1
|
Khodadadeian F, Hossaini Sadr M, Afshar Mogaddam MR, Rezvani Z. Synthesis of 1,2,4-triazole-based deep eutectic solvents modified nickel ferrite nanoparticles and their application in dispersive solid phase extraction of triazole pesticides prior to LC-MS/MS analysis. Talanta 2025; 283:127050. [PMID: 39536616 DOI: 10.1016/j.talanta.2024.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
A dispersive solid phase extraction method using new magnetic nanoparticles based on nickel ferrite was introduced for the extraction of six triazole pesticides (penconazole, hexaconazole, tebuconazole, diniconazole, triadimefon, and difenoconazole) from water samples before liquid chromatography-tandem mass spectrometry analyses. Initially, a new deep eutectic solvent was synthesized with 1,2,4-triazole and n-octanol for surface modification of the nanoparticles easily achieved through microwave radiation. The nanoparticles morphology, magnetic properties, adsorption capacity, isotherms, and crystalline patterns of the sorbent were examined. The capability of the sorbent was evaluated by extracting the target pesticides from water samples showing significant differences in adsorption capacity and efficiency between the modified and non-modified nanoparticles. High extraction recoveries (68-86 %) were achieved for the analytes using small amounts of the sorbent with low limits of detection (0.03-0.08 ng mL-1) and quantification (0.13-0.29 ng mL-1), a wide linear range (0.29-250 ng mL-1), and acceptable precision (relative standard deviations ≤6.9 %).
Collapse
Affiliation(s)
- Fariba Khodadadeian
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moayad Hossaini Sadr
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemistry and Chemical Engineering Department, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan.
| | - Zolfaghar Rezvani
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
2
|
Farajzadeh MA, Mohammad Mehri S, Afshar Mogaddam MR. Application of core-shell magnetic metal-organic framework in developing dispersive micro solid phase extraction combined with dispersive liquid-liquid microextraction for the extraction and enrichment of some pesticides in orange blossom, Aloysia Citrodora, and fennel herbal infusions. J Chromatogr A 2025; 1741:465608. [PMID: 39721402 DOI: 10.1016/j.chroma.2024.465608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@Fe3O4) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method. To validate the successful synthesis of the adsorbent, a range of analytical techniques were utilized including vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray, and Brunauer-Emmett-Teller analyses. A vortex agitation and an external magnetic field were used during the extraction process to aid the analytes' desorption and adsorbent separation, respectively. Also, a mixture of iso-propanol and deionized water was used to desorb the analytes from the adsorbent surface. The resulting supernatant containing the desorbed pesticides was mixed with 1,2-dibromoethane as the extraction solvent and then injected into an aqueous medium. After centrifugation, 1 μL of the sedimented phase was introduced into the gas chromatograph system equipped with a flame ionization detector. The reliability of the proposed methodology was confirmed by obtaining low relative standard deviations (1.0-8.5 %), acceptable extraction recoveries (39-93 %), substantial enrichment factors (195-475), calibration curve linearity (r2=0.993-0.998), and significantly low limits of quantification (0.34-3.0 μg L-1) and detection (1.1-9.9 μg L-1). Absence of matrix effects with relative recovery values of 80-120 % for real samples, minimal use of the adsorbent and extraction solvent, a reduction in extraction time due to the elimination of two centrifugation steps (facilitated by an external magnetic field), and the use of environmentally friendly solvents collectively highlight the advantages and significant values of this approach.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Sina Mohammad Mehri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yang ST, Cao YW, Zeng ZY, Gang Z, Chen M, Du BY, Su MM, Yang ZH, Tang ZH, Zeng YL. Determination of Azole Fungicide Residues in Fresh Juice by Magnetic Solid Phase Extraction Based on Fe3O4@ZnAl-LDH@MIL-53(Al) Sorbent in Combination with High-Performance Liquid Chromatograph. J Chromatogr Sci 2025; 63:bmae029. [PMID: 38757928 DOI: 10.1093/chromsci/bmae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Indexed: 05/18/2024]
Abstract
In this work, a magnetic adsorption material based on metal-organic framework (Fe3O4@ZnAl-LDH@MIL-53(Al)) was synthesized and used as an adsorbent in the process of magnetic solid phase extraction. Then, a high-performance liquid chromatograph was used to quantitatively detect triazole fungicides in samples. In order to verify the successful preparation of the material, a series of characterization analyses were carried out. Besides, the key parameters that may affect the extraction efficiency have been optimized, and under optimal conditions the three triazole fungicides showed good linearity in the range of 10-1000 μg/L (R2 ≥ 0.9796); Limit of detections were ranged from 0.013 to 0.030 μg/mL. Finally, the established method was applied to the detection of triazole fungicides in four fresh juice samples. The results showed that the target analyte was not detected in all the test samples. By detecting the recoveries (73.3-104.3%) and coefficient variation (RSD ≤ 6.8%) of triazole fungicides in fortified samples, it proved that this established method meets the requirements of pesticide residue analysis and showed excellent application potential.
