1
|
Grant GJ, Lim HW, Mohammad TF. A review of ultraviolet filters and their impact on aquatic environments. Photochem Photobiol Sci 2024:10.1007/s43630-024-00674-8. [PMID: 39704908 DOI: 10.1007/s43630-024-00674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.
Collapse
Affiliation(s)
- Garett J Grant
- Department of Internal Medicine, Transitional Year Residency Program, Henry Ford Hospital, Detroit, MI, USA
- Morehead Family Medicine Residency Program, University of Kentucky, Lexington, KY, USA
| | - Henry W Lim
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| | - Tasneem F Mohammad
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Department of Dermatology, Henry Ford Medical Center, New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Kuhlmann L, Göen T, Hiller J. New metabolites of 2-ethylhexyl salicylate in human urine after simulated real-life dermal sunscreen application. Toxicol Lett 2024; 400:1-8. [PMID: 39034015 DOI: 10.1016/j.toxlet.2024.07.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
2-Ethylhexyl salicylate (EHS) is an organic UV filter which is used in sunscreen and other personal care products. The dermal uptake of EHS was studied in several dermal-exposure experiments. This paper aims to coherently assess urine samples after dermal exposure for the biomarkers EHS, 5OH-EHS, 5oxo-EHS, and 5cx-EPS as well as further biomarkers of interest, specifically 4OH-EHS, 4oxo-EHS, 2OH-EHS, and 6OH-EHS, for the first time. Samples from 18 participants of a pre-existing dermal exposure study under real-life conditions were reassessed using a comprehensive LC-MS/MS method. EHS accounts for 34 % of the cumulative excretion of all analytes within 24 h after exposure, followed by 5OH-EHS (19 %), 5cx-EPS (18 %), 4OH-EHS (15 %) and 5oxo-EHS (11 %). Further metabolites were only quantified in minor amounts. EHS as the most prominent excretion parameter in this study demonstrates the missing first-pass effect after dermal absorption. Furthermore, the applied novel comprehensive analytical procedure revealed oxidation at the ω (5cx-EPS, 6OH-EHS), ω-1 (5OH-EHS, 5oxo-EHS), and ω-2 positions (4OH-EHS, 4oxo-EHS) in the main chain of the ethylhexyl group as well as oxidation in the side chain (2OH-EHS). The presented data are of high relevance for a reliable toxicological risk assessment of dermal exposure to EHS.
Collapse
Affiliation(s)
- Laura Kuhlmann
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany.
| |
Collapse
|
3
|
Kuhlmann L, Hiller J, Göen T. Comprehensive assessment of the UV-filter 2-ethylhexyl salicylate and its phase I/II metabolites in urine by extended enzymatic hydrolysis and on-line SPE LC-MS/MS. Talanta 2024; 276:126223. [PMID: 38728806 DOI: 10.1016/j.talanta.2024.126223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
2-ethylhexyl salicylate (EHS) is used as a UV filter in personal-care products, such as sunscreen, to prevent skin damage through UV radiation. The application of EHS-containing products leads to systemic EHS absorption, metabolization and excretion. To measure EHS and its corresponding metabolite levels in urine, a comprehensive analytical procedure based on an extended enzymatic hydrolysis, on-line-SPE, and UPLC-MS/MS was developed. The method covers a large profile of seven metabolites (including isomeric structures) as well as EHS itself in a run time only of 18 min. Easy sample preparation, consisting of a 2-h hydrolysis step, followed by on-line enrichment and purification, add to the efficiency of the method. An update, compared to a previous method for the determination of EHS and metabolites in urine, is that, during hydrolysis, both glucuronide and sulfate conjugates are considered. The method was furthermore applied to urine samples after a real-life exposure scenario to EHS-containing sunscreen. The method is highly sensitive with limits of detection ranging from 6 to 65 ng/L. Moreover, it is characterized by good precision data, accuracy, and robustness to matrix influences. Application of the method to urine samples following dermal exposure to an EHS-containing sunscreen revealed EHS as the main biomarker after dermal exposure, followed by the major biomarkers 5OH-EHS, 5cx-EPS, 4OH-EHS and 5oxo-EHS. The expansion and optimization of this method decisively contributes to the research on the dermal metabolism of EHS and can be applied in exposure studies and for human biomonitoring.
