1
|
Xiao Y, Zhang S, Ren Q. The New Orientation of Postoperative Analgesia: Remote Ischemic Preconditioning. J Pain Res 2024; 17:1145-1152. [PMID: 38524690 PMCID: PMC10959302 DOI: 10.2147/jpr.s455127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose of Review Postoperative analgesia is currently a significant topic in anesthesiology. Currently, the predominant approach for achieving multimodal analgesia involves the utilization of pharmacotherapy and regional anesthesia procedures. The primary objectives of this approach are to mitigate postoperative pain, enhance patient satisfaction, and diminish overall opioid usage. Nevertheless, there is a scarcity of research on the use of remote ischemia preconditioning aimed at mitigating postoperative pain. Recent Findings Transient stoppage of blood flow to an organ has been found to elicit remote ischemia preconditioning (RIPC), which serves as a potent intrinsic mechanism for protecting numerous organs. In addition to its established role in protecting against reperfusion injury, RIPC has recently been identified as having potential benefits in the context of postoperative analgesia. Summary In addition to traditional perioperative analgesia, RIPC provides perioperative analgesia and organ protection.
Collapse
Affiliation(s)
- Yunyu Xiao
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| | - Shaofeng Zhang
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| | - Qiusheng Ren
- Department of Anesthesiology, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, 311225, People’s Republic of China
| |
Collapse
|
2
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
3
|
Pang Q, You L, Meng X, Li Y, Deng T, Li D, Zhu B. Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochem Pharmacol 2023; 213:115587. [PMID: 37187275 DOI: 10.1016/j.bcp.2023.115587] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Individuals have known that Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway was involved in the growth of the cell, cell differentiation courses advancement, immune cellular survival, as well as hematopoietic system advancement. Researches in the animal models have already uncovered a JAK/STAT regulatory function in myocardial ischemia-reperfusion injury (MIRI), acute myocardial infarction (MI), hypertension, myocarditis, heart failure, angiogenesis and fibrosis. Evidences originating in these studies indicate a therapeutic JAK/STAT function in cardiovascular diseases (CVDs). In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and technical limitations of JAK/STAT as the potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs. In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and toxicity of JAK/STAT inhibitors as potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs.
Collapse
Affiliation(s)
- Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yumeng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deyong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ganji N, Biouss G, Sabbatini S, Li B, Lee C, Pierro A. Remote ischemic conditioning in necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151312. [PMID: 37295298 DOI: 10.1016/j.sempedsurg.2023.151312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal inflammatory disorder, most prevalent in premature infants, and associated with a high mortality rate that has remained unchanged in the past two decades. NEC is characterized by inflammation, ischemia, and impaired microcirculation in the intestine. Preclinical studies by our group have led to the discovery of remote ischemic conditioning (RIC) as a promising non-invasive intervention in protecting the intestine against ischemia-induced damage during early-stage NEC. RIC involves the administration of brief reversible cycles of ischemia and reperfusion in a limb (similar to taking standard blood pressure measurement) which activate endogenous protective signaling pathways that are conveyed to distant organs such as the intestine. RIC targets the intestinal microcirculation and by improving blood flow to the intestine, reduces the intestinal damage of experimental NEC and prolongs survival. A recent Phase I safety study by our group demonstrated that RIC was safe in preterm infants with NEC. A phase II feasibility randomized controlled trial involving 12 centers in 6 countries is currently underway, to investigate the feasibility of RIC as a treatment for early-stage NEC in preterm neonates. This review provides a brief background on RIC as a therapeutic strategy and summarizes the progression of RIC as a treatment for NEC from preclinical investigation to clinical evaluation.
Collapse
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - George Biouss
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Stella Sabbatini
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON M5G 1×8, Canada.
| |
Collapse
|
5
|
Farag M, Peverelli M, Spinthakis N, Gue YX, Egred M, Gorog DA. Spontaneous Reperfusion in Patients with Transient ST-Elevation Myocardial Infarction-Prevalence, Importance and Approaches to Management. Cardiovasc Drugs Ther 2023; 37:169-180. [PMID: 34245445 DOI: 10.1007/s10557-021-07226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 01/19/2023]
Abstract
Patients with transient ST-elevation myocardial infarction (STEMI) or spontaneous resolution (SpR) of the ST-segment elevation on electrocardiogram could potentially represent a unique group of patients posing a therapeutic management dilemma. In this review, we discuss the potential mechanisms underlying SpR, its relation to clinical outcomes and the proposed management options for patients with transient STEMI with a focus on immediate versus early percutaneous coronary intervention. We performed a structured literature search of PubMed and Cochrane Library databases from inception to December 2020. Studies focused on SpR in patients with acute coronary syndrome were selected. Available data suggest that deferral of angiography and revascularization within 24-48 h in these patients is reasonable and associated with similar or perhaps better outcomes than immediate angiography. Further randomized trials are needed to elucidate the best pharmacological and invasive strategies for this cohort.