Collapse
Affiliation(s)
- Shu-Tong Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Ying Zeng
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Gang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing-Yan Du
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao-Miao Su
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhu-Hua Tang
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Yun-Liu Zeng
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| |
Collapse
|
4
|
Kavian M, Ghani M, Raoof JB. Porphyrin-Based Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction of Tebuconazole and Propiconazole. J Sep Sci 2025; 48:e70077. [PMID: 39846343 DOI: 10.1002/jssc.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes. Under the optimum condition, the linear range of the method for both analytes were estimated in the range of 0.5-200 µg L-1 (the coefficient of determination of 0.9962 for tebuconazole and 0.9990 for propiconazole). The limits of detection of the method for tebuconazole and propiconazole were calculated to 0.02 µg g-1 and 0.03 µg g-1, respectively. The limits of quantification of the method were also estimated for two analytes equal to 0.07 and 0.08 µg g-1, respectively. The intra- and inter-day relative standard deviations, which fell between 1.8% and 4.7%, were computed to assess the accuracy of the suggested approach. The proposed method was used for the extraction and determination of tebuconazole and propiconazole in tomato, cucumber, apple, cabbage, and carrot, which the obtained results showed the success of the method in extracting and determining of these analytes from the target samples.
Collapse
Affiliation(s)
- Marzieh Kavian
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Changizi Kecheklou A, Afshar Mogaddam MR, Sorouraddin SM, Farajzadeh MA, Fathi AA. Thin film microextraction of apixaban from plasma based on the covalent organic framework coated on a mesh prior to liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124302. [PMID: 39362117 DOI: 10.1016/j.jchromb.2024.124302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
In this research, a new covalent organic framework was synthesized and utilized as a coating in thin film microextraction for the extraction of apixaban from plasma samples. This coating was applied to the mesh modified through immersion in a HF solution. The extracted drug was then analyzed using liquid chromatography-tandem mass spectrometry. By combining the high specific surface area and selectivity of the covalent organic framework, along with integrating the innovative thin film microextraction method and a sensitive analysis system, an efficient analytical approach was achieved. The target analyte was preconcentrated and extracted by immersing of the covalent organic framework-coated mesh as an absorbent into the biological sample. Subsequently, a sonication process was conducted for a specific duration. Following this, the extracted analyte was desorbed using acetonitrile as the elution solvent. The effective parameters of the proposed technique were optimized by using "one-parameter-at-a-time" strategy and the optimal conditions were selected. By integrating the developed method notable achievements were made in the terms of low limits of detection and quantification (0.17 and 0.56 µg/L, respectively), a wide linear range (0.05-250 µg/L), intra- and inter day precisions (with relative standard deviations of ≤14 %), as well as satisfactory extraction recoveries (53 % and 54 % in plasma and deionized water, respectively). Hence, it can be concluded that the introduced technique exhibits high efficiency and reliability when applied to biological samples.
Collapse
Affiliation(s)
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemistry and Chemical Engineering Department, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Kandelous YM, Nikpassand M, Fekri LZ. Recent Focuses in the Syntheses and Applications of Magnetic Metal-Organic Frameworks. Top Curr Chem (Cham) 2024; 382:30. [PMID: 39369352 DOI: 10.1007/s41061-024-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
In this article, we examine the recent uses of magnetic metal-organic frameworks (MMOFs). MMOFs can be used in various fields such as water purification, laboratory, food, environment, etc. Their materials can be composed of different metals and ligands, each of which has its own properties. Also, the presence of a magnetic property in these absorbents adds good features such as easy separation, faster absorption, and better interaction with other particles, which improves their application and performance. In recent years, various types of these compounds have been made, and, in this article, while classifying them, we will discuss the structure and application of some MMOFs.