Collapse
Affiliation(s)
- Laura Kuhlmann
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Yang W, Feng J, Liang W, Nie M, Tan J, Fan R. A high-throughput method for the determination of 14 UV-filters in human plasma by LC-MS/MS: Minimize interferences from proteins and phospholipids in the matrix. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124090. [PMID: 38522130 DOI: 10.1016/j.jchromb.2024.124090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Accurate monitoring of UV-filters exposure levels in human plasma is a challenge because of the significant differences in the physicochemical properties of UV-filters, as well as the matrix effect caused by abundant proteins and phospholipids in plasma. Therefore, an effective and rapid method for simultaneous determination of 14 UV-filters in human plasma using protein precipitation-solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. Acetonitrile with 0.1 % formic acid and 10 % isopropanol (v/v) were used as mobile phases. A gradient elution on an ACQUITY UPLC BEH-C18 column at 30 °C and 0.3 mL/min flow rate was applied for separation. The electrospray ionization positive or negative modes were selected to determine the corresponding analyte to increase selectivity and sensitivity. Results showed that acetonitrile-tetrahydrofuran (v/v, 8:2) as the extraction solvent can effectively precipitate protein in plasma and improve the solubility of UV-filters. The HybridSPE cartridge improved the removal efficiency of phospholipids, while 1 mL of methanol elution increased the extraction recoveries of targets. Fourteen UV-filters achieved good linearities, low detection limits (0.050 to 0.10 μg/L) and quantification limits (0.10 to 1.0 μg/L). Method accuracy and precision, extraction recoveries, and storage stabilities of all analytes met the criterion of 80-120 %. Moreover, this method was successfully applied for the determination of UV-filters in plasma randomly collected from adults. Nine of 14 UV-filters were determined and their concentrations were distributed widely, suggesting a big variation of individual UV-filters exposure.
Collapse
Affiliation(s)
- Wucheng Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianglu Feng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection, Nanning 530000, China
| | - Wenyao Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Mingxia Nie
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Alcaraz MR, Espinosa-Mansilla A, Durán-Merás I, Muñoz de la Peña A. An optimized methodology for the determination of multiclass organic ultraviolet sunscreens and metabolites in human milk through chromatographic and chemometric resolution. Talanta 2024; 270:125560. [PMID: 38128275 DOI: 10.1016/j.talanta.2023.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Organic UV filters (UVFS) are used to mitigate the dermal effects associated with health risks from UV radiation, making them essential in personal care products. UVFS are frequently identified in environmental samples due to their high lipophilicity and persistence, underscoring the urgency of comprehensive assessments and regulatory measures aimed at safeguarding ecosystems and human health. The present study reports a multiclass analytical method for determining 16 UV sunscreens and metabolites in breast milk based on an ultrasound-assisted-dispersive liquid-liquid micro-extraction (UA-DLLME) with further chromatographic and chemometric resolution. The experimental conditions of the UA-DLLME were optimized through the implementation of the Design of Experiment tools. To model the responses, least-squares and artificial neural network methodologies were implemented. The optimal conditions were found by employing the desirability function. The samples were analyzed through reverse-phase liquid chromatographic separation, UV diode array, and fast-scanning fluorescence detection. The chromatographic analysis enabled the resolution of 16 analytes in a total time of 13.0 min. Multivariate curve resolution-alternating least-square (MCR-ALS) modelling was implemented to resolve analytes that were not fully resolved and to determine analytes that coeluted with endogenous components of the breast milk samples. An enrichment factor of 5-fold concentration was obtained with this methodology, reaching recoveries between 65 % and 105 % for 13 multiclass UV sunscreens and metabolites in breast milk samples with RSD % and REP % lower than 12 %.
