC7323966 DOI: 10.1371/journal.pone.0235442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
In this study, we were challenging to identify characteristic compounds in breast cancer cell lines. GC analysis of extracts from the culture media of breast cancer cell lines (MCF-7, SK-BR-3, and YMB-1) using a solid-phase Porapak Q extraction revealed that two compounds of moderate volatility, 1-hexadecanol and 5-(Z)-dodecenoic acid, were detected with markedly higher amount than those in the medium of fibroblast cell line (KMST-6). Furthermore, LC-TOF/MS analysis of the extracts clarified that in addition to the above two fatty acids, the amounts of five unsaturated fatty acids [decenoic acid (C10:1), decadienoic acid (C10:2), 5-(Z)-dodecenoic acid (C12:1), 5-(Z)-tetradecenoic acid (C14:1), and tetradecadienoic acid (C14:2)] in MCF-7 medium were higher than those in medium of KMST-6. Interestingly, H2O2-oxidation of 5-(Z)-dodecenoic acid and 5-(Z)-tetradecenoic acid produced volatile aldehydes that were reported as specific volatiles in breath from various cancer patients, such as heptanal, octanal, nonanal, decanal, 2-(E)-nonenal, and 2-(E)-octenal. Thus, we concluded that these identified compounds over-produced in breast cancer cells in this study could serve as potential precursors producing reported cancer-specific volatiles.
Collapse
Affiliation(s)
- Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Chung Hsuan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masataka Oeki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Weilin Shen
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Asuka Goda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Tahara
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Takeshi Onodera
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomotsugu Rikitake
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuzo Ninomiya
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | | | - Hideto Sonoda
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Surgery, Imari-Arita Kyoritsu Hospital, Saga, Japan
| | - Yoshihiko Maehara
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Konings H, Stappers S, Geens M, De Winter BY, Lamote K, van Meerbeeck JP, Specenier P, Vanderveken OM, Ledeganck KJ. A Literature Review of the Potential Diagnostic Biomarkers of Head and Neck Neoplasms. Front Oncol 2020; 10:1020. [PMID: 32670885 PMCID: PMC7332560 DOI: 10.3389/fonc.2020.01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck neoplasms have a poor prognosis because of their late diagnosis. Finding a biomarker to detect these tumors in an early phase could improve the prognosis and survival rate. This literature review provides an overview of biomarkers, covering the different -omics fields to diagnose head and neck neoplasms in the early phase. To date, not a single biomarker, nor a panel of biomarkers for the detection of head and neck tumors has been detected with clinical applicability. Limitations for the clinical implementation of the investigated biomarkers are mainly the heterogeneity of the study groups (e.g., small population in which the biomarker was tested, and/or only including high-risk populations) and a low sensitivity and/or specificity of the biomarkers under study. Further research on biomarkers to diagnose head and neck neoplasms in an early stage, is therefore needed.
Collapse
Affiliation(s)
- Heleen Konings
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Stappers
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Margot Geens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jan P van Meerbeeck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pol Specenier
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Olivier M Vanderveken
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology-Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Department of Translational Neurosciences, Antwerp University, Antwerp, Belgium
| | - Kristien J Ledeganck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. J Oral Biosci 2020; 62:212-221. [PMID: 32474113 DOI: 10.1016/j.job.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The purpose of the pilot study was to determine the potential diagnostic capabilities for the analysis of oxygen-containing salivary volatile organic compounds (VOCs) in stomach and colorectal cancer. METHODS Saliva samples of 11 patients with stomach cancer, 18 patients with colorectal cancer, and 16 healthy volunteers were analyzed through capillary gas chromatography. The levels of lipid peroxidation products and catalase activity were determined in all samples. To assess saliva diagnostic potential, we constructed a Classification and Regression Tree (CART). RESULTS It was shown that the use of a combination of saliva VOCs (acetaldehyde, acetone, propanol-2, and ethanol) allowed classification into Cancer/Control groups with a sensitivity and specificity of 95.7 and 90.9%, respectively. To clarify the location of the tumor, it was necessary to add a methanol level; in this case, the sensitivity for detecting stomach and colorectal cancer was 80.0% and 92.3%, respectively, while the specificity in both cases was 100%. When the lipid peroxidation product content was added to the VOC indicators, they were selected as the main factors for constructing the decision tree. For classification into Cancer/Control groups, only the triene conjugate and Schiff base content in saliva was sufficient. The combination of VOCs in saliva and lipid peroxidation indices improved the sensitivity and specificity for classification to 100%. CONCLUSION Preliminary data were obtained on the sensitivity and specificity of the diagnosis of stomach and colorectal cancer, which confirmed the promise of further studies on saliva VOCs for the purpose of clinical laboratory diagnostics.
