1
|
Wu S, Zhao T, Jin L, Gong M. Exploring the synergistic effects of chuanxiong rhizoma and Cyperi rhizoma in eliciting a rapid anti-migraine action based on pharmacodynamics and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118608. [PMID: 39053709 DOI: 10.1016/j.jep.2024.118608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-herb combination has been used to maximize the therapeutic efficacy in the theory of traditional Chinese medicine. Chuanxiong rhizoma (called Chuanxiong in Chinese, CX) and Cyperi rhizoma (called Xiangfu in Chinese, XF) have been used alone or in combination (CRCR) to treat migraine dating back to Eastern Jin Dynasty (AD317) of China. But no data demonstrate the possible necessities or advantages of combining CX and XF for migraine. AIM OF THE STUDY This study explores the combination mechanism based on pharmacodynamics and pharmacokinetics. MATERIALS AND METHODS A nitroglycerin-induced acute migraine model in rats was used to evaluate the anti-migraine effects of CRCR and the individual herbs using behavior, real time polymerase chain reaction and Western blot experiments. The absorption characteristics of active components involved in the anti-migraine action were analyzed by UPLC-MS/MS. RESULTS CX and CRCR significantly reversed the abnormal levels of vasoactive substances (5-HT, CGRP, MMP-2 and MMP-9) to normal levels, but XF did not. XF and CRCR significantly decreased the pro-inflammatory cytokines (IL-1β, IL-6, and TNF-a), and increased the anti-inflammatory cytokines (IL-4 and IL-10). CRCR significantly decreased the mRNA expression levels of c-fos, iNos and nNos, and the corresponding protein expression levels of c-Fos, iNOS, and nNOS. CRCR inhibited NOS/NO pathway by downregulating the expression levels of NOS and NO. Furthermore, CRCR significantly increased the intestinal absorption rate and amount, and changed the pharmacokinetic parameters of active components in comparison with the individual herbs. CONCLUSIONS CX had an advantage in regulating vasoactive substances, and XF focused on regulating inflammatory cytokines. CRCR is more effective in treating migraine than the individual herbs by depending on the synergistic action of CX and XF. This research provided some critical evidences on synergistic action between herb-herb interactions, and revealed the potential advantages of herb-herb combination in traditional Chinese medicine.
Collapse
Affiliation(s)
- Sha Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Ting Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Linli Jin
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Muxin Gong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Zhang Y, Zhang JX, Xiao LX, Zheng JT, Qu XT, Liu Y, Meng J, Liu CS. The synergistic effect of Huangqi Gegen decoction on thrombosis relates to the astragalus polysaccharide-improved oral delivery of puerarin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118622. [PMID: 39053719 DOI: 10.1016/j.jep.2024.118622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Huangqi Gegen decoction (HGD), which comprises Astragali Radix (AR) and Puerariae Radix (PR), is widely used to treat thrombosis in China. However, the mechanism underlying its synergistic effect in thrombosis treatment remains unclear. AIM OF THE STUDY Following PR administration, low plasma exposure was reported for its primary ingredients. In this regard, this study examined the effect of AR on PR's antithrombotic efficacy with respect to the impact of Astragalus Polysaccharide (APS) on the oral delivery of Puerarin (PUE). MATERIALS AND METHODS To evaluate the synergistic effect of HGD, a thrombus mice model was established via intraperitoneal injection of carrageenan. After treatment, histopathological observations were made, and the proportion of thrombus length in the tail, as well as the plasma APTT, PT, INR, and FIB levels, were detected. Molecular docking was employed to assess the PR ingredients that could inhibit the HMGB1/NF-κB/NLRP3 pathway. The Pharmacokinetics of PR ingredients in rats were also compared between the PR and HGD groups. Moreover, the effect of APS on the solubility, intestinal absorption, and pharmacokinetics of PUE was evaluated. Furthermore, the impact of APS on the antithrombotic efficacy of PUE was assessed. RESULTS In mice, AR enhanced the antithrombotic effect of PR. This improved PR effect was associated with isoflavones-induced downregulation of the HMGB1/NF-κB/NLRP3 pathway. The synergistic effect resulting from the compatibility of HGD components was primarily achieved by improving the plasma exposure of PR isoflavones. Specifically, APS enhanced PUE's water solubility through the formation of self-assembly Nanoparticles, increasing its intestinal absorption and oral bioavailability, which, in turn, suppressed the HMGB1/NF-κB/NLRP3 pathway, thus improving its antithrombotic effect. CONCLUSIONS Our findings revealed that APS improved PUE's plasma exposure, enhancing its inhibitory effect on the HMGB1/NF-κB/NLRP3 pathway. This mechanism presents a key aspect of the synergistic effect of HGD compatibility in thrombosis treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jia-Xuan Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| | - Liang-Xing Xiao
- Puai Medical College, Shaoyang University, Shaoyang, 422000, PR China; Foshan Yitai Medical Supplies Co., Ltd, Foshan, 528200, PR China.