Collapse
Affiliation(s)
- Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CABA, C1425FQB, Argentina; Departamento de Química Analítica, Universidad de Extremadura, Badajoz, 06006, Spain.
| | | | - Isabel Durán-Merás
- Departamento de Química Analítica, Universidad de Extremadura, Badajoz, 06006, Spain
| | | |
Collapse
|
6
|
Onyango DO, Selman BG, Rose JL, Ellison CA, Nash JF. Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicol Sci 2023; 196:25-37. [PMID: 37561120 PMCID: PMC10613966 DOI: 10.1093/toxsci/kfad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Sunscreen products are composed of ultraviolet (UV) filters and formulated to reduce exposure to sunlight thereby lessening skin damage. Concerns have been raised regarding the toxicity and potential endocrine disrupting (ED) effects of UV filters. The ToxCast/Tox21 program, that is, CompTox, is a high-throughput in vitro screening database of chemicals that identify adverse outcome pathways, key events, and ED potential of chemicals. Using the ToxCast/Tox21 database, octisalate, homosalate, octocrylene, oxybenzone, octinoxate, and avobenzone, 6 commonly used organic UV filters, were found to have been evaluated. These UV filters showed low potency in these bioassays with most activity detected above the range of the cytotoxic burst. The pathways that were most affected were the cell cycle and the nuclear receptor pathways. Most activity was observed in liver and kidney-based bioassays. These organic filters and their metabolites showed relatively weak ED activity when tested in bioassays measuring estrogen receptor (ER), androgen receptor (AR), thyroid receptor, and steroidogenesis activity. Except for oxybenzone, all activity in the endocrine assays occurred at concentrations greater than the cytotoxic burst. Moreover, except for oxybenzone, plasma concentrations (Cmax) measured in humans were at least 100× lower than bioactive (AC50/ACC) concentrations that produced a response in ToxCast/Tox21 assays. These data are consistent with in vivo animal/human studies showing weak or negligible endocrine activity. In sum, when considered as part of a weight-of-evidence assessment and compared with measured plasma concentrations, the results show these organic UV filters have low intrinsic biological activity and risk of toxicity including endocrine disruption in humans.
Collapse
Affiliation(s)
- David O Onyango
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Bastian G Selman
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Jane L Rose
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Corie A Ellison
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - J F Nash
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
7
|
Ma Q, Zhang Y, Huangfu Y, Gao S, Zhou C, Rong H, Deng L, Dong A, Zhang J. Solid SiO 2-Sealed Mesoporous Silica for Synergistically Combined Use of Inorganic and Organic Filters to Achieve Safe and Effective Skin Protection from All-Band UV Radiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12209-12220. [PMID: 36846915 DOI: 10.1021/acsami.2c21990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To effectively shield the full band of ultraviolet (UV) radiation and provide desirable protection, the combination of inorganic and organic filters was often used to protect human skin from the serious harm of UV exposure. However, the incompatibility of different filters and their mutual negative effect limit the production of multifilter sunscreen. In addition, the hazard of reactive oxygen species (ROS) produced by inorganic filters after UV exposure and the skin permeability of organic filters remain unresolved problems. In this study, titanium dioxide (TiO2) and diethylamino hydroxybenzoyl hexyl benzoate (DHHB), two kinds of common filters with complementary UV shielding range, were first encapsulated into large mesoporous silica nanoparticles (MSN, ∼300 nm) to obtain MSN-TiO2 and MSN-DHHB. Also, a SiO2 coating was then made to seal and stabilize the MSN-TiO2 and MSN-DHHB. The structure, UV screen function, and safety of the SiO2-coated filters, MSN-TiO2@SiO2 and MSN-DHHB@SiO2, were evaluated. The good mechanical stability exhibited by the solid SiO2 layer prevented the release and skin penetration of the sealed DHHB and the photocatalysis of TiO2. Furthermore, the combination of MSN-TiO2@SiO2 and MSN-DHHB@SiO2 in sunscreen cream showed excellent UV shielding performance on covering the whole UV radiation range without mutual interference. Therefore, coating SiO2 over MSN is a feasible strategy for entrapping various filters to improve their photostability, preventing skin penetration and ROS generation, and enhancing their compatibility with different sunscreen formulations.
