1
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Jiang T, Xie Z, Wu F, Chen J, Liao Y, Liu L, Zhao A, Wu J, Yang P, Huang N. Hyaluronic Acid Nanoparticle Composite Films Confer Favorable Time-Dependent Biofunctions for Vascular Wound Healing. ACS Biomater Sci Eng 2019; 5:1833-1848. [PMID: 33405557 DOI: 10.1021/acsbiomaterials.9b00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular stent implantation is the primary treatment for coronary artery disease. Surface modification of coronary stents is a topic of interest to prevent thrombosis and restenosis and to promote endothelization. However, bioactive coatings on implants have not yet been fully developed for the time-ordered biological requirements of vascular stents. The first month after vascular stent implantation, the pathological changes in the injured vascular tissue are complex and time-ordered. Therefore, vascular stents possess time-dependent biofunctions with early phase anticoagulant and anti-inflammatory properties. In the later stage, inhibitory effects on smooth muscle cell proliferation and the promotion of endothelial cell adhesion might meet the requirements of vascular repair. We fabricated three types of hyaluronic acid nanoparticles (HA-NPs) by subjecting HA and poly(ether imide) to ethyl(dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide coupling reaction. The HA-NPs prepared by HA with a molecular weight of 100 kDa showed the best stability in a hyaluronidase environment. HA-NP composite films (HA-NCFs) were then fabricated by coimmobilizing selected HA-NPs (100 kDa) and HA molecules (100 kDa) through amide reaction on PDA/HD coated 316 L stainless steel surfaces. The detachment behavior of HA-NPs (100 kDa) in PBS for 20 days indicated that the HA-NPs (100 kDa) gradually detached from the surface. In vitro tests (anticoagulant and anti-inflammatory tests, endothelial cells, and smooth muscle cells seeding, and bacterial adhesion test) indicated that the newly fabricated HA-NCFs have inhibitory effects on the adhesion of fibrinogen, platelets, macrophages, bacteria, SMCs, and ECs. As the HA-NPs detached from the surface, the HA-NCFs showed excellent gradual comprehensive biocompatibility, which promoted adhesion and proliferation of ECs while still exerting inhibitory effects on the platelets, macrophages, and SMCs. Finally, in vivo SS wire implantation test (aortic implantation in healthy Sprague-Dawley rats) showed that HA-NCFs possessed anti-inflammatory properties, inhibited the proliferation of smooth muscle cells, and promoted re-endothelialization. In particular, HA-NCFs with time-dependent biofunctions showed better antirestenosis effects than those of surfaces modified with molecular HA, which exhibited constant biocompatibility. This study provides an important basis for the construction of HA-NP composite films with favorable time-dependent biofunctions for the time-ordered biological requirements of vascular stent.
Collapse
Affiliation(s)
- Ting Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China.,Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Zhou Xie
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Feng Wu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Jian Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu 610031, PR China
| |
Collapse
|
3
|
Liu T, Wang X, Tang X, Gong T, Ye W, Pan C, Ding H, Luo X, Li X, Wang QM. Surface Modification with ECM-Inspired SDF-1α/Laminin-Loaded Nanocoating for Vascular Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30373-30386. [PMID: 28816035 DOI: 10.1021/acsami.7b08516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface biomimetic modification with extra-cellular matrix (ECM)-derived biomolecules is an emerging potential method of accelerating the healing of vascular stent lesions. However, insufficient capacity of the constructed biofunctional layer in maintaining its long-term efficiency and preventing thrombus and neointimal hyperplasia continue to be major limitations in clinical application. On the basis of the structure and function of ECM, in this study, we constructed a novel stromal cell-derived factor-1α (SDF-1α)/laminin-loaded nanocoating on the 316L stainless steel (SS) surface to provide improved function in modulation of vascular remodeling. The modified surface was found to control delivery of biomolecules and exhibit promising potential to provide stage-adjusted treatment after injury. An in vitro biocompatibility study suggested that the constructed layer may effectively prevent thrombosis formation by inhibiting platelet adhesion and activation, while accelerating endothelium regeneration by inducing endothelial cell (EC) migration and endothelial progenitor cell (EPC) aggregation. An in vivo animal test further demonstrated that the nanocoating may prevent thrombus and neointimal hyperplasia after implantation for 3 months. Therefore, the ECM-inspired nanocoating described in this study is a promising novel approach for vascular stent surface modification.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School , Charlestown, Massachusetts 02129, United States