Collapse
Affiliation(s)
| | - Mohammad Nikpassand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Leila Zare Fekri
- Department of Chemistry, Payame Noor University (PNU), PO Box, Tehran, 19395-4697, Iran
| |
Collapse
|
8
|
Shirani M, Poor MA, Ozalp O, Ghaffari M, Soylak M. Reduced graphene oxide decorated NiCo 2(OH) 6 nanoflowers for vortexed assisted dispersive µ-solid-phase extraction of organophosphorus pesticides in baby food cereal, rice and wheat flour. J Chromatogr A 2024; 1733:465277. [PMID: 39154496 DOI: 10.1016/j.chroma.2024.465277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Food safety is an important issue to protect humane health and improve the life quality. Hence, analysis of the possible contaminants in food samples is essential. A rapid and efficient vortexed-assisted dispersive µ-solid-phase extraction coupled with gas chromatography-mass spectrometry was proposed for simultaneous separation/preconcentration and determination of five commonly used organophosphorus pesticides. Reduced graphene oxide decorated NiCo2(OH)6 nanoflowers as a novel nanostructure was synthetized and introduced for separation of the target pesticides from the wheat flour, rice flour, and baby food cereal samples. The characterization of the nanoflowers was accomplished by SEM-EDX, XRD, and FT-IR techniques. The main factors including pH, the amount of nanoflower, the volume of sample solution, salt concentration (ionic strength), desorption conditions (i.e. desorption solvent type and volume, and desorption time) on the pesticides extraction efficiencies were inquired using matrixed match method. Applying the optimum conditions, the linearity of 0.100-500.000 µg kg-1, LODs and LOQs in the range of 0.03-0.04 µg kg-1 and 0.1 µg kg-1 for the studied food samples were obtained. The repeatability (intra-day precision (n = 5)) of ≤ 2.0 % and reproducibility (inter-day precision, days = 5, n = 3) of ≤3.1 % and were appraise at three concentration levels (10, 50 and 100 μg kg-1 of each analyte). High relative recoveries of 90.0-99.3 % ascertained high potential of the presented method for complex matrix analysis.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran.
| | | | - Ozgur Ozalp
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mandegar Ghaffari
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Turkiye.
| |
Collapse
|
9
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
10
|
Guo X, Zheng X, Guo X, Wu J, Jing X. Determination of chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using emulsive liquid-liquid microextraction combined with ultra-high performance liquid chromatography. Food Chem 2024; 440:138314. [PMID: 38160595 DOI: 10.1016/j.foodchem.2023.138314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Emulsive liquid-liquid microextraction (ELLME), a simple, rapid, and environmentally friendly technique, was established to identify chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using ultra-high-performance liquid chromatography (UPLC). Environmentally friendly extractant was mixed with pure water to prepare a high-concentration emulsion, which was added to samples to complete the emulsification and extraction in 1 s. Afterward, an electrolyte solution was added to complete the demulsification without centrifugation. ELLME did not use dispersants compared to the familiar dispersive liquid-liquid microextraction (DLLME), thus reducing the use of toxic solvents and avoiding the effect of dispersants on the partition coefficient. The linear range was from 0.01 to 1 mg/L. The limit of detection was 0.003 mg/L. The extraction recoveries ranged from 82.4 % to 101.6 %, with relative standard deviations of 0.7-5.2 %. The ELLME method developed has the potential to serve as an alternative to DLLME.
Collapse
Affiliation(s)
- Xingle Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xiaojiao Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xu Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
11
|
Kachangoon R, Vichapong J, Santaladchaiyakit Y. Surfactant modified coconut husk fiber as a green alternative sorbent for micro-solid phase extraction of triazole fungicides at trace level in environmental water, soybean milk, fruit juice and alcoholic beverage samples. RSC Adv 2024; 14:7290-7302. [PMID: 38433941 PMCID: PMC10905518 DOI: 10.1039/d3ra07506k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
In this work, micro-solid phase extraction using surfactant modified biosorbent was investigated for trace level determination of triazole fungicides prior to their analysis by high performance liquid chromatography. Coconut husk fiber (CHF) was selected as an effective biosorbent in the extraction process. Fourier transform infrared spectrometry, scanning electron microscopy and transmission electron microscopy methods were used to characterize the modified biosorbent. Various factors affecting the extraction efficiency of the proposed method were studied including the amount of coconut husk fiber biosorbent (0.1 g), kind and concentration of surfactant as a modifier (sodium dodecyl sulfate, 10 mmol L-1), kind and volume of desorption solvent (methanol, 150 μL), and extraction period (including vortex adsorption time, centrifugation adsorption time, vortex desorption time and centrifugation adsorption time approximately 10 min). Under the selected conditions, the calibration plot was found to be linear in the range of 9-300 μg L-1 with a coefficient for determination of greater than 0.99. The limits of detection and limits of quantification for the studied triazole fungicides were 3.00 and 9.00 μg L-1, respectively. Finally, the proposed method was successfully applied to determine triazole fungicides in environmental water, soybean milk, fruit juice and alcoholic beverage samples with acceptable recoveries obtained in the range of 67.0% to 105.0%.