| | - Jin-Ting Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xuan-Tong Qu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| | - Jian Meng
- Puai Medical College, Shaoyang University, Shaoyang, 422000, PR China.
| | - Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| |
Collapse
|
3
|
Li Y, Yang K, Zhao L, Xu C, Zhou W, Wang Z, Hu H, You Y. Effects of schisandra lignans on the absorption of protopanaxadiol-type ginsenosides mediated by P-glycoprotein and protopanaxatriol-type ginsenosides mediated by CYP3A4. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117057. [PMID: 37597677 DOI: 10.1016/j.jep.2023.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng Radix et Rhizoma (GRR) and Schisandrae Chinensis Fructus (SCF) are frequently used as herb pairs in traditional herbal formulas especially for the synergetic beneficial effects on lung and heart. Shengmai-yin (SMY), a noted formula, was first published in the traditional Chinese medicine classic named Yixue Qiyuan written by Zhang Yuansu in the Jin Dynasty, and has been used for deficiency of both qi and yin, palpitation, shortness of breath and spontaneous sweating. In SMY, GRR, a sovereign herb, plays an essential role in tonifying lung and supplementing qi, and SCF as an adjuvant herb contributes to the effects of nourishing yin and promoting fluid production, both of which are traditionally used as invigorants in China, Korea, Japan, and Russia. However, the underlying compatibility mechanism of GRR-SCF has remained unknown. AIM OF THE STUDY In order to explore the impact and underlying mechanism of schisandra chinensis extract (SCE) on the absorption of ginsenosides Rb1, Rc, Rb2 and Rd belonging to protopanaxdiol (PPD)-type and ginsenosides Rg1 and Re belonging to protopanaxtriol (PPT)-type, pharmacokinetic studies, molecular docking technique and single-pass intestinal perfusion (SPIP) experiment were conducted. MATERIAL AND METHODS Preliminarily, pharmacokinetic characteristics of ginseng extract (GE) in the presence and absence of SCE were studied. Thereafter, molecular docking was used to predict whether ginsenosides were P-glycoprotein (P-gp) or cytochrome P450 isoenzyme 3A4 (CYP3A4) substrates. Finally, the effects and underlying mechanism of SCE on the absorption of GE were further investigated by in situ SPIP experiment. RESULTS Our findings indicated that SCE could increase exposure in vivo and the intestinal absorption of distinct ginsenosides. Additionally, we found that the PPD-type ginsenosides Rb1, Rc, Rb2, and Rd were substrates for P-gp, and the PPT-type ginsenosides Rg1 and Re were substrates for CYP3A4 rather than P-gp. SCE, which has been found with extensive inhibitory effects on P-gp and CYP3A4, could remarkably promote the intestinal absorption of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd, obtaining similar effects comparable with ketoconazole known as a classic dual inhibitor of P-gp and CYP3A4. CONCLUSIONS The study demonstrated that SCE could improve the absorption of GE, and revealed the underlying compatibility mechanism of GRR and SCF from the perspective of P-gp and CYP3A4-mediated interactions to some extent, which provided a certain scientific reference for the compatibility and clinical practice of GRR-SCF as common herb pairs in traditional prescriptions such as SMY. Moreover, this study also furnished a strategy for improving the oral bioavailability of different types of ginsenosides by drug combinations.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Jiang L, Xiong Y, Tu Y, Zhang W, Zhang Q, Nie P, Yan X, Liu H, Liu R, Xu G. Elucidation of the Transport Mechanism of Puerarin and Gastrodin and Their Interaction on the Absorption in a Caco-2 Cell Monolayer Model. Molecules 2022; 27:molecules27041230. [PMID: 35209020 PMCID: PMC8875129 DOI: 10.3390/molecules27041230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Puerarin (PUR) and gastrodin (GAS) are often used in combined way for treating diseases caused by microcirculation disorders. The current study aimed to investigate the absorption and transportation mechanism of PUR and GAS and their interaction via Caco-2 monolayer cell model. In this work, the concentration in Caco-2 cell of PUR and GAS was determined by HPLC method. The bidirectional transport of PUR and GAS and the inhibition of drug efflux including verapamil and cyclosporine on the transport of these two components were studied. The mutual influence between PUR and GAS, especially the effect of the latter on the former of the bidirectional transport were also investigated. The transport of 50 μg·mL−1 PUR in Caco-2 cells has no obvious directionality. While the transport of 100 and 200 μg·mL−1 PUR presents a strong directionality, and this directionality can be inhibited by verapamil and cyclosporine. When PUR and GAS were used in combination, GAS could increase the absorption of PUR while PUR had no obvious influence on GAS. Therefore, the compatibility of PUR and GAS is reasonable, and GAS can promote the transmembrane transport of PUR, the effect of which is similar to that of verapamil.