| | - Xin Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School , Charlestown, Massachusetts 02129, United States
- Department of Rehabilitation, Clinical Medical College, Yangzhou University, Northern Jiangsu Province Hospital , Yangzhou 225009, China
| | - Xiaohan Tang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
| | - Changjiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
| | - Hongyan Ding
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology , Huai'an 223003, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute , Shenzhen 518048, China
| | - Xia Li
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical College , Huai'an 223002, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School , Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
Hussner J, Sünwoldt J, Seibert I, Gliesche DG, Zu Schwabedissen HEM. Pimecrolimus increases the expression of interferon-inducible genes that modulate human coronary artery cells proliferation. Eur J Pharmacol 2016; 784:137-46. [PMID: 27212382 DOI: 10.1016/j.ejphar.2016.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
The pharmacodynamics of the loaded compounds defines clinical failure or success of a drug-eluting device. Various limus derivatives have entered clinics due to the observed positive outcome after stent implantation, which is explained by their antiproliferative activity resulting from inhibition of the cytosolic immunophilin FK506-binding protein 12. Although pimecrolimus also binds to this protein, pimecrolimus-eluting stents failed in clinics. However, despite its impact on T lymphocytes little is known about the pharmacodynamics of pimecrolimus in cultured human coronary artery cells. We were able to show that pimecrolimus exerts antiproliferative activity in human smooth muscle and endothelial cells. Furthermore in those cells pimecrolimus induced transcription of interferon-inducible genes which in part are known to modulate cell proliferation. Modulation of gene expression may be part of an interaction between calcineurin, the downstream target of the pimecrolimus/FK506-binding protein 12-complex, and the toll-like receptor 4. In accordance are our findings showing that silencing of toll-like receptor 4 by siRNA in A549 a lung carcinoma cell line reduced the activation of interferon-inducible genes upon pimecrolimus treatment in those cells. Based on our findings we hypothesize that calcineurin inhibition may induce the toll-like receptor 4 mediated activation of type I interferon signaling finally inducing the observed effect in endothelial and smooth muscle cells. The crosstalk of interferon and toll-like receptor signaling may be a molecular mechanism that contributed to the failure of pimecrolimus-eluting stents in humans.
Collapse
Affiliation(s)
- Janine Hussner
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Juliane Sünwoldt
- Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine, Ernst Moritz Arndt University Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| | - Isabell Seibert
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel G Gliesche
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | |
Collapse
|
5
|
Garg P, Galper BZ, Cohen DJ, Yeh RW, Mauri L. Balancing the risks of bleeding and stent thrombosis: a decision analytic model to compare durations of dual antiplatelet therapy after drug-eluting stents. Am Heart J 2015; 169:222-233.e5. [PMID: 25641531 DOI: 10.1016/j.ahj.2014.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/05/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND After coronary stent placement, whether dual antiplatelet therapy (DAPT) duration should be extended to prevent late stent thrombosis (ST) or adverse cardiovascular events is uncertain. METHODS To define the reduction in ischemic events required to outweigh increased bleeding with longer-duration DAPT, we developed a decision-analytic Markov model comparing DAPT durations of 6, 12, and 30 months after DES. Separate models were developed for patients presenting with and without an acute coronary syndrome (ACS). We used sensitivity analyses to identify the incremental benefit of longer-duration DAPT on either ST or the composite of cardiac death, myocardial infarction, and ischemic stroke (major adverse cardiovascular and cerebrovascular events [MACCEs]) required to outweigh the increased risk of bleeding associated with longer DAPT. The outcome from each strategy was quantified in terms of quality-adjusted life years. RESULTS In the non-ACS population, in order for 30 months of DAPT to be preferred over 12 months of therapy, DAPT would have to result in a 78% reduction in the risk of ST (relative risk [RR] 0.22, 3.1 fewer events per 1000) and only a 5% reduction in MACCE (RR 0.95, 2.2 fewer events per 1000) as compared with aspirin alone. For the ACS population, DAPT would have to result in a 44% reduction in the risk of ST (RR 0.56, 3.4 fewer events per 1000) but only a 2% reduction in MACCE (RR 0.98, 2.3 fewer events per 1000) as compared with aspirin alone, for 30 months of DAPT to be preferred for 12 months. CONCLUSIONS Small absolute differences in the risk of ischemic events with longer DAPT would be sufficient to outweigh the known bleeding risks.