Collapse
Affiliation(s)
- Rawikan Kachangoon
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand +66 4375 4246 +66 4375 4246
| | - Jitlada Vichapong
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand +66 4375 4246 +66 4375 4246
- Multidisplinary Research Unit of Pure and Applied Chemistry (MRUPAC), Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus Khon Kaen 40000 Thailand
| |
Collapse
|
12
|
Chu BY, Lin C, Nie PC, Xia ZY. Research Status in the Use of Surface-Enhanced Raman Scattering (SERS) to Detect Pesticide Residues in Foods and Plant-Derived Chinese Herbal Medicines. Int J Anal Chem 2024; 2024:5531430. [PMID: 38250173 PMCID: PMC10798841 DOI: 10.1155/2024/5531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Surface-enhanced Raman scattering (SERS) technology has unique advantages in the rapid detection of pesticides in plant-derived foods, leading to reduced detection limits and increased accuracy. Plant-derived Chinese herbal medicines have similar sources to plant-derived foods; however, due to the rough surfaces and complex compositions of herbal medicines, the detection of pesticide residues in this context continues to rely heavily on traditional methods, which are time consuming and laborious and are unable to meet market demands for portability. The application of flexible nanomaterials and SERS technology in this realm would allow rapid and accurate detection in a portable format. Therefore, in this review, we summarize the underlying principles and characteristics of SERS technology, with particular focus on applications of SERS for the analysis of pesticide residues in agricultural products. This paper summarizes recent research progress in the field from three main directions: sample pretreatment, SERS substrates, and data processing. The prospects and limitations of SERS technology are also discussed, in order to provide theoretical support for rapid detection of pesticide residues in Chinese herbal medicines.
Collapse
Affiliation(s)
- Bing-Yan Chu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chi Lin
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peng-Cheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Yan Xia
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
13
|
Wang X, Ai S, Xiong A, Zhou W, He L, Teng J, Geng X, Wu R. SERS combined with QuEChERS using NBC and Fe 3O 4 MNPs as cleanup agents to rapidly and reliably detect chlorpyrifos pesticide in citrus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6266-6274. [PMID: 37955430 DOI: 10.1039/d3ay01604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The surface-enhanced Raman spectroscopy (SERS) technique is being increasingly used for the detection of pesticide residues in agricultural products. However, there are large amounts of fluorescence-producing substances in agricultural products, which seriously affect the Raman signal of the analyte. In this paper, the QuEChERS method was used to remove interfering fluorescent substances in the analyte, and the purification effects of different doses of nano bamboo charcoal (NBC) and Fe3O4 magnetic nanoparticle (Fe3O4 MNP) adsorbents were studied. Meanwhile, the Raman spectral acquisition conditions (AuNPs, test solution, and NaCl) were optimized based on the orthogonal test method. The results showed that 300 µL AuNPs, 40 µL test solution, and 100 µL 1.5% NaCl gave the best SERS response effect. 12.5 mg NBC combined with 10 mg Fe3O4 MNPs could effectively remove the interfering substances from citrus. The Raman spectra of chlorpyrifos molecules were theoretically modeled using density-functional theory (DFT). By comparing the DFT results with the actual tests, five feature peaks, at 338, 522, 558, 672, and 1600 cm-1, were obtained for the detection of chlorpyrifos pesticide residues in citrus. Based on the Raman feature peak intensity at 672 cm-1, the concentration of chlorpyrifos in citrus showed a good linear relationship (R2 = 0.9979) in the concentration range of 3-20 mg kg-1. The recovery rate was 92.12% to 98.38%, and the relative standard deviation (RSD) was 1.77% to 5.29%. The lowest detection concentration was about 3 mg kg-1, and the detection time of a single sample could be completed within 15 min. This study showed that the combination of SERS and QuEChERS preprocessing methods could achieve rapid detection of chlorpyrifos pesticide residues in citrus.
Collapse
Affiliation(s)
- Xu Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Shirong Ai
- College of Software, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Aihua Xiong
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Weiqi Zhou
- College of Software, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Liang He
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Jie Teng
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xiang Geng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Ruimei Wu
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
14
|
Bodaghabadi F, Amiri A, Mirzaei M. Magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from water samples using magnetic carbon nanofiber/MIL-101(Cr) nanocomposites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5526-5534. [PMID: 37846501 DOI: 10.1039/d3ay01356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this study, magnetic carbon nanofibers (Fe3O4@CNF) were modified with MIL-101(Cr) (Fe3O4@CNF@MIL-101) and used as sorbents for magnetic solid-phase extraction (MSPE) to extract polycyclic aromatic hydrocarbons (PAHs) from real water samples. Gas chromatography coupled with a flame ionization detector (GC-FID) was used for the determination of the PAHs. The effect of experimental variables on the extraction efficiency of PAHs was investigated and optimized. These variables include the quantity of sorbent, the kind and volume of the elution solvent, the duration of extraction and desorption, and the salt concentration. The linear range was found to be 0.01 to 200 ng mL-1 with correlation coefficients ranging from 0.9906 to 0.9931 after the effective extraction parameters were optimized. Its detection limits (LOD) were also calculated to be between 0.003 and 0.005 ng mL-1 (S/N = 3). The method's repeatability was tested at three different concentration levels (0.1, 1, and 10 ng mL-1), and relative standard deviations (RSDs%) were obtained in the range of 2.3 to 5.0%. Finally, using the MSPE-GC-FID method, PAHs were extracted from tap water, wastewater, seawater, and spring water samples. The relative recoveries were in the range of 95.7 to 99.8%.