Collapse
Affiliation(s)
- Li Jiang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China;
| | - Yu Tu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
| | - Wentong Zhang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
| | - Qiyun Zhang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Peng Nie
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaojun Yan
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongning Liu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ronghua Liu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Guoliang Xu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
5
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
6
|
Li R, Yuan G, Li D, Xu C, Du M, Tan S, Liu Z, He Q, rong L, Li J. Enhancing the bioaccessibility of puerarin through the collaboration of high internal phase Pickering emulsions with β-carotene. Food Funct 2022; 13:2534-2544. [DOI: 10.1039/d1fo03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin is a medicinal and edible flavonoid compound found in the traditional Chinese medicine Pueraria lobata rhizome that has potential biological benefifits, including for the treatment of diabetes and memory...
Collapse
|
7
|
Wang D, Liu R, Zeng J, Li C, Xiang W, Zhong G, Xia Z. Preliminary screening of the potential active ingredients in traditional Chinese medicines using the Ussing chamber model combined with HPLC-PDA-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1189:123090. [PMID: 34959037 DOI: 10.1016/j.jchromb.2021.123090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/12/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
An in vitro intestinal absorption model combined with high-performance liquid chromatography-photo diode array-tandem mass spectrometry (HPLC-PDA-MS) was used for preliminary screening of potential active ingredients from complex multi-component traditional Chinese medicine (TCM) system. Oral administration is one of the main administration methods for TCMs. Only the ingredients that could be absorbed have the opportunity to play a role. Thus, these were defined as potential active ingredients. Studying of intestinal absorption can provide a theoretical basis for the mechanism of TCMs. The Caco-2 cell model, the everted rat gut sac model, and the Ussing chamber model were established for TCMs. The degree of anastomosis between the in vitro intestinal model and the actual intestinal absorption of TCMs were evaluated by the gavage method in rats. The Ussing chamber model was best fit for oral experiments in rats and was selected as the research means to preliminarily screen potential active ingredients from eight TCMs, including Salvia miltiorrhiza Bunge, Astragalus propinquus Schischkin, Plantago asiatica L, Fallopia multiflora (Thunb.) Harald, Epimedium brevicornu Maxim, Moutan Cortex, Citrus reticulata Blanco, and Panax notoginseng (Burkill) F. H. Chen ex C. H. Chow. A total of 44 components were absorbed and screened as the potential active ingredients from the 80 components identified in eight TCMs by HPLC-PDA-MS.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jinxiang Zeng
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chunhu Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Xiang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Guoyue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhining Xia
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
8
|
Influence of Gegenqinlian Decoction on Pharmacokinetics and Pharmacodynamics of Atorvastatin Calcium in Hyperlipidemic Rats. Eur J Drug Metab Pharmacokinet 2021; 47:117-126. [PMID: 34855161 DOI: 10.1007/s13318-021-00738-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Gegenqinlian decoction (GQD), a classic traditional Chinese medicine (TCM), was described in Shanghan Lun. GQD is often combined with antihyperlipidemic drugs (mainly atrovastatin calcium) in TCM clinics. However, the herb-drug interaction between GQD and atrovastatin calcium (AC) is still unknown. To determine whether the combination is safe, we evaluated the effects of GQD on the activities of cytochrome P450 (CYP) 3A2 enzyme and investigated the impact of GQD on the pharmacokinetics and pharmacodynamics of AC in rats. METHODS The pharmacokinetics of AC (10 mg/kg) with or without pretreatment with GQD (freeze-dried powder, 1.35 g/kg) were investigated using HPLC. The influence of GQD on pharmacodynamics of AC were determined by detecting the levels of serum total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Moreover, the probe drug method was used to explore the effect of GQD on CYP3A2 activity. RESULTS The pharmacokinetic parameters of AC combined with GQD were significantly affected (P < 0.05) in hyperlipidemic rats. The serum TC, TG and LDL-C levels of the combination were significantly reduced (P < 0.05), and the serum HDL-C level was significantly increased (P < 0.05) compared with AC/GQD alone. AST and ALT activities treated with both GQD and AC+GQD group were significantly reduced (P < 0.05) compared with AC group. There was a significant difference in the pharmacokinetic parameters of midazolam between control and GQD groups (P < 0.05). Maximum concentration (Cmax), area under the concentration-time curve (AUC) from time 0 to the last quantifiable concentration (AUC0-t) and AUC from time 0 to infinity (AUC0-∞) increased significantly in GQD group. CONCLUSIONS The result suggested that GQD combined with AC can improve the lipid-lowering effect of AC and reduce the damage of AC to the liver simultaneously. However, GQD can inhibit the activity of CYP3A2 in hyperlipidemic rats and increase the blood concentration of AC. Therefore, the clinical dose of AC should be adjusted when they are combined. Since the study was conducted in rats, further research should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.