Collapse
Affiliation(s)
- Pallav Garg
- Division of Cardiology, London Health Sciences Center, London, Ontario, Canada
| | - Benjamin Z Galper
- Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David J Cohen
- Division of Cardiology, Saint Luke's Mid-America Heart Institute, University of Missouri-Kansas City, Kansas City, MO
| | - Robert W Yeh
- Division of Cardiology, Massachusetts General Medical Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Harvard Clinical Research Institute, Boston, MA
| | - Laura Mauri
- Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Harvard Clinical Research Institute, Boston, MA.
| |
Collapse
|
6
|
Abstract
Polymers have found widespread applications in cardiology, in particular in coronary vascular intervention as stent platforms (scaffolds) and coating matrices for drug-eluting stents. Apart from permanent polymers, current research is focussing on biodegradable polymers. Since they degrade once their function is fulfilled, their use might contribute to the reduction of adverse events like in-stent restenosis, late stent-thrombosis, and hypersensitivity reactions. After reviewing current literature concerning polymers used for cardiovascular applications, this review deals with parameters of tissue and blood cell functions which should be considered to evaluate biocompatibility of stent polymers in order to enhance physiological appropriate properties. The properties of the substrate on which vascular cells are placed can have a large impact on cell morphology, differentiation, motility, and fate. Finally, methods to assess these parameters under physiological conditions will be summarized.
Collapse
|
7
|
Liu T, Zeng Z, Liu Y, Wang J, Maitz MF, Wang Y, Liu S, Chen J, Huang N. Surface modification with dopamine and heparin/poly-L-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8729-8743. [PMID: 24731022 DOI: 10.1021/am5015309] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface biofunctional modification of coronary artery stents to prevent thrombosis and restenosis formation, as well as accelerate endothelialization, has become a new hot spot. However, bioactive coatings on implants are not yet sufficiently developed for long-term activity, as they quickly lose efficiency in vivo and finally fail. On the basis of a novel time-ordered concept of biofunctionality for vascular stents, heparin/poly l-lysine nanoparticle (NP) was developed and immobilized on a polydopamine-coated titanium surface, with the aim of regulating and maintaining the intravascular biological response within the normal range after biomaterial implantation. An in vitro dynamic release model was established to mimic the blood flow condition in vivo with three phases: (1) An early phase (1-7 days) with release of predominantly anticoagulant and anti-inflammatory substances and to a minor degree antiproliferative effects against smooth muscle cells (SMCs); (2) this is followed by a phase (7-14 days) of supported endothelial cell (ECs) proliferation and suppressed SMC proliferation with persisting high antithrombogenicity and anti-inflammatory properties of the surface. (3) Finally, a stable stage (14-28 days) with adequate biomolecules on the surface that maintain hemocompatibility and anti inflammation as well as inhibit SMCs proliferation and promote ECs growth. In vivo animal tests further confirmed that the NP-modified surface provides a favorable release behavior to apply a stage-adjusted remedy. We suggested that these observations provide important guidance and potential means for reasonable and suitable platform construction on a stent surface.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu T, Liu Y, Chen Y, Liu S, Maitz MF, Wang X, Zhang K, Wang J, Wang Y, Chen J, Huang N. Immobilization of heparin/poly-(L)-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater 2014; 10:1940-54. [PMID: 24342042 DOI: 10.1016/j.actbio.2013.12.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 12/23/2022]
Abstract
Restenosis, thrombosis formation and delayed endothelium regeneration continue to be problematic for coronary artery stent therapy. To improve the hemocompatibility of the cardiovascular implants and selectively direct vascular cell behavior, a novel kind of heparin/poly-l-lysine (Hep/PLL) nanoparticle was developed and immobilized on a dopamine-coated surface. The stability and structural characteristics of the nanoparticles changed with the Hep:PLL concentration ratio. A Hep density gradient was created on a surface by immobilizing nanoparticles with various Hep:PLL ratios on a dopamine-coated surface. Antithrombin III binding quantity was significantly enhanced, and in plasma the APTT and TT times as coagulation tests were prolonged, depending on the Hep density. A low Hep density is sufficient to prevent platelet adhesion and activation. The sensitivity of vascular cells to the Hep density is very different: high Hep density inhibits the growth of all vascular cells, while low Hep density could selectively inhibit smooth muscle cell hyperplasia but promote endothelial progenitor cells and endothelial cell proliferation. These observations provide important guidance for modification of surface heparinization. We suggest that this method will provide a potential means to construct a suitable platform on a stent surface for selective direction of vascular cell behavior with low side effects.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yang Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yuan Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shihui Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China; Naton Medical Group, Peking 100082, People's Republic of China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China; Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 06, 01069 Dresden, Germany