Collapse
Affiliation(s)
- Faezeh Bodaghabadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
- Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, 9185173911, Khorasan Razavi, Iran
| |
Collapse
|
15
|
Cao S, Huang S, Yang C, Lian L, Ren M, Sun D. ZIF-67-modified magnetic nanoparticles for extraction of phenoxy carboxylic acid herbicides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5483-5491. [PMID: 37840357 DOI: 10.1039/d3ay01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Phenoxy carboxylic acid (PCA) herbicides are commonly used herbicides that can easily accumulate in soil, groundwater, crops, and vegetable surfaces. Thus, they pose a serious risk to human health. Accurate detection of trace amounts of PCAs in various matrixes is crucial. Herein, ZIF-67-modified magnetic nanoparticles (MNPs, ZIF-67@Fe3O4) were prepared by growing ZIF-67 on the surface of Fe3O4 MNPs. The introduction of ZIF-67 improved the dispersion of Fe3O4 nanoparticles in water and enhanced their extraction performance for PCAs. When an eluent consisting of ammonia water and acetonitrile (5% : 95%; v/v) was employed, 10 mg of ZIF-67@Fe3O4 displayed optimal extraction performance for PCAs in a 20 mL sample solution at a pH of 3. We achieved a limit of detection ranging from 0.014 μg L-1 to 0.056 μg L-1 for four types of PCA herbicides by using the newly developed method. Notably, the values were considerably lower than the maximum concentration levels of PCAs in drinking water set by the Environmental Protection Agency. The relative recovery rate of PCAs using ZIF-67@Fe3O4 ranged from 83.75% to 117.07% when applied to river water and apple samples. These results demonstrate the great potential of ZIF-67@Fe3O4 in determining the residues of organic pesticides in real samples.
Collapse
Affiliation(s)
- Shengyu Cao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Shanshan Huang
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Chudi Yang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Minhong Ren
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Dazhi Sun
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| |
Collapse
|
16
|
Shahsavani A, Aladaghlo Z, Fakhari AR. Dispersive magnetic solid phase extraction of triazole fungicides based on polybenzidine/magnetic nanoparticles in environmental samples. Mikrochim Acta 2023; 190:377. [PMID: 37661209 DOI: 10.1007/s00604-023-05948-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
A polybenzidine-modified Fe3O4@SiO2 nanocomposite was successfully synthesized through a chemical oxidation method and employed as a novel sorbent in dispersive magnetic solid phase extraction (DMSPE) for the preconcentration and determination of three triazole fungicides (TFs), namely diniconazole, tebuconazole, and triticonazole in river water, rice paddy soil, and grape samples. The synthesis method involved a polybenzidine self-assembly coating on Fe3O4@SiO2 magnetic composite. Characterization techniques such as FT-IR, XRD, FESEM, EDX, and VSM were used to confirm the correctness of the synthesized nano-sorbent. The target TFs were determined in actual samples using the synthesized nanocomposite sorbent in combination with gas chromatography-flame ionization detection (FID). Several variables were carefully optimized , including the sample pH, sorbent dosage, extraction time, ionic strength, and desorption condition (solvent type, volume, and time). Under the optimized experimental conditions, the method exhibited linearity in the concentration range 5-1000 ng mL-1 for triticonazole and 2-1000 ng mL-1 for diniconazole and tebuconazole. The limits of detection (LOD) for the three TFs were in the range 0.6-1.5 ng mL-1. The method demonstrated acceptable precision with intra-day and inter-day relative standard deviation (RSD) values of less than 6.5%. The enrichment factors ranged from 248 to 254. Finally, the method applicability was evaluated by determining TFs in river water, rice paddy soil, and grape samples with recoveries in the range 90.5-106, indicating that the matrix effect was negligible in the proposed DMSPE procedure.
Collapse
Affiliation(s)
- Abolfath Shahsavani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 198396-3113, Evin, Tehran, I.R, Iran
| | - Zolfaghar Aladaghlo
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Ali Reza Fakhari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 198396-3113, Evin, Tehran, I.R, Iran.