Collapse
Affiliation(s)
- Mohamed Farag
- Cardiothoracic Department, Freeman Hospital, Newcastle Upon Tyne, UK.
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK.
| | - Marta Peverelli
- Department of Cardiology, Royal Papworth Hospital, Cambridge, UK
| | - Nikolaos Spinthakis
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Ying X Gue
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Mohaned Egred
- Cardiothoracic Department, Freeman Hospital, Newcastle Upon Tyne, UK
| | - Diana A Gorog
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
6
|
Kövamees O, Mahdi A, Wodaje T, Verouhis D, Brinck J, Pernow J. The protective effect of remote ischemic conditioning is lost in patients with hypercholesterolemia. Am J Physiol Heart Circ Physiol 2022; 323:H1004-H1009. [PMID: 36206054 DOI: 10.1152/ajpheart.00464.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remote ischemic conditioning (RIC), brief repetitive cycles of ischemia and reperfusion in remote tissues, is known to induce robust protection against myocardial ischemia-reperfusion (I/R) injury in preclinical studies. However, translation of the beneficial effects to the clinical setting has been challenging. A possibility is that comorbidities, including hypercholesterolemia, interfere with the protective mechanisms of RIC. The aim of this study was to test if hypercholesterolemia attenuates the efficacy of RIC in patients with hypercholesterolemia. Patients with familial hypercholesterolemia (FH) with high (≥5.5 mmol/L) low-density lipoprotein cholesterol (LDL-C), FH with low (≤2.5 mmol/L) and healthy control subjects (n = 12 in each group) were included. Flow-mediated vasodilatation (FMD) of the brachial artery was evaluated, before and after a 20-min period of forearm ischemia and 20 min reperfusion (I/R) as a measure of endothelial function. Study subjects were randomized to a RIC protocol consisting of four cycles of 5 min of leg ischemia or sham using a crossover design. Forearm I/R induced significant reduction in FMD in all three groups during the sham procedure. RIC protected from endothelial dysfunction induced by forearm ischemia-reperfusion in healthy controls [FMD baseline 2.8 ± 2.3 vs. FMD after I/R + RIC 4.5 ± 4.0%; means (SD)] and in patients with FH with low LDL-C (4.5 ± 3.5 vs. 4.4 ± 4.2%). By contrast, RIC fails to protect against I/R-induced endothelial dysfunction in patients with FH and high LDL-C (3.9 ± 3.0 vs. 1.1 ± 1.5%; P < 0.01). These findings provide the first evidence in humans that the protective effect of RIC is lost in patients with elevated cholesterol.NEW & NOTEWORTHY We investigated the impact of hypercholesterolemia on the protective effect of RIC on ischemia-reperfusion injury in a well-characterized patient population with isolated hypercholesterolemia. The results show that the protective effect of RIC is absent in patients with hypercholesterolemia but is apparent in patients with hypercholesterolemic following treatment with lipid-lowering drugs. The results are of importance for the understanding of how comorbidities affect the therapeutic potential of RIC.