| | - Xue Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Kun Zhang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jian Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yuan Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
9
|
Safety and efficacy of degradable vs. permanent polymer drug-eluting stents: A meta-analysis of 18,395 patients from randomized trials. Int J Cardiol 2014; 173:100-9. [DOI: 10.1016/j.ijcard.2014.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 11/23/2022]
|
10
|
Liu T, Liu S, Zhang K, Chen J, Huang N. Endothelialization of implanted cardiovascular biomaterial surfaces: The development fromin vitrotoin vivo. J Biomed Mater Res A 2013; 102:3754-72. [DOI: 10.1002/jbm.a.35025] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Shihui Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
- Naton Institute of Medical Technology, Naton Medical Group; Peking China
| | - Kun Zhang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Junying Chen
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| |
Collapse
|
11
|
Shiratori Y, Brugaletta S, Alvarez-Contreras L, Azpeitia Y, Ospino N, Gaido S, Delahanty A, Santos A, Martin-Yuste V, Masotti M, Serruys PW, Windecker S, Sabaté M. One-year head to head comparison of the neointimal response between sirolimus eluting stent with reservoir technology and everolimus eluting stent: an optical coherence tomography study. Catheter Cardiovasc Interv 2013; 82:E428-36. [PMID: 23441068 DOI: 10.1002/ccd.24897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE to compare the vascular healing process between the sirolimus-eluting NEVO and the everolimus-eluting Xience stent by optical coherence tomography (OCT) at 1-year follow-up. BACKGROUND Presence of durable polymer on a drug-eluting metallic stent may be the basis of an inflammatory reaction with abnormal healing response. The NEVO stent, having a bioresorbable polymer eluted by reservoir technology, may overcome this problem. METHODS All consecutive patients, who received NEVO or Xience stent implantation between September 2010 and October 2010 in our institution, were included. Vascular healing was assessed at 1-year as percentage of uncovered struts, neointimal thickness (NIT), in-stent/stent area obstruction and pattern of neointima. RESULTS A total 47 patients (2:1 randomization, n = 32 NEVO, n = 15 Xience) were included. Eighteen patients underwent angiographic follow-up (eight patients with nine lesions for NEVO vs. 10 patients with 11 lesions for Xience). The angiographic late loss was numerically higher but not statistically different in NEVO compared with Xience treated lesions (0.38 ± 0.47 mm vs. 0.18 ± 0.27 mm; P = 0.171). OCT analysis of 4,912 struts demonstrated similar rates of uncovered struts (0.5 vs. 0.7%, P = 0.462), higher mean NIT (177.76 ± 87.76 µm vs. 132.22 ± 30.91 µm; P = 0.170) and in stent/stent area obstruction (23.02 ± 14.74% vs. 14.17 ± 5.94%, P = 0.120) in the NEVO as compared with Xience. CONCLUSION The NEVO stent with a reservoir technology seems to exhibit more neointimal proliferation as compared to Xience stent. The findings of our study, which currently represent the unique data existing on this reservoir technology, would need to be confirmed in a large population.
Collapse
Affiliation(s)
- Yoshitaka Shiratori
- Deparment of Cardiology, Thorax Institute, Hospital Clinic, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 2013; 102:588-609. [PMID: 23520056 DOI: 10.1002/jbm.a.34714] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Zhang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Stevenson CL, Santini JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 2012; 64:1590-602. [PMID: 22465783 DOI: 10.1016/j.addr.2012.02.005] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy.
Collapse
Affiliation(s)
- Cynthia L Stevenson
- On Demand Therapeutics, Inc., One Industrial Way, Unit 1A, Tyngsboro, MA 01879, USA.
| | | | | |
Collapse
|
14
|
|
15
|
Ielasi A, Latib A, Colombo A. Current and future drug-eluting coronary stent technology. Expert Rev Cardiovasc Ther 2011; 9:485-503. [PMID: 21517732 DOI: 10.1586/erc.11.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the impressive benefits obtained following the introduction of the drug-eluting stent, safety concerns have been raised over their long-term safety with particular regard to stent thrombosis. Various mechanisms such as delayed endothelialization, local hypersensitivity and endothelial dysfunction owing to the durable polymer coating and/or the drug itself have been suggested as possible causes of this phenomenon. Therefore, to address these concerns, a newer-generation of drug-eluting stents has been developed and they are currently undergoing preclinical and clinical evaluation in order to increase both the safety and biocompatibility by optimizing the three major components of drug-eluting stents: the stent platform, the polymer and the drug. This article critically reviews the key clinical trials and the current status of these new coronary devices as well as preventing future perspectives for their continued development.
