1
|
Zhang H, Li X, Kang M, Li Z, Wang X, Jing X, Han J. Sustainable ultrasound-assisted extraction of Polygonatum sibiricum saponins using ionic strength-responsive natural deep eutectic solvents. ULTRASONICS SONOCHEMISTRY 2023; 100:106640. [PMID: 37816271 PMCID: PMC10568126 DOI: 10.1016/j.ultsonch.2023.106640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The sustainable extraction of saponins was investigated using natural deep eutectic solvents (NADESs) combined with ultrasound-assisted extraction. A novel NADES (butyric acid-urea) that was responsive to ionic strength was designed and used as the extractant. Ultrasound treatment and a catalyst ferric chloride with plant cell wall breaking function were applied to improve the extraction efficiency.Since the solubility of the NADES varied significantly with ionic strength, 95% of NADES was readily separated from the water phase after the addition of sodium chloride, while saponins remained in the water phase for easy collection. The reuse capacity of NADES, the eco-friendliness of the extraction method, and the antioxidant activity of the extract were further evaluated.NADES was continuously recovered and used to extract Polygonatum sibiricum powder: the yield of saponins did not decrease after five cycles of recovery and re-extraction. The penalty point on the "Eco-scale" suggested that the extraction method was "green" (i.e. eco-friendly).Compared with ethanol extracts, the NADES extracts showed a higher saponin concentration and antioxidant activity.The study can contribute to the sustainable and green extraction of hydrophilic active substances in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongli Zhang
- College of Science, China Agricultural University, Beijing 100193, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xinpeng Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Miao Kang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhanrong Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jiajun Han
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Guo X, Jiang H, Guo Y, Jia L, Jing X, Wu J. Subzero-temperature homogeneous liquid-liquid extraction for the stereoselective determination of chiral triadimefon and its metabolite in water, fruit juice, vinegar, and fermented liquor by HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5492-5499. [PMID: 37842813 DOI: 10.1039/d3ay01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A novel method based on homogeneous liquid-liquid extraction with deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC) for the determination of chiral fungicide triadimefon (TF) and its metabolite triadimenol (TN) in water, fruit juice, vinegar, and fermented liquor was developed in this study. The method involved using deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC). This novel technique, known as subzero-temperature homogeneous liquid-liquid extraction (STHLLE), offers several advantages, including high efficiency, time-saving, low-cost, and eco-friendliness. The enantiomers of chiral TF and TN were simultaneously separated and quantified using HPLC coupled with a Daicel Chiralpak OD-RH column. Various experimental parameters such as DES composition and volume, freezing condition, salt concentration, and pH were optimized to enhance the recoveries of the target analytes. Under the optimized conditions, spiked recoveries of six enantiomers (i.e., S-TF, R-TF, SR-TN, RS-TN, SS-TN, and RR-TN) in the water, fruit juice, vinegar, and fermented liquor samples were 82.2-100.1% with relative standard deviations of 0.4-10.1%. The current method demonstrated a detection range of 0.03-0.06 mg L-1 in the target analytes. This established technique exhibits potential for efficient and precise extraction and quantification of the enantiomers of TF and TN in water phase samples.
Collapse
Affiliation(s)
- Xingle Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Yuqi Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
3
|
Zhou S, Guo J, Zou Y, Wang L, Kaw HY, Quinto M, Meng LY, Dong M. Fast removal of phenolic compounds from water using hierarchical porous carbon nanofibers membrane. J Chromatogr A 2022; 1685:463624. [DOI: 10.1016/j.chroma.2022.463624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
4
|
Tu X, Yu F, Jin Q, Du C, Chen J, Yang J, He Y, Huang S, Chen W. A Simple High-Throughput Field Sample Preparation Method Based on Matrix-Induced Sugaring-Out for the Simultaneous Determination of 5-Hydroxymethylfurfural and Phenolic Compounds in Honey. Molecules 2022; 27:molecules27238373. [PMID: 36500464 PMCID: PMC9738158 DOI: 10.3390/molecules27238373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In the present work, a high-throughput field sample preparation method was reported for the simultaneous determination of 5-hydroxymethylfurfural and phenolic compounds in honey. Combining a simple and green homogenous liquid−liquid extraction, matrix-induced sugaring-out, with the use of a 96-deepwell plate and multichannel pipette, the proposed method showed its merits in instrument-free and high-throughput preparation. Due to the high-throughput property, the parameters of the method were rapidly and systematically studied using a constructed 4 × 2 × 4 × 3 array (sample amount × ratio of ACN:H2O × standing time × replicates) in a 96-deepwell plate. Analytical performance was fully validated, and the limits of detection and limits of quantification were in the range of 0.17−1.35 μg/g and 0.51−4.14 μg/g, respectively. Recoveries were between 83.98 and 117.11%, and all the precisions were <5%. Furthermore, the developed method was successfully applied in the outdoor preparation of commercial honey samples and the in-field preparation of raw honey samples in apiary. The current work presented a simple, rapid, and high-throughput method for the field sample preparation of honey and provides a valuable strategy for the design of field and on-site sample preparation.