Collapse
Affiliation(s)
- Oskar Kövamees
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tigist Wodaje
- Division of Cardiology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Dinos Verouhis
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Brinck
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Zheng Y, Reinhardt JD, Li J, Hu D, Lin S, Wang L, Dai R, Fan Z, Ding R, Chen L, Yuan L, Xu Z, Cheng Y, Yan C, Zhang X, Wang L, Zhang X, Teng M, Yu Q, Yin A, Lu X. Can Clinical and Functional Outcomes Be Improved with an Intelligent "Internet Plus"-Based Full Disease Cycle Remote Ischemic Conditioning Program in Acute ST-elevation Myocardial Infarction Patients Undergoing Percutaneous Coronary Intervention? Rationale and Design of the i-RIC Trial. Cardiovasc Drugs Ther 2022; 36:45-57. [PMID: 32607820 DOI: 10.1007/s10557-020-07022-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute ST-elevation myocardial infarction (STEMI) is associated with a high incidence of complications as well as a considerable hospitalization rate and economic burden. Preliminary evidence suggests that remote ischemic conditioning (RIC) is a promising non-invasive intervention that may effectively and safely reduce myocardial infarct size, subsequent cardiac events and complications, and mortality. However, RIC's cardio-protective effect remains under debate, especially for single timepoint RIC programs. Adequately powered large-scale randomized controlled trials investigating clinical outcomes are thus needed to clarify the role of full disease cycle RIC programs. METHODS The intelligent "Internet Plus"-based full disease cycle remote ischemic conditioning (i-RIC) trial is a pragmatic, multicenter, randomized controlled, parallel group, clinical trial. The term, intelligent "Internet Plus"-based full disease cycle, refers to smart devices aided automatic and real-time monitoring of remote ischemic pre-, per- or post-conditioning intervention for patients with STEMI undergoing percutaneous coronary intervention (PCI). Based on this perspective, 4700 STEMI patients from five hospitals in China will be randomized to a control and an intervention group. The control group will receive PCI and usual care, including pharmacotherapy, before and after PCI. The intervention group will receive pre-, per-, and post-operative RIC combined with long-term i-RIC over a one-month period in addition. A smartphone application, an automated cuff inflation/deflation device and "Internet Plus"-based administration will be used in the long-term phase. The primary outcome is the combined cardiac death or hospitalization for heart failure rate. Secondary outcomes include clinical and functional outcomes: major adverse cardiac and cerebrovascular events rate, all-cause mortality, myocardial reinfarction rate, readmission rate for heart failure and ischemic stroke rate, unplanned revascularization rate, plasma concentration of myocardial infarction-related key biomarkers, infarct size, cardiac function, cardiopulmonary endurance, health-related quality of life, total hospital length of stay, total medical cost, and compliance with treatment regime. DISCUSSION The i-RIC trial is designed to test the hypothesis that clinical and functional outcomes can be improved with the i-RIC program in STEMI patients undergoing PCI. The concept of RIC is expected to be enhanced with this intelligent "Internet Plus"-based program focusing on the full disease cycle. If the i-RIC program results in superior improvement in primary and secondary outcomes, it will offer an innovative treatment option for STEMI patients and form the basis of future recommendations. CLINICAL TRIAL REGISTRATION Chinese Clinical Trial Registry ( http://www.chictr.org.cn ): ChiCTR2000031550, 04 April 2020.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction of Sichuan University and Hongkong Polytechnic University, Chengdu, 610207, China
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, 6000, Lucerne, Switzerland
| | - Jianan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Dayi Hu
- Heart Centre, Peking University People's Hospital, Beijing, 100000, China
| | - Song Lin
- Department of Cardiology, the Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Rongjing Ding
- Heart Centre, Peking University People's Hospital, Beijing, 100000, China
| | - Leilei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Yuan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Chengjie Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
- Department of Neurorehabilitation, Kunshan Rehabilitation Hospital, Kunshan, 215300, China