Collapse
Affiliation(s)
- Alfonso Ielasi
- Interventional Cardiology Unit, San Raffaele Scientific Institute, 20100, Milan, Italy
| | | | | |
Collapse
|
16
|
Inhibition of human in-stent restenosis: a molecular view. Curr Opin Pharmacol 2011; 11:372-7. [DOI: 10.1016/j.coph.2011.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/21/2011] [Indexed: 12/20/2022]
|
17
|
Lei L, Guo SR, Chen WL, Rong HJ, Lu F. Stents as a platform for drug delivery. Expert Opin Drug Deliv 2011; 8:813-31. [DOI: 10.1517/17425247.2011.572068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Capodanno D, Dipasqua F, Tamburino C. Novel drug-eluting stents in the treatment of de novo coronary lesions. Vasc Health Risk Manag 2011; 7:103-18. [PMID: 21415924 PMCID: PMC3049546 DOI: 10.2147/vhrm.s11444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 11/01/2022] Open
Abstract
Due to safety concerns in recent years, much effort has been devoted to improving the outcomes associated with drug-eluting stents (DESs). This review summarizes the current status of methodological and technical achievements reported in second-generation DES. Novel stents are described based on the component (the platform, the polymer, and the drug) that has undergone the most significant changes compared to earlier generation DES. An overview of the currently available evidence on the use of novel coronary devices in patients undergoing coronary revascularization is also reviewed.
Collapse
Affiliation(s)
- Davide Capodanno
- Department of Cardiology, Ferrarotto Hospital, University of Catania, Catania, Italy
- ETNA Foundation, Catania, Italy
| | - Fabio Dipasqua
- Department of Cardiology, Ferrarotto Hospital, University of Catania, Catania, Italy
| | - Corrado Tamburino
- Department of Cardiology, Ferrarotto Hospital, University of Catania, Catania, Italy
- ETNA Foundation, Catania, Italy
| |
Collapse
|
19
|
de la Torre Hernández JM, Díaz Fernández JF, Tenas MS, Ruigómez JG. [Update in interventional cardiology]. Rev Esp Cardiol 2011; 64 Suppl 1:13-9. [PMID: 21276486 DOI: 10.1016/s0300-8932(11)70003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article contains a detailed review of the most important studies on interventional cardiology reported in either publications or presentations. With regard to coronary interventions, ST-elevation myocardial infarction is highlighted because of the ongoing substantial expansion in primary angioplasty programs. Drug-eluting stents, especially new-generation stents, continue to be the focus of numerous studies. Clinical outcomes in diabetic patients with left main coronary artery or multivessel disease are also dealt with by much research. In addition, intracoronary diagnostic techniques, particularly optical coherence tomography, is reviewed. Finally, there is increasing interest in the percutaneous treatment of structural heart disease, particularly percutaneous aortic valve implantation.
Collapse
Affiliation(s)
- José M de la Torre Hernández
- Unidad de Cardiología Intervencionista, Servicio de Cardiología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, España
| | | | | | | |
Collapse
|
20
|
Tiroch KA, Byrne RA, Kastrati A. Pharmacological prevention and management of restenosis. Expert Opin Pharmacother 2010; 11:1855-72. [DOI: 10.1517/14656566.2010.485610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
|
22
|
|
23
|
Ladich E, Vorpahl M, Nakano M, Virmani R. Latest on the pathology of drug-eluting stents. Interv Cardiol 2009. [DOI: 10.2217/ica.09.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Vorpahl M, Finn AV, Nakano M, Virmani R. Do We Really Understand Pimecrolimus?⁎⁎Editorials published in JACC: Cardiovascular Interventions reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Interventions or the American College of Cardiology. JACC Cardiovasc Interv 2009; 2:1025-7. [DOI: 10.1016/j.jcin.2009.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/25/2022]
|
25
|
Ormiston JA, Webster MW, Schwartz RS, Gladding P, Stewart JT, Kay IP, Ruygrok PN, Hatrick R. Feasibility, Safety, and Efficacy of a Novel Polymeric Pimecrolimus-Eluting Stent. JACC Cardiovasc Interv 2009; 2:1017-24. [DOI: 10.1016/j.jcin.2009.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 07/13/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
|
26
|
Byrne RA, Sarafoff N, Kastrati A, Schömig A. Drug-Eluting Stents in Percutaneous Coronary Intervention. Drug Saf 2009; 32:749-70. [DOI: 10.2165/11316500-000000000-00000] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|