Collapse
Affiliation(s)
- Qing Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yufeng Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shangdong Gao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Canhao Zhou
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Hui Rong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Chiriac FL, Lucaciu IE, Paun I, Pirvu F, Gheorghe S. In Vivo Bioconcentration, Distribution and Metabolization of Benzophenone-3 (BP-3) by Cyprinus carpio (European Carp). Foods 2022; 11:1627. [PMID: 35681379 PMCID: PMC9180567 DOI: 10.3390/foods11111627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Organic UV-filters, such as oxybenzone (BP-3), have attracted researcher attention in recent years due to its capacity to interfere with the proper functioning of the endocrine system and its widespread presence in the aquatic environment. The aim of this study was to investigate the bioconcentration, distribution and metabolization of BP-3 in one of the most common fish species in Romania, namely Cyprinus carp (European carp). Exposure experiments were performed for 11 weeks using a BP-3 nominal concentration level of 100 µg/L. The BP-3 concentration level decreased over time and needed to be re-established daily. Biological samples (fish organs and tissues) from control and test were taken at t0 (before contamination) and at t3, t5, t8 and t11 weeks from the beginning of the experiment. From the third week, BP-3 was identified and quantified, in all organs, in concentration values ranging between 3.2 and 782 ng/g d.w., the highest concentration being detected in the intestinal content, followed by gonads (up to 468 ng/g d.w.) and skin (up to 453 ng/g d.w.). In the case of gill and liver, the BP-3 concentration increased in the first five weeks, and then decreased to 15 and 6 ng/g d.w., respectively, which could be explained by a fast BP-3 metabolization. During the exposure period, six metabolites were identified through LC-MS/MS, all of them known for their endocrine disruptor and toxic properties being higher than those of the parent compound. The study is important from an ecological perspective and also in view of human health concerns involving food quality.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology—ECOIND, Drumul Podu Dambovitei 57–73, Sector 6, 060652 Bucharest, Romania; (F.L.C.); (I.E.L.); (I.P.); (F.P.)
| |
Collapse
|
9
|
Mokh S, Nassar R, Berry A, Khatib ME, Doumiati S, Taha M, Ezzeddine R, Al Iskandarani M. Chromatographic methods for the determination of a broad spectrum of UV filters in swimming pool water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18605-18616. [PMID: 34697706 DOI: 10.1007/s11356-021-16970-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This paper describes an analytical approach based on solid-phase extraction (SPE) followed by analysis using liquid and gas chromatography coupled to mass spectrometry detectors for a determination of 18 organic UV filters from water samples. Extraction method parameters were optimized: 250 ml of water sample loaded on Chromabond C18 cartridges after adjustment to pH 4 and then eluted with acetonitrile. The mobile phase and the parameters of the mass spectrometer, as well as those of the ionization source, were tested to enhance detection sensitivity. During method validation, the extracted target compounds showed good recoveries (> 68%) with acceptable values in terms of repeatability (RSDr) and reproducibility (RSDR), where relative standard deviations values were lower than 20%. The validated method was applied to 10 water samples collected from different swimming pools located in Lebanon from which eight UV filters among the eighteen targets compounds were detected at concentrations ranged between 1 and 2526 µg L-1. The most detected compounds were padimate-O (OD-PABA) and octocrylene (OCR). This study represents the first available data on the occurrence of UV filter residues in Lebanese swimming pool opening hence future perspectives and insights to evaluate their degradation by-products and their toxicity on human health and marine ecosystem.
Collapse
Affiliation(s)
- Samia Mokh
- National Council for Scientific Research (CNRS) - Lebanese Atomic Energy Commission (LAEC) - Laboratory for Analysis of Organic Compound (LACO) Airport Road, P.O. Box 11-8281, Beirut, Lebanon.
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon.
| | - Rania Nassar
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | | | - Mohammad El Khatib
- Faculty of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Samah Doumiati
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Mariam Taha
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Raed Ezzeddine
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon
| | - Mohamad Al Iskandarani
- National Council for Scientific Research (CNRS) - Lebanese Atomic Energy Commission (LAEC) - Laboratory for Analysis of Organic Compound (LACO) Airport Road, P.O. Box 11-8281, Beirut, Lebanon.