| |
Collapse
|
17
|
Barut BB, Erkmen C, İpek S, Yıldırım S, Üstündağ A, Uslu B. Analytical studies on some pesticides with antifungal effects: Simultaneous determination by HPLC, investigation of interactions with DNA and DNA damages. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123862. [PMID: 37696115 DOI: 10.1016/j.jchromb.2023.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
A simple, and fast method was developed for the simultaneous determination of five fungicides, namely thiram (THR), epoxiconazole (EPO), hexaconazole (HEX), tebuconazole (TEB), and diethofencarb (DIE), in different matrices by HPLC-UV. Parameters influencing the peak shape and resolution, such as the composition of mobile phase, pH and concentration of buffer solution, and column temperature, were examined and optimized. The proposed method was validated in terms of linearity, sensitivity, precision, and accuracy. Forced degradation studies were carried out for all analytes to demonstrate the specificity of the method and to evaluate the stability of analytes under different conditions. DNA interaction and DNA damage studies were conducted by HPLC and comet assay, respectively. All fungicides were found to bind DNA, except for DIE. While the binding coefficients for EPO, HEX, and TEB were of the order of 104, THR was found to interact more strongly with DNA with a binding coefficient of higher than 106. DIE did not induce DNA damage at any concentration tested. On the other hand, TEB, HEX, and EPO induced DNA damage up to 30 µg/mL. THR showed cytotoxic effects at 20 and 30 µg/mL and caused significant DNA damage at lower concentrations.
Collapse
Affiliation(s)
- Boğaç Buğra Barut
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye; Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Seda İpek
- Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye; Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkiye
| | - Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080 Trabzon, Turkiye
| | - Aylin Üstündağ
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560 Ankara, Turkiye
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye.
| |
Collapse
|
18
|
Zhang Y, Ren T, Fu R, Lu Q, Guo X, Di X. An effervescence-assisted switchable deep eutectic solvent based liquid-phase microextraction of triazole fungicides in drinking water and beverage. J Chromatogr A 2023; 1705:464149. [PMID: 37343404 DOI: 10.1016/j.chroma.2023.464149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
A new effervescence-assisted switchable deep eutectic solvent-based liquid phase microextraction (EA-SDES-LPME) combined with HPLC-UV was developed for determination of common triazole fungicides in drinking water and beverages, including myclobutanil, flusilazole, hexaconazole and bitertanol. The alternative extraction solvent was prepared with hexafluoroisopropanol and dipropylamine with the merits of time-saving, easy to collect and cost-effectiveness. The SDES can be reversibly switched between hydrophilic and hydrophobic states by pH adjustment. The homogeneous extraction was achieved under the hydrophilic form of SDES, and the bi-phase separation was obtained easily by adjusting pH value to restore the original hydrophobicity. Moreover, the characterization of SDES was investigated by FTIR and 1H NMR. The main variables affecting extraction efficiency were optimized in detail. Under the optimal conditions, the proposed method shows desirable precision (RSDs less than 18.5%) and acceptable recovery (72.6-95.4%). The lower limits of detection and limits of quantitation were found to be in the range of 1-2 μg L-1 and 5-10 μg L-1, respectively. The formation mechanism of SDES and the extraction mechanism for target analytes were investigated by density functional theory. The proposed methodology was simplicity, sensitive, time-saving and successfully applied to determine triazole fungicides in drinking water and beverages, making it an alternative technique for the analysis of trace analytes with satisfactory sensitivity.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ruiyu Fu
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
19
|
Zhou Q, Yu C, Meng L, Ji W, Liu S, Pan C, Lan T, Wang L, Qu B. Research progress of applications for nano-materials in improved QuEChERS method. Crit Rev Food Sci Nutr 2023; 64:10517-10536. [PMID: 37345873 DOI: 10.1080/10408398.2023.2225613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach is widely used in sample pretreatment in agricultural products, food, environment, etc. And nano-materials are widely used in QuEChERS method due to its small size and large specific surface area. In this review, we examine the typical applications of several commonly used nano-materials in improved QuEChERS method. These materials include multi-walled carbon nanotubes (MWCNTs) and their derivatives, magnetic nanoparticles (MNPs), metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), lipid and protein adsorbent (LPAS), cucurbituril (CBs), and carbon nano-cages (CNCs), and so on. The strengths and weaknesses of each nano-material are presented, as well as the challenging aspects that need to be addressed in future research. By comparing the applications and the current technology development, this review suggests utilizing artificial intelligence (AI) to screen suitable combinations of purification agents and performing virtual simulation experiments to verify the reliability of this methodology. By doing so, we aim to accelerate the development of new products and decrease the cost of innovation. It also recommends designing smarter pretreatment instruments to enhance the convenience and automation of the sample pretreatment process and reduce the margin for human error.