| | - Xintong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Lu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Meiling Teng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Qiuyu Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Aimei Yin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB. Open Med (Wars) 2021; 16:1552-1563. [PMID: 34722891 PMCID: PMC8525660 DOI: 10.1515/med-2021-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background Activation of the complement component 5a (C5a) and nuclear factor κB (NF-κB) signaling is an important feature of myocardial ischemia/reperfusion (I/R) injury and recent studies show that morphine postconditioning (MP) attenuates the myocardial injury. However, the mediating cardioprotective mechanisms remain unclear. The present study explores the role and interaction of heat shock protein 90 (HSP90), Akt, C5a, and NF-κB in MP-induced cardioprotection. Methods Male Sprague Dawley rats (n = 160) were randomized into eight groups (n = 20 per group). Rats in the sham group underwent thoracotomy, passing the ligature through the heart but without tying it (150 min), and the other seven groups were subjected to 30 min of anterior descending coronary artery occlusion followed by 2 h of reperfusion and the following treatments: I/R (30 min of ischemia and followed by 2 h of reperfusion); ischemic postconditioning (IPostC, 30 s of ischemia altered with 30 s of reperfusion, repeated for three cycles, and followed by reperfusion for 2 h); MP (0.3 mg/kg morphine administration 10 min before reperfusion); MP combined with the HSP90 inhibitor geldanamycin (GA, 1 mg/kg); MP combined with the Akt inhibitor GSK-690693 (GSK, 20 mg/kg); and MP combined with the C5a inhibitor PMX205 (PMX, 1 mg/kg/day, administration via drinking water for 28 days) and MP combined with the NF-κB inhibitor EVP4593 (QNZ, 1 mg/kg). All inhibitors were administered 10 min before morphine and followed by 2 h reperfusion. Results MP significantly reduced the I/R-induced infarct size, the apoptosis, and the release of cardiac troponin I, lactate dehydrogenase (LDH), and creatine kinase-MB. These beneficial effects were accompanied by increased expression of HSP90 and p-Akt, and decreased expression of C5a, NF-κB, tumor necrosis factor α, interleukin-1β, and intercellular cell adhesion molecule 1. However, HSP90 inhibitor GA or Akt inhibitor GSK increased the expression of C5a and NF-κB and prevented MP-induced cardioprotection. Furthermore, GA inhibited the MP-induced upregulation of p-Akt, while GSK did not affect HSP90, indicating that p-Akt acts downstream of HSP90 in MP-induced cardioprotection. In addition, C5a inhibitor PMX enhanced the MP-induced downregulation of NF-κB, while NF-κB inhibitor QNZ had no effect on C5a, indicating that the C5a/NF-κB signaling pathway is involved in MP-induced cardioprotection. Conclusion HSP90 is critical for MP-mediated cardioprotection possibly by promoting the phosphorylation of Akt and inhibiting the activation of C5a and NF-κB signaling and the subsequent myocardial inflammation, ultimately attenuating the infarct size and cardiomyocyte apoptosis.
Collapse
|
9
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
10
|
Francis R, Chong J, Ramlall M, Bucciarelli-Ducci C, Clayton T, Dodd M, Engstrøm T, Evans R, Ferreira VM, Fontana M, Greenwood JP, Kharbanda RK, Kim WY, Kotecha T, Lønborg JT, Mathur A, Møller UK, Moon J, Perkins A, Rakhit RD, Yellon DM, Bøtker HE, Bulluck H, Hausenloy DJ. Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy. Basic Res Cardiol 2021; 116:59. [PMID: 34648075 PMCID: PMC8516772 DOI: 10.1007/s00395-021-00896-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
The effect of limb remote ischaemic conditioning (RIC) on myocardial infarct (MI) size and left ventricular ejection fraction (LVEF) was investigated in a pre-planned cardiovascular magnetic resonance (CMR) substudy of the CONDI-2/ERIC-PPCI trial. This single-blind multi-centre trial (7 sites in UK and Denmark) included 169 ST-segment elevation myocardial infarction (STEMI) patients who were already randomised to either control (n = 89) or limb RIC (n = 80) (4 × 5 min cycles of arm cuff inflations/deflations) prior to primary percutaneous coronary intervention. CMR was performed acutely and at 6 months. The primary endpoint was MI size on the 6 month CMR scan, expressed as median and interquartile range. In 110 patients with 6-month CMR data, limb RIC did not reduce MI size [RIC: 13.0 (5.1-17.1)% of LV mass; control: 11.1 (7.0-17.8)% of LV mass, P = 0.39], or LVEF, when compared to control. In 162 patients with acute CMR data, limb RIC had no effect on acute MI size, microvascular obstruction and LVEF when compared to control. In a subgroup of anterior STEMI patients, RIC was associated with lower incidence of microvascular obstruction and higher LVEF on the acute scan when compared with control, but this was not associated with an improvement in LVEF at 6 months. In summary, in this pre-planned CMR substudy of the CONDI-2/ERIC-PPCI trial, there was no evidence that limb RIC reduced MI size or improved LVEF at 6 months by CMR, findings which are consistent with the neutral effects of limb RIC on clinical outcomes reported in the main CONDI-2/ERIC-PPCI trial.