- Faculty of Public Health I, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
10
|
Narloch I, Wejnerowska G. An Overview of the Analytical Methods for the Determination of Organic Ultraviolet Filters in Cosmetic Products and Human Samples. Molecules 2021; 26:4780. [PMID: 34443367 PMCID: PMC8400378 DOI: 10.3390/molecules26164780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022] Open
Abstract
UV filters are a group of compounds commonly used in different cosmetic products to absorb UV radiation. They are classified into a variety of chemical groups, such as benzophenones, salicylates, benzotriazoles, cinnamates, p-aminobenzoates, triazines, camphor derivatives, etc. Different tests have shown that some of these chemicals are absorbed through the skin and metabolised or bioaccumulated. These processes can cause negative health effects, including mutagenic and cancerogenic ones. Due to the absence of official monitoring protocols, there is an increased number of analytical methods that enable the determination of those compounds in cosmetic samples to ensure user safety, as well as in biological fluids and tissues samples, to obtain more information regarding their behaviour in the human body. This review aimed to show and discuss the published studies concerning analytical methods for the determination of organic UV filters in cosmetic and biological samples. It focused on sample preparation, analytical techniques, and analytical performance (limit of detection, accuracy, and repeatability).
Collapse
Affiliation(s)
| | - Grażyna Wejnerowska
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
11
|
Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants. MEMBRANES 2021; 11:membranes11070532. [PMID: 34357182 PMCID: PMC8307055 DOI: 10.3390/membranes11070532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 μm silica powders at a certain silica–cementitious particle ratio (s/c). The effect of the s/c on the pore size distribution and mechanical strength of the membrane was investigated. The membrane pore size showed a bimodal distribution, and the higher the s/c, the closer the second peak was to the accumulated average particle size of silica. The increase in the s/c led to a decrease in the bending strength of the membrane. The cross-sectional morphology by SEM and crystal structure by XRD of CMs confirmed that a calcium silicate hydrate gel was generated around the silica powder to improve the mechanical strength of the CM. Considering the bending strength and pore size distribution of CMs, s/c = 0.5 was selected as the optimal membrane fabrication condition. The FT-IR results characterizing the surface functional groups of CMs were rich in surface hydroxyl groups with the ability to catalyze ozone oxidation for organic pollutant removal. Six small molecule organic pollutants were selected as model compounds for the efficiency experiments via a CM–ozone coupling process to prove the catalytic property of the CM. The CM has an alkaline buffering effect and can stabilize the initial pH of the solution in the catalytic ozonation process. The reuse experiments of the CM–ozone coupling process demonstrated the broad spectrum of the CM catalytic performance and self-cleaning properties. The results of this study provide the basis and experimental support to expand the practical application of CMs.
Collapse
|
12
|
Sun J, Chen Z, Shen J, Wang B, Zhao S, Wang W, Zhu X, Wang Z, Kang J. Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. CHEMOSPHERE 2021; 273:129628. [PMID: 33508688 DOI: 10.1016/j.chemosphere.2021.129628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Aluminosilicate composite materials are characterized by their low cost, nontoxicity and facilely shaped. Membrane prepared using aluminosilicate composites have the following disadvantages: large mean pore size and low mechanical strength. To address these limitations, flat microfiltration membranes were fabricated using SiO2 powder and aluminosilicate composite as raw materials. The membrane performance was optimized by regulating the particle size of SiO2, the ratio of SiO2 to aluminosilicate composite (s/a), and the type of chemical admixture. The X-ray diffraction results indicated that the crystalline SiO2 particles were favorable for the preparation of membranes with higher bending strengths. The decreasing particle sizes of SiO2 (1.33-0.15 μm) decreased the pore size distribution. The bending strength of the membrane reduced with an increase in s/a, while was effectively enhanced by adding dissolved Na2SiO3. The optimized inorganic microfiltration membrane could also catalyze ozone to remove 100% of benzophenone-4 with an initial concentration of 10 mg L-1 within 15 min, and TOC removal by 52.67%. This paper presents a revised method for preparing an inorganic microfiltration membrane, which is an increasingly promising material for water treatment because of its low cost, low energy consumption, and high catalytic performance.