Collapse
Affiliation(s)
- Qi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
- China National Institute of Standardization, Beijing, PR China
| | - Congcong Yu
- China National Institute of Standardization, Beijing, PR China
| | - Lingling Meng
- China National Institute of Standardization, Beijing, PR China
| | - Wenhua Ji
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Songnan Liu
- Beijing Tea Quality Supervision and Inspection Station, Beijing, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing, China
| | - Tao Lan
- China National Institute of Standardization, Beijing, PR China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Bin Qu
- Beijing Knorth Co. Ltd, Beijing, China
| |
Collapse
|
20
|
Wang YX, Zhang W, Shen XF, Qiao JY, Pang YH. Magnetic covalent organic frameworks for rapid solid-phase extraction of phthalate esters and bisphenol A in beverage samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1135-1144. [PMID: 36779345 DOI: 10.1039/d2ay01989b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) and bisphenol A (BPA) are endocrine-disrupting chemicals (EDCs), which are widely used in the production of food plastic packaging and easily migrate to food. Continuous exposure to EDCs may cause harm to human health. Herein, magnetic covalent organic framework TFP-NDA/Fe3O4 was synthesized by magnetizing covalent organic framework TFP-NDA through a facile coprecipitation method, and used as an adsorbent for rapid solid-phase extraction of PAEs (diethyl phthalate (DEP), diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP)) and BPA. The extraction equilibrium can be reached within 12 min. By combination with a gas chromatography-flame ionization detector, the limits of detection were 0.7-2.3 μg L-1 and the linear ranges were 10-500 μg L-1 for diethyl phthalate (DEP) and 10-1000 μg L-1 for diisobutyl phthalate (DIBP), dibutyl phthalate (DBP) and BPA with R2 > 0.9916. In beverage samples (plastic bottled drinking water, juice and carbonated drink), the developed method was successfully applied to extract and quantify PAEs and BPA with recoveries ranging from 81.7% to 114.2%.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Wang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Wang H, Wang J, Zhao J, Zhang H, Liu L, Sun X, Li G, Liang H. Interaction between MIL-101(Cr) and natural organic matter in an integrated MOF-UF system. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
23
|
Zhang Q, Zhao J, Xie R, Xiao W, Mao X, Yuan C, Wang Y, Wan Y. A simple and efficient method for determining the pyrethroid pesticide residues in freshly squeezed fruit juices using a water stable metal-organic framework. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Covalent organic framework in situ grown on Fe 3O 4 hollow microspheres for stir bar sorptive-dispersive microextraction of triazole pesticides. Mikrochim Acta 2022; 190:34. [PMID: 36538150 DOI: 10.1007/s00604-022-05613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 01/07/2023]
Abstract
Based on covalent organic framework (COF) 1,3,5-tris-(4-formylphenyl)benzene-benzidine (TFPB-BD) in situ grown on Fe3O4 hollow microspheres and combined with gas chromatography-flame thermionic detector, a rapid and simple stir bar sorptive-dispersive microextraction method was developed for the determination of five triazole pesticides (paclobutrazol, hexaconazole, flusilazole, propiconazole, and tebuconazole). The synthesized TFPB-BD/Fe3O4 microspheres were characterized by transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analysis, which showed that the material has strong magnetism and higher load capacity of COF. Under optimal conditions, the extraction equilibrium could be achieved within 9 min with detection limits of 0.17-1.48 μg L-1 (S/N = 3) and a linear range of 5-1000 μg L-1. The developed method was applied to the determination of trace triazole pesticides in apples, pears, and cabbages with recoveries from 81 to 117%.
Collapse
|
25
|
Sun XH, Wu J, Yu YC, Shen ZC, Ali MM, Du ZX. Synthesis of magnetic metal-organic framework for efficient adsorption of disinfection by-products in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Carbon aerogels derived from waste paper for pipette-tip solid-phase extraction of triazole fungicides in tomato, apple and pear. Food Chem 2022; 395:133633. [PMID: 35816989 DOI: 10.1016/j.foodchem.2022.133633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 07/02/2022] [Indexed: 01/13/2023]
Abstract
In order to develop environmentally friendly, economical and facile preparation method of carbon aerogels (CAs), the waste printing paper as the raw material was combined with graphene oxide and carboxylic multi-walled carbon nanotubes to produce CAs (ρ = 44 mg cm-3). The CAs with different composition were investigated, the addition of graphene oxide led to the reduction of adsorption sites and the reduction of extraction performance. But the carbon nanotubes made CAs have a better pore structure. The CAs as adsorbent were loaded into a pipette-tip for solid-phase extraction of hexaconazole and diniconazole. Coupled with gas chromatography, an analytical method was established under the optimized conditions. The limits of detection were between 0.08 and 0.32 mg kg-1, the linear ranges were 0.96-200.0 mg kg-1 and 0.24-200.0 mg kg-1. The relative recoveries were in the range of 81.0-119%. The results indicated that the method had potential application for the determination of triazole fungicides.