Collapse
|
41
|
Zhou W, Huang C, Zou X, Lu Y, Xia L, Shen C, Chu Y. Modification of an atmospheric pressure photoionization source for online analysis of exhaled breath coupled with quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 2020; 412:3663-3671. [PMID: 32333078 DOI: 10.1007/s00216-020-02602-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
Breath analysis is a promising method for metabolomics studies and clinical diagnosis, as it enables the observation of metabolites in a convenient and noninvasive way. In this work, an atmospheric pressure photoionization (APPI) source was modified for online analysis of exhaled breath by coupling with quadrupole time-of-flight mass spectrometry (QTOFMS). Three parameters, namely, the capillary voltage, the sampling flow and the curtain gas flow of the APPI source, were optimized. Five healthy volunteers, three males and two females, were enrolled to test the performance of modified APPI-QTOFMS by analyzing their exhaled breath. A total of 21 compounds were tentatively identified, and four metabolites, namely, dimethyl selenoxide, δ-valerolactam, hydroxymandelic acid and palmitic amide were detected in the exhaled breath for the first time. The result shows that modified APPI-QTOFMS can be used for the online study of exhaled breath. Graphical abstract.
Collapse
Affiliation(s)
- Wenzhao Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,Zhejiang Institute of Metrology, No.300 Xiasha Road, Hangzhou, 310018, Zhejiang, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| |
Collapse
|
42
|
Saraji M, Tarami M, Mehrafza N. Preparation of a nano-biocomposite film based on halloysite-chitosan as the sorbent for thin film microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Development, Optimization and Applications of Thin Film Solid Phase Microextraction (TF-SPME) Devices for Thermal Desorption: A Comprehensive Review. SEPARATIONS 2019. [DOI: 10.3390/separations6030039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through the development of solid phase microextraction (SPME) technologies, thin film solid phase microextraction (TF-SPME) has been repeatedly validated as a novel sampling device well suited for various applications. These applications, encompassing a wide range of sampling methods such as onsite, in vivo and routine analysis, benefit greatly from the convenience and sensitivity TF-SPME offers. TF-SPME, having both an increased extraction phase volume and surface area to volume ratio compared to conventional microextraction techniques, allows high extraction rates and enhanced capacity, making it a convenient and ideal sampling tool for ultra-trace level analysis. This review provides a comprehensive discussion on the development of TF-SPME and the applications it has provided thus far. Emphasis is given on its application to thermal desorption, with method development and optimization for this desorption method discussed in detail. Moreover, a detailed outlook on the current progress of TF-SPME development and its future is also discussed with emphasis on its applications to environmental, food and fragrance analysis.
Collapse
|
44
|
Salivary Metabolomics of Total Body Irradiated Nonhuman Primates Reveals Long-Term Normal Tissue Responses to Radiation. Int J Radiat Oncol Biol Phys 2019; 105:843-851. [PMID: 31352081 DOI: 10.1016/j.ijrobp.2019.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To identify metabolomic biomarkers of acute radiation exposure in saliva that show time-dependent changes. METHODS AND MATERIALS Nonhuman primates were exposed to 4 Gy of total body irradiation with γ-rays. Saliva was collected from 7 animals twice before and at days 1, 3, 5, 7, 15, 21, 28, and 60 after irradiation. Profiling was conducted with liquid chromatography time-of-flight mass spectrometry. Multivariate data analysis and potential biomarker identification was conducted through random Forests and the software MetaboAnalyst. Candidate biomarkers were validated through tandem mass spectrometry, and receiver operating characteristic curves were constructed to show the diagnostic ability of the signature over time. RESULTS Untargeted metabolomic analysis revealed significant and persistent effects up to the 60 days evaluated in this study. Biomarkers spanning primarily amino acids and nucleotides were identified, with a significant number showing long-term responses. Fifteen biomarkers showed high statistical significance in the first week after irradiation and 16 at >7 days after irradiation (false discovery rate-adjusted P < .05). The combination of the biomarkers in a single biosignature was able to accurately show the diagnostic ability of the signature in a binary classifier system with receiver operating characteristic curves. CONCLUSIONS Radiation can alter the metabolome in saliva, and metabolomics could effectively be used to monitor radiation responses, as a biodosimetry method, in the event of a radiological incident. Saliva metabolomics also has potential relevance in a clinical setting.
Collapse
|