Collapse
Affiliation(s)
- Jingyi Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiqiang Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinwei Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhe Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Chiriac FL, Paun I, Pirvu F, Iancu V, Galaon T. Distribution, removal efficiencies and environmental risk assessment of benzophenone and salicylate UV filters in WWTPs and surface waters from Romania. NEW J CHEM 2021. [DOI: 10.1039/d0nj05214k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article presents the environmental pollution level with organic UV filters and the effect they pose on aquatic organisms in Romania.
Collapse
Affiliation(s)
| | - Iuliana Paun
- National Research and Development Institute for Industrial Ecology – ECOIND
- Bucharest
- Romania
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology – ECOIND
- Bucharest
- Romania
| | - Vasile Iancu
- National Research and Development Institute for Industrial Ecology – ECOIND
- Bucharest
- Romania
| | - Toma Galaon
- National Research and Development Institute for Industrial Ecology – ECOIND
- Bucharest
- Romania
| |
Collapse
|
14
|
Senta I, Rodríguez-Mozaz S, Corominas L, Petrovic M. Wastewater-based epidemiology to assess human exposure to personal care and household products - A review of biomarkers, analytical methods, and applications. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2020; 28:e00103. [PMID: 38620429 PMCID: PMC7470864 DOI: 10.1016/j.teac.2020.e00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Humans are nowadays exposed to numerous chemicals in our day-to-day life, including parabens, UV filters, phosphorous flame retardants/plasticizers, bisphenols, phthalates and alternative plasticizers, which can have different adverse effects to human health. Estimating human's exposure to these potentially harmful substances is, therefore, of paramount importance. Human biomonitoring (HBM) is the existing approach to assess exposure to environmental contaminants, which relies on the analysis of specific human biomarkers (parent compounds and/or their metabolic products) in biological matrices from individuals. The main drawback is its implementation, which involves complex cohort studies. A novel approach, wastewater-based epidemiology (WBE), involves estimating exposure from the analysis of biomarkers in sewage (a pooled urine and feces sample of an entire population). One of the key challenges of WBE is the selection of biomarkers which are specific to human metabolism, excreted in sufficient amounts, and stable in sewage. So far, literature data on potential biomarkers for estimating exposure to these chemicals are scattered over numerous pharmacokinetic and HBM studies. Hence, this review provides a list of potential biomarkers of exposure to more than 30 widely used chemicals and report on their urinary excretion rates. Furthermore, the potential and challenges of WBE in this particular field is discussed through the review of pioneer WBE studies, which for the first time explored applicability of this novel approach to assess human exposure to environmental contaminants. In the future, WBE could be potentially applied as an "early warning system", which could promptly identify communities with the highest exposure to environmental contaminants.
Collapse
Key Words
- 3−OH-EtP, ethyl protocatechuate
- 3−OH-MeP, methyl protocatechuate
- 5−OH−OC, 2-ethyl-5-hydroxyhexyl 2-cyano-3,3-diphenyl acrylate
- ASE, accelerated solvent extraction
- BBOEHEP, bis(2-butoxyethyl) 2-hydroxyethyl phosphate
- BBOEP, bis(2-butoxyethyl) phosphate
- BP-3, 2,4-dihydroxybenzophenone (Benzophenone-3, Oxybenzone)
- BPA, bisphenol A
- BPA-Glu, bisphenol A glucuronide
- BPA-SO4, bisphenol A sulfate
- Biomarkers
- Bisphenols
- CPAA, 2-cyano-3,3-diphenylacrylic acid
- DEHA, di-2-ethylhexyl adipate
- DEHP, di(2-ethylhexyl) phthalate