Collapse
Affiliation(s)
- Xijuan Tu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengjie Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Jin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunping Du
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxu Chen
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuchang He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbin Chen
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
5
|
Ju Z, Fan J, Meng Z, Lu R, Gao H, Zhou W. A high-throughput semi-automated dispersive liquid-liquid microextraction based on deep eutectic solvent for the determination of neonicotinoid pesticides in edible oils. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gösterişli TU, Kublay İZ, Oflu S, Kılınç Y, Koçoğlu ES, Zaman BT, Keyf S, Bakırdere S. Development of a metal sieve-linked double syringe liquid phase microextraction method for the determination of copper in olive leaf extract samples by flame atomic absorption spectrometry. Food Chem 2022; 377:132057. [PMID: 35030340 DOI: 10.1016/j.foodchem.2022.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/07/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022]
Abstract
This work reports the development of a simple, sensitive and low-cost analytical method for the trace determination of copper. A metal sieve-linked double syringe liquid phase microextraction method was used to preconcentrate copper into measurable quantities for FAAS system. The pressurized mixing offered by the automated syringe system and the sieve connector enhanced surface area for analyte and extraction solvent interaction, this significantly increased the extraction efficiency for copper. There was therefore no need for auxiliary organic solvents as disperser solvents for the extractant dichloromethane. The limits of detection and quantification, linear dynamic range and percent relative standard deviation values calculated for copper under optimum conditions of the method were 1.5 and 5.1 µg L-1, 5.0-500 µg L-1 and 8.4%, respectively. The developed method was successfully employed to determine copper (0.75-8.06 mg kg-1) in unspiked olive leaf samples.
Collapse
Affiliation(s)
| | - İrem Zehra Kublay
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Sude Oflu
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Yağmur Kılınç
- Zonguldak Bulent Ecevit University, Department of Environmental Engineering, 67100 Zonguldak, Turkey
| | - Elif Seda Koçoğlu
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Seyfullah Keyf
- Yıldız Technical University, Department of Chemical Engineering, 34349 İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, 06670 Ankara, Turkey.
| |
Collapse
|
7
|
Simulation of the enhancement of Dean flow on the liquid–liquid extraction in membrane contactors. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Hammad SF, Abdallah IA, Bedair A, Mansour FR. Homogeneous liquid-liquid extraction as an alternative sample preparation technique for biomedical analysis. J Sep Sci 2021; 45:185-209. [PMID: 34472701 DOI: 10.1002/jssc.202100452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Liquid-liquid extraction is a widely used technique of sample preparation in biomedical analysis. In spite of the high pre-concentration capacities of liquid-liquid extraction, it suffers from a number of limitations including time and effort consumption, large organic solvent utilization, and poor performance in highly polar analytes. Homogeneous liquid-liquid extraction is an alternative sample preparation technique that overcomes some drawbacks of conventional liquid-liquid extraction, and allows employing greener organic solvents in sample treatment. In homogeneous liquid-liquid extraction, a homogeneous phase is formed between the aqueous sample and the water-miscible extractant, followed by chemically or physically induced phase separation. To form the homogeneous phase, aqueous samples are mixed with water-miscible organic solvents, water-immiscible solvents/cosolvents, surfactants, or smart polymers. Then, phase separation is induced chemically (adding salt, sugar, or buffer) or physically (changing temperature or pH). This mode is rapid, sustainable, and cost-effective in comparison with other sample preparation techniques. Moreover, homogeneous liquid-liquid extraction is more suitable for the extraction of delicate macromolecules such as enzymes, hormones, and proteins and it is more compatible with liquid chromatography with tandem mass spectrometry, which is a vital technique in metabolomics and proteomics. In this review, the principle, types, applications, automation, and technical aspects of homogeneous liquid-liquid extraction are discussed.
Collapse
Affiliation(s)
- Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|