Collapse
|
9
|
Yang L, Lin IH, Ting CT, Tsai TH. Modulation of the transport of valproic acid through the blood-brain barrier in rats by the Gastrodia elata extracts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114276. [PMID: 34082013 DOI: 10.1016/j.jep.2021.114276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Valproic acid (VPA) is primarily used as a medicine for the treatment of seizures. Gastrodia elata (G. elata) extract has been used as an alternative medicine for epilepsy patients. Cotreatment with VPA and G. elata extract is commonly prescribed in Taiwan and mainland China. Nevertheless, the mechanism of the blood-brain barrier (BBB) transportation effect of G. elata extract on VPA has not been characterized. AIM OF STUDY Our hypothesis is that G. elata extract modulates the BBB penetration of VPA through specific transporter transfer. MATERIALS AND METHODS A validated liquid chromatography-tandem mass spectrometry and multiple microdialysis method was developed to simultaneously monitor VPA in the blood and brain of rats. To investigate the mechanism of BBB modulation by the G. elata extract on VPA in the brain, cyclosporin A, a P-glycoprotein (P-gp) inhibitor and organic anion transporting polypeptide (OATP) inhibitor, was coadministered with the G. elata extract and VPA. RESULTS The pharmacokinetic results demonstrated that the VPA penetration ratio of the BBB, determined by the area under the concentration curve (AUC) ratio of VPA (AUCbrain/AUCblood), was approximately 0.36. After treatment with the G. elata extract (1 and 3 g/kg, p.o. for 5 consecutive days), the VPA penetration ratios were significantly enhanced to 1.47 and 1.02, respectively. However, in the experimental group coadministered cyclosporin A, the G. elata extract was unable to enhance the BBB transportation of VPA. Instead, the VPA penetration ratio in the brain was suppressed back to 0.38. CONCLUSIONS The present study reveals that the enhancement effect of the transporter mechanism of G. elata extract on VPA transport into the brain occurs through the OATP transporter but not the P-gp transporter.
Collapse
Affiliation(s)
- Ling Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - I-Hsin Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chin-Tsung Ting
- Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, 106, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
10
|
Liu CS, Hu YN, Luo ZY, Xia T, Chen FL, Tang QF, Tan XM. Comparative pharmacokinetics, intestinal absorption and urinary excretion of six alkaloids from herb pair Phellodendri Chinensis cortex-Atractylodis Rhizoma. Biomed Chromatogr 2021; 36:e5254. [PMID: 34605575 DOI: 10.1002/bmc.5254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
Phellodendri Chinensis Cortex (PCC) and Atractylodis Rhizoma (AR) are frequently used as herb pair to treat eczema and gout owing to their synergistic effects. Alkaloids are the major ingredients from PCC and the effect of their combination on the in vivo processing of alkaloids remains unclear. In this study, a simple and reliable UPLC-MS/MS method for simultaneous determination of six alkaloids in rat plasma was developed. This method was applied to a comparative pharmacokinetic study between PCC and PCC-AR in rats. Effect of AR on absorption of alkaloids was investigated by a single-pass intestinal perfusion study. The effect of AR on urinary excretion of alkaloids was studied. Pharmacokinetic studies showed that the values of rea under the concentration-time curve of phellodendrine, magnoflorine and palmatine were greater in the PCC-AR group than in the PCC group. The intestinal absorptive parameters absorption rate constant and effective permeability of phellodendrine and jatrorrhizine in PCC-AR groups were higher than those in the PCC group. Urinary excretion studies revealed that the excreted amount of alkaloids in the PCC-AR group was lower than that in the PCC group. The results revealed that the combination of PCC and AR improves intestinal absorption of alkaloids and reduces their urinary excretion, which enhances their systemic exposure. This study may explain the synergetic effects of PCC and AR in clinical applications.