- DEHTP, di(2-ethylhexyl) terephthalate
- DHB, 2,4-dihydroxybenzophenone (Benzophenone-1, BP-1)
- DHMB, 2,2′-dihydroxy-4-methoxybenzophenone (Benzophenone-8, BP-8)
- DINCH, di(isononyl)cyclohexane-1,2-dicarboxylate
- DNBP, di-n-butyl phosphate
- DPHP, di-(2-propylheptyl) phthalate
- DPhP, diphenyl phosphate
- EHDPhP, 2-ethylhexyldiphenyl phosphate
- EHS, 2-ethylhexyl salicylate (Octisalate)
- EI, electron ionization
- ESI, electrospray ionization
- EtP, ethylparaben
- Excretion rate
- Flame retardants
- GC–MS, gas chromatography‒mass spectrometry
- HBM, human biomonitoring
- HPLC-MS/MS, high performance liquid chromatography–tandem mass spectrometry
- LC–MS/MS, liquid chromatography‒tandem mass spectrometry
- MAE, microwave-assisted extraction
- MEHA, mono-2-ethylhexyl adipate
- MINCH, Monoisononyl-cyclohexane-1,2-dicarboxylate
- MQL, method quantification limit
- MRM, multiple reaction monitoring (MRM)
- MTBSTFA, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide
- MeP, methylparaben
- OC, Octocrylene
- OH-MINCH, Cyclohexane-1,2-dicarboxylate-mono-(7-hydroxy-4-methyl) octyl ester
- PE, primary effluent
- PFRs, phosphorous flame retardants/plasticizers
- PHBA, p-hydroxybenzoic acid
- PHHA, p-hydroxyhippuric acid
- Parabens
- Phthalates
- Plasticizers
- PrP, propylparaben
- Q-ToF, quadrupole-time-of-flight
- QTRAP, quadrupole-ion trap
- QqQ, triple quadrupole
- RW, raw wastewater
- SE, secondary (final) effluent
- SIM, selected ion monitoring
- SPE, solid-phase extraction
- SPM, suspended particulate matter
- Sewage chemical information mining
- Sewage epidemiology
- TBOEP, tris(2-butoxyethyl) phosphate
- TPhP, triphenyl phosphate
- UAE, ultrasonic-assisted extraction
- UHPLC-MS/MS, ultrahigh performance liquid chromatography–tandem mass spectrometry
- UV filters
- WBE, wastewater-based epidemiology
- WWTPs, wastewater treatment plants
- bbCID, broadband collision-induced dissociation
Collapse
Affiliation(s)
- Ivan Senta
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
- University of Girona, Girona, Spain
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
- University of Girona, Girona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
15
|
Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography-Diode Array Detection for Determining UV Filters in Cosmetics and the Human Stratum Corneum. Molecules 2020; 25:molecules25204642. [PMID: 33053784 PMCID: PMC7587185 DOI: 10.3390/molecules25204642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
This study explores the amounts of common chemical ultraviolet (UV) filters (i.e., avobenzone, bemotrizinol, ethylhexyl triazone, octocrylene, and octyl methoxycinnamate) in cosmetics and the human stratum corneum. An ultrasound–vortex-assisted dispersive liquid–liquid microextraction (US–VA–DLLME) method with a high-performance liquid chromatography–diode array detector was used to analyze UV filters. A bio-derived solvent (i.e., anisole) was used as the extractant in the US–VA–DLLME procedure, along with methanol as the dispersant, a vortexing time of 4 min, and ultrasonication for 3 min. The mass-transfer rate of the extraction process was enhanced due to vortex-ultrasound combination. Various C18 end-capped columns were used to investigate the separation characteristics of the UV filters, with XBridge BEH or CORTECS selected as the separation column. Calibration curves were constructed in the 0.05–5 μg/mL (all filters except octocrylene) and 0.1–10 μg/mL (octocrylene) ranges, and excellent analytical linearities with coefficients of determination (r2) above 0.998. The developed method was successfully used to analyze sunscreen. Moreover, experiments were designed to simulate the sunscreen-usage habits of consumers, and the cup method was used to extract UV filters from the human stratum corneum. The results suggest that a makeup remover should be employed to remove water-in-oil sunscreens from skin.