Collapse
|
27
|
Preconcentration of triazole fungicides using effervescent assisted switchable hydrophilicity solvent-based microextraction prior to high-performance liquid chromatographic analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Sun M, Sun H, Feng J, Feng J, Fan J, Sun M, Feng Y. Carbonized metal-organic framework-74/carbon aerogel composites for the efficient extraction of triazole fungicides from fruits and vegetables. J Chromatogr A 2022; 1683:463552. [DOI: 10.1016/j.chroma.2022.463552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
29
|
Liu G, Zhang X, Lu M, Tian M, Liu Y, Wang J, Li L, Li T, Chen G, Xu D. Adsorption and removal of organophosphorus pesticides from Chinese cabbages and green onions by using metal organic frameworks based on the mussel-inspired adhesive interface. Food Chem 2022; 393:133337. [PMID: 35653990 DOI: 10.1016/j.foodchem.2022.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Based on the mussel-inspired adhesive interface (Fe3O4-g-C3N4@PDA), a novel bionic metal-organic framework (Fe3O4-g-C3N4-PDA@MIL-101) was successfully prepared. The composite featured a high specific surface area and a multi-microchannel structure, as well as strong thermochemical stability. The structural property of Fe3O4-g-C3N4-PDA@MIL-101(Fe) was characterized, and the results indicated that Fe3O4, PDA, and MIL-101(Fe) were uniformly coated on the g-C3N4 surface. The adsorption and desorption of organophosphorus pesticides with Fe3O4-g-C3N4-PDA@MIL-101(Fe) were evaluated by batch experiments. This composite showed high adsorption efficiency and selective removal of coralox, phosalone, and chlorpyrifos. Under the optimal conditions, three organophosphorus pesticides were adsorbed from Chinese cabbage and green onion samples with Fe3O4-g-C3N4-PDA@MIL-101(Fe). The analytical method exhibited high sensitivity (LOD, 0.19-2.34 μg/L; LOQ, 0.65-7.82 μg/L), excellent practicality, and good stability, suggesting that Fe3O4-g-C3N4-PDA@MIL-101 was an ideal candidate magnetic adsorbent for the removal of organophosphorus pesticides in Chinese cabbage and green onion samples.
Collapse
Affiliation(s)
- Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Meng Lu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Mingshuo Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Tengfei Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
30
|
Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal-Organic Frameworks in Agriculture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16983-17007. [PMID: 35393858 PMCID: PMC9026272 DOI: 10.1021/acsami.2c00615] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal-organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.
Collapse
Affiliation(s)
- Sara Rojas
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy, Av. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
31
|
Lin Z, Zhang Y, Zhao Q, Cui Y, Chen A, Jiao B. In-situ decomposed nanofluids dispersive liquid-phase microextraction for detection of seven triazole fungicidets in fruit juices and tea drinks. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
|
33
|
Si H, He P, Wang X, Li L, Hou X. Metal organic framework/chitosan/polyethylene oxide composite columnar foam as a sorbent for the enrichment and determination of estrogens in environmental aqueous solutions. NEW J CHEM 2022. [DOI: 10.1039/d1nj02426d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MIL-53(Al)/CS/PEO columnar foam was fabricated for the determination of estrogens in larger-volume environmental water samples by VA-SPE and HPLC-FLD.
Collapse
Affiliation(s)
- Huizhong Si
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China
| | - Pingping He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China
| | - Xuemei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China
| | - Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning Province, Shenyang 110016, P. R. China
| |
Collapse
|
34
|
Uddin MJ, Ampiaw RE, Lee W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. CHEMOSPHERE 2021; 284:131314. [PMID: 34198066 DOI: 10.1016/j.chemosphere.2021.131314] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 05/10/2023]
Abstract
Water pollution from synthetic dyes is a growing environmental concern because many dyes have carcinogenic effects on humans and aquatic life. Adsorption is a widely used technology for the separation and removal of dyes from wastewater. However, the dye removal process using conventional adsorbents is not sufficiently efficient for industrial wastewater. Metal-organic frameworks (MOFs) addresses these drawbacks. MOF showed excellent dye removal and degradation capacity owing to its multifunctionality, water-stability, large surface area, tunable pore size and recyclability. Magnetic MOFs retained excellent performance up to several consecutive cycles. Modified MOFs performed as Fenton-like catalysis process which generated abundant reactive radicals that degraded complex organic dyes into simple and less toxic forms which were further adsorbed onto the MOF. This review systematically compiles in-depth studies on the adsorptive removal of dyes from wastewater, MOF adsorption mechanisms, major influencing factors, to adsorption efficiency of MOFs. While all MOFs adsorb dyes through electrostatic attraction, the type of MOF, presence of functional groups, ligands, and pH significantly control the adsorption mechanism. Before developing an MOF, optimization and upgradation of factors and interaction between available adsorption site and adsorbate is needed. Finally, the prospects and new frontiers of MOFs in sustainable water treatment is discussed.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Rita E Ampiaw
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea.
| |
Collapse
|
35
|
Xu Y, Yu Y, Xue S, Ma X, Tao H. Innovative electrochemical sensor based on graphene oxide aerogel wrapped copper centered metal-organic framework to detect catechol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|