Collapse
Affiliation(s)
- Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Yan-Nan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Fei-Long Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Qing-Fa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| |
Collapse
|
11
|
Rapid Characterizaiton of Chemical Constituents of the Tubers of Gymnadenia conopsea by UPLC-Orbitrap-MS/MS Analysis. Molecules 2020; 25:molecules25040898. [PMID: 32085417 PMCID: PMC7070944 DOI: 10.3390/molecules25040898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.
Collapse
|
12
|
Wang D, Zeng J, Xiang W, Yin M, Zhong G, Xia Z. Online coupling of the Ussing chamber, solid-phase extraction and high-performance liquid chromatography for screening and analysis of active constituents of traditional Chinese medicines. J Chromatogr A 2020; 1609:460480. [PMID: 31530382 DOI: 10.1016/j.chroma.2019.460480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
A semi-automated online platform was established successfully for preliminary screening of potential active flavonoids of traditional Chinese medicines (TCMs) in multicomponent system. Online coupling of the in vitro intestinal absorption model, solid phase extraction (SPE) and high-performance liquid chromatography (HPLC) was actualized at the first time. The Ussing chamber model was selected to absorb the constituents of TCMs. A mini chromatographic column filled with C18 was used as a SPE column for online enrichment of flavonoids. HPLC was applied to analyze the constituents screened by platform. With the use of rutin as a model flavonoid, the specifications of SPE column, eluting solvent, elution time and flow rate of eluent were systematically investigated to optimize online system. Under the optimal conditions, the linear range of rutin was 0.125-368 µg/mL with the correlation coefficient (R2) greater than 0.9947. The limit of detection (LOD) was as low as 0.0500 µg/mL and the limit of quantification (LOQ) was 0.125 µg/mL. The intra-day relative standard deviation (RSD) and inter-day RSD was 2.5% and 3.8%, respectively. The recoveries of rutin in the intestinal absorption samples ranged from 93.2% to 94.0%. Finally, the online system was applied to screen the potential active flavonoids of Scutellaria baicalensis Georgi (Huangqin, HQ) and Polygoni Cuspidati Rhizoma et Radix (Huzhang, HZ). A total of 14 flavonoids of these two TCMs were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and 12 flavonoids of them were screened as the potential active components by online Ussing chamber-SPE-HPLC. In comparison with offline method and gavage in rats, the online system can screen the active constituents from TCMs more accurately and completely. The results demonstrated that the online system was reliable and sufficiently accurate for screening and determination of the potential active flavonoids of TCMs in multicomponent system.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jinxiang Zeng
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wei Xiang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Manni Yin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Guoyue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
13
|
Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019; 26:860-869. [PMID: 31524010 PMCID: PMC6758605 DOI: 10.1080/10717544.2019.1660732] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pueraria lobata (Willd.) Ohwi is a medicinal and edible homologous plant with a long history in China. Puerarin, the main component isolated from the root of Pueraria lobata, possesses a wide range of pharmacological properties. Daidzein and glucuronides are the main metabolites of puerarin and are excreted in the urine and feces. As active substrates of P-gp, multidrug resistance-associated protein and multiple metabolic enzymes, the pharmacokinetics of puerarin can be influenced by different pathological conditions and drug-drug interactions. Due to the poor water-solubility and liposolubility, the applications of puerarin are limited. So far, only puerarin injections and eye drops are on the market. Recent years, researches on improving the bioavailability of puerarin are developing rapidly, various nanotechnologies and preparation technologies including microemulsions and SMEDDS, dendrimers, nanoparticles and nanocrystals have been researched to improve the bioavailability of puerarin. In order to achieve biocompatibility and desired activity, more effective quality evaluations of nanocarriers are required. In this review, we summarize the pharmacokinetics and drug delivery systems of puerarin up to date.
Collapse
Affiliation(s)
- Liang Zhang
- College of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
| |
Collapse
|