Collapse
Affiliation(s)
- Rohin Francis
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Jun Chong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Cardiology, National Heart Centre, Singapore, Singapore
| | - Manish Ramlall
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Chiara Bucciarelli-Ducci
- Biomedical Research Centre, Bristol Heart Institute, National Institute of Health Research (NIHR), University Hospitals Bristol NHS Foundation Trust and University of Bristol, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Tim Clayton
- London School of Hygiene and Tropical Medicine Clinical Trials Unit, London, UK
| | - Matthew Dodd
- London School of Hygiene and Tropical Medicine Clinical Trials Unit, London, UK
| | - Thomas Engstrøm
- Rigshospitalet, Department of Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Richard Evans
- London School of Hygiene and Tropical Medicine Clinical Trials Unit, London, UK
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
- British Heart Foundation Centre of Research Excellence, Oxford, UK
| | - Marianna Fontana
- Royal Free Hospital London and Institute of Cardiovascular Science, University College London, London, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rajesh K Kharbanda
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Won Yong Kim
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tushar Kotecha
- Royal Free Hospital London and Institute of Cardiovascular Science, University College London, London, UK
| | - Jacob T Lønborg
- Rigshospitalet, Department of Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Queen Mary University London, London, UK
| | - Ulla Kristine Møller
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - James Moon
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Alexander Perkins
- London School of Hygiene and Tropical Medicine Clinical Trials Unit, London, UK
| | - Roby D Rakhit
- Royal Free Hospital London and Institute of Cardiovascular Science, University College London, London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Heerajnarain Bulluck
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK.
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Cardiology, National Heart Centre, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
11
|
Alwazeer D, Liu FFC, Wu XY, LeBaron TW. Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5513868. [PMID: 34646423 PMCID: PMC8505069 DOI: 10.1155/2021/5513868] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is a widespread global pandemic with nearly 185 million confirmed cases and about four million deaths. It is caused by an infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which primarily affects the alveolar type II pneumocytes. The infection induces pathological responses including increased inflammation, oxidative stress, and apoptosis. This situation results in impaired gas exchange, hypoxia, and other sequelae that lead to multisystem organ failure and death. As summarized in this article, many interventions and therapeutics have been proposed and investigated to combat the viral infection-induced inflammation and oxidative stress that contributes to the etiology and pathogenesis of COVID-19. However, these methods have not significantly improved treatment outcomes. This may partly be attributable to their inability at restoring redox and inflammatory homeostasis, for which molecular hydrogen (H2), an emerging novel medical gas, may complement. Herein, we systematically review the antioxidative, anti-inflammatory, and antiapoptotic mechanisms of H2. Its small molecular size and nonpolarity allow H2 to rapidly diffuse through cell membranes and penetrate cellular organelles. H2 has been demonstrated to suppress NF-κB inflammatory signaling and induce the Nrf2/Keap1 antioxidant pathway, as well as to improve mitochondrial function and enhance cellular bioenergetics. Many preclinical and clinical studies have demonstrated the beneficial effects of H2 in varying diseases, including COVID-19. However, the exact mechanisms, primary modes of action, and its true clinical effects remain to be delineated and verified. Accordingly, additional mechanistic and clinical research into this novel medical gas to combat COVID-19 complications is warranted.
Collapse
Affiliation(s)
- Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76000 Igdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 Igdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000 Igdır, Turkey
| | - Franky Fuh-Ching Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Tyler W. LeBaron
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, Utah, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, 84720 Utah, USA
| |
Collapse
|
12
|