Collapse
|
16
|
Hiller J, Klotz K, Meyer S, Uter W, Hof K, Greiner A, Göen T, Drexler H. Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. ENVIRONMENT INTERNATIONAL 2019; 132:105068. [PMID: 31470219 DOI: 10.1016/j.envint.2019.105068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chemical UV filters are common components in sunscreens and cosmetic products and used to protect the skin against harmful effects of sunlight like sunburn. However, the effectiveness of sunscreens in the prevention of skin cancer is in some parts still controversial. Meanwhile, questions about negative effects of the chemical UV filters on human health arise and request an effective risk assessment. Real-life exposure data in humans after application of these products are still rare. Thus, we explored whether and to what extent UV filters are absorbed through the skin into the human body. MATERIAL AND METHODS Plasma and urine samples from 20 healthy volunteers were collected before, during and after a real-life exposure scenario (1st application: 2 mg/cm2; 2nd and 3rd (after 2 and 4 h): 1 mg/cm2 each) using a commercial sunscreen formulation for one day. These samples were analyzed for their content of the currently prominent UV filters octocrylene and avobenzone as well as 2-cyano-3,3-diphenylacrylic acid (CDAA) as the main octocrylene metabolite by using different liquid chromatography electrospray-ionization tandem mass spectrometric procedures. RESULTS Following dermal sunscreen exposure, avobenzone, octocrylene and CDAA reached concentrations up to 11 μg/L, 25 μg/L and 1352 μg/L in plasma. In urine detection rates of avobenzone and octocrylene were low while CDAA showed a high detection rate and reached up to 5207 μg/g creatinine. Kinetic models could be fitted for octocrylene and CDAA in plasma and CDAA in urine. Concentration peaks were reached between 10 and 16 h after first application and half-life periods were in the range of 1.5 to 2 days. The lipophilic UV filter octocrylene and its metabolite CDAA showed a much slower elimination than other more hydrophilic UV filters. Concordantly, the metabolite CDAA in particular showed a markedly increased renal excretion over the whole sampling period and indicated high internal exposure to OC. DISCUSSION Real-life sunscreen usage leads to considerable bioavailability of organic UV filters and their metabolites which is rarely seen for other environmental exposures. A combined monitoring of the parent compound and its metabolites is important to fully address internal exposure to the UV filter in humans. Considering the kinetic profiles a prolonged systemic release due to depot formation in skin and a potential accumulation through multi-day exposure is presumed. High in-vivo loads call for a critical toxicological assessment of the UV filters and their metabolites.
Collapse
Affiliation(s)
- Julia Hiller
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Katrin Klotz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Sebastian Meyer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Medical Informatics, Biometry and Epidemiology, Waldstr. 6, 91054 Erlangen, Germany.
| | - Wolfgang Uter
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Medical Informatics, Biometry and Epidemiology, Waldstr. 6, 91054 Erlangen, Germany.
| | - Kerstin Hof
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Annette Greiner
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Thomas Göen
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Hans Drexler
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
17
|
Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposure. Arch Toxicol 2019; 93:2565-2574. [PMID: 31435713 DOI: 10.1007/s00204-019-02537-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Chemical UV filters are common components in sunscreens and cosmetic products. The question of adverse health risks is not completely resolved, partly owing to lacking human data from dermal exposure, which are essential for sound risk assessment. Therefore, we investigated the urinary toxicokinetics of 2-ethylhexyl salicylate (EHS) after a 1-day dermal real-life sunscreen application scenario. Twenty human volunteers were dermally exposed to a commercial sunscreen for 9 h under real-life conditions (2 mg/cm2 body surface area; double re-application; corresponding to 3.8 g EHS). Urine samples were analyzed for EHS and one of its specific metabolites 2-ethyl-5-hydroxyhexyl salicylate (5OH-EHS) using a two-dimensional liquid chromatographic electrospray-ionization tandem mass spectrometric procedure. EHS and 5OH-EHS were excreted after sunscreen application and reached up to 525 µg/g and 213 µg/g creatinine, respectively. The toxicokinetic models showed concentration peaks between 7 and 8 h after first application. First-phase terminal half-lives were 8-9 h. For 5OH-EHS, a second-phase terminal half-life could be determined (87 h). EHS and 5OH-EHS showed a faster elimination with 70-80% of the overall excretion occurring within 24 h after application compared to more lipophilic UV filters. Cumulative excreted amounts over 24 h reached up to 334 µg EHS and 124 µg of 5OH-EHS. Simulated real-life sunscreen use for 1 day leads to the bioavailability of the UV filter EHS in humans. The kinetic profiles with a prolonged systemic availability indicate a skin depot and make accumulation during consecutive multi-day exposure likely.
Collapse
|