Myocardial preservation during primary percutaneous intervention: It's time to rethink? Indian Heart J 2021; 73:395-403. [PMID: 34474749 PMCID: PMC8424360 DOI: 10.1016/j.ihj.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Bainey KR, Zheng Y, Coulden R, Sonnex E, Thompson R, Mei J, Bastiany A, Welsh R. Remote ischaemic conditioning in ST elevation myocardial infarction: a registry-based randomised trial. Heart 2021; 108:703-709. [PMID: 34417205 DOI: 10.1136/heartjnl-2021-319455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Remote ischaemic conditioning (RIC) has been tested as a possible strategy for mitigating reperfusion injury in ST elevation myocardial infarction (STEMI) with primary percutaneous coronary intervention (PPCI). However, surrogate outcomes have shown inconsistent effects with lack of clinical correlation. METHODS We performed a registry-based randomised study of patients with STEMI allocated to RIC (4 cycles of blood pressure cuff inflation to 200 mm Hg for 5 min of ischaemia followed by 5 min of reperfusion) or standard of care (SOC) during PPCI. We examined the associations of RIC on core laboratory measurements of myocardial perfusion, infarct size (IS), left ventricular (LV) performance and clinical outcomes. RESULTS A total of 252 patients were enrolled. The median age was 61 (IQR: 55-70) years and 72.8% were male. Sum ST segment deviation resolution ≥50% was similar between RIC and SOC (65.2% vs 55.7%, p=0.269). In those with 3-day cardiovascular MRI (n=88), no difference in median (25th, 75th percentiles) IS (14.9% (4.5%, 23.1%) vs 16.1% (3.3%, 22.0%), p=0.980), LV dimensions (LV end-diastolic volume index: 78.7 (71.1, 91.2) mL/m2 vs 79.9 (71.2, 88.8) mL/m2, p=0.630; LV end-systolic volume index: 48.8 (35.7, 51.4) mL/m2 vs 37.9 (31.8, 47.5) mL/m2, p=0.551) or ejection fraction (50.0% (41.0%-55.0%) vs 50.0% (43.0%-56.0%), p=0.554) was demonstrated. Similar results were observed with 90-day cardiovascular MRI. At 1 year, the clinical composite of death, congestive heart failure, cardiogenic shock and recurrent myocardial infarction was similar in RIC and SOC (21.7% vs 13.3%, p=0.110). CONCLUSIONS In a contemporary registry-based randomised study of patients with STEMI undergoing PPCI, adjunctive therapy with RIC did not improve myocardial perfusion, reduce IS or alter LV performance. Consequently, there was no difference in clinical outcomes within 1 year. TRIAL REGISTRATION NUMBER NCT03930589.
Collapse
Affiliation(s)
- Kevin R Bainey
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada .,Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Yinggan Zheng
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Coulden
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Radiology and Diagnostic Imaging, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Emer Sonnex
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Radiology and Diagnostic Imaging, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Richard Thompson
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Junyi Mei
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandra Bastiany
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Welsh
- Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Díaz-Munoz R, Valle-Caballero MJ, Sanchez-Gonzalez J, Pizarro G, García-Rubira JC, Escalera N, Fuster V, Fernández-Jiménez R, Ibanez B. Intravenous metoprolol during ongoing STEMI ameliorates markers of ischemic injury: a METOCARD-CNIC trial electrocardiographic study. Basic Res Cardiol 2021; 116:45. [PMID: 34279726 DOI: 10.1007/s00395-021-00884-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Besides its protective effect against neutrophil-mediated injury at reperfusion, intravenous (IV) metoprolol was recently shown to reduce the progression of ischemic injury in a pig model of ST-segment elevation myocardial infarction (STEMI). Here, we tested the hypothesis that IV metoprolol administration in humans with ongoing STEMI blunts the time‑dependent progression of ischemic injury assessed by serial electrocardiogram (ECG) evaluations before reperfusion. The METOCARD-CNIC trial randomized 270 anterior STEMI patients to IV metoprolol or control before reperfusion by percutaneous coronary intervention (PCI). In 139 patients (69 IV metoprolol, 70 controls), two ECGs were available (ECG-1 before randomization, ECG-2 pre-PCI). Between-group ECG differences were analyzed using univariate and multivariate regression models. No significant between-group differences were observed on ECG-1. On ECG-2, patients who received IV metoprolol had a narrower QRS than those in the control group (84 ms vs. 90 ms, p = 0.029), a lower prevalence of QRS distortion (10% vs. 26%, p = 0.017), and a lower sum of anterior and total ST-segment elevation (10.1 mm vs. 13.6 mm, p = 0.014 and 10.4 mm vs. 14.0 mm, p = 0.015, respectively). Adjusted analysis revealed similar results. Significant associations were observed between ECG-2 variables and cardiac magnetic resonance imaging measurements (extent of myocardial edema, infarct size, microvascular obstruction, and left-ventricular ejection fraction) after STEMI. In summary, IV metoprolol administration before reperfusion ameliorates ECG markers of myocardial ischemia in anterior STEMI patients. These data confirm that IV metoprolol is able to reduce ischemic injury and highlight the ability of ECG analysis to provide relevant real-time information on the effect of cardioprotective therapies before reperfusion.
Collapse
Affiliation(s)
- Raquel Díaz-Munoz
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | | | | | - Gonzalo Pizarro
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares, Madrid, Spain.,Ruber Juan Bravo Quironsalud Hospital UEM, Madrid, Spain
| | | | - Noemi Escalera
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares, Madrid, Spain
| | - Valentin Fuster
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Rodrigo Fernández-Jiménez
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,CIBER de Enfermedades CardioVasculares, Madrid, Spain. .,Department of Cardiology, Hospital Universitario Clínico San Carlos, Madrid, Spain.
| | - Borja Ibanez
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,CIBER de Enfermedades CardioVasculares, Madrid, Spain. .,Department of Cardiology, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
15
|
Reducing Cardiac Injury during ST-Elevation Myocardial Infarction: A Reasoned Approach to a Multitarget Therapeutic Strategy. J Clin Med 2021; 10:jcm10132968. [PMID: 34279451 PMCID: PMC8268641 DOI: 10.3390/jcm10132968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.
Collapse
|
16
|
Lin M, Deng K, Li Y, Wan J. Morphine enhances LPS-induced macrophage apoptosis through a PPARγ-dependent mechanism. Exp Ther Med 2021; 22:714. [PMID: 34007323 PMCID: PMC8120503 DOI: 10.3892/etm.2021.10146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Morphine has been widely used for the treatment of pain and extensive studies have revealed a regulatory role for morphine in cell apoptosis. However, the molecular mechanisms underlying morphine-mediated apoptosis remain to be fully elucidated. The present study aimed to investigate the effects of morphine on lipopolysaccharide (LPS)-induced bone marrow-derived macrophage (BMDM) apoptosis and to determine the role of the peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in this process. BMDMs were isolated from BALB/c mice and stimulated with LPS. Hoechst 33342 staining and flow cytometric analysis were performed to evaluate the effects of morphine on LPS-induced apoptosis of BMDMs. Caspase activity assays were used to determine the involvement of the apoptosis pathway. The expression levels of caspase-3, caspase-8, caspase-9 and PPARγ were analyzed using western blotting. Finally, GW9662, a specific PPARγ antagonist, was used to determine whether the regulatory effects of morphine on LPS-induced BMDM apoptosis were PPARγ-dependent. The results of the present study revealed that morphine increased the apoptosis of LPS-stimulated BMDMs. Morphine upregulated the expression levels and activity of caspase-3 in LPS-stimulated BMDMs, but downregulated the expression levels and activity of caspase-8. Morphine treatment also upregulated LPS-induced PPARγ expression levels in BMDMs. Finally, the stimulatory effects of morphine on LPS-induced apoptosis and caspase-3/9 activation were markedly reduced by GW9662. In conclusion, the findings of the present study indicated that morphine significantly promoted LPS-induced BMDM apoptosis and caspase-3/9 activation. These results suggested that the intrinsic pathway of apoptosis may be involved in the proapoptotic effects of morphine on LPS-stimulated BMDMs, which may be dependent, at least partially, on PPARγ activation.
Collapse
Affiliation(s)
- Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Keqiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ya Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
17
|
Stiermaier T, Schaefer P, Meyer-Saraei R, Saad M, de Waha-Thiele S, Pöss J, Fuernau G, Graf T, Kurz T, Frydrychowicz A, Barkhausen J, Desch S, Thiele H, Eitel I. Impact of Morphine Treatment With and Without Metoclopramide Coadministration on Myocardial and Microvascular Injury in Acute Myocardial Infarction: Insights From the Randomized MonAMI Trial. J Am Heart Assoc 2021; 10:e018881. [PMID: 33899498 PMCID: PMC8200763 DOI: 10.1161/jaha.120.018881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Intravenous morphine administration can adversely affect platelet inhibition induced by P2Y12 receptor inhibitors after acute myocardial infarction. In contrast, some evidence suggests that opioid agonists may have cardioprotective effects on the myocardium. The aim of this prospective, randomized MonAMI (Impact of Morphine Treatment With and Without Metoclopramide Coadministration on Platelet Inhibition in Acute Myocardial Infarction) trial was, therefore, to investigate the impact of morphine with or without metoclopramide coadministration on myocardial and microvascular injury. Methods and Results Patients with acute myocardial infarction (n=138) were assigned in a 1:1:1 ratio to ticagrelor 180 mg plus: (1) intravenous morphine 5 mg (morphine group); (2) intravenous morphine 5 mg and metoclopramide 10 mg (morphine+metoclopramide group); or (3) intravenous placebo (control group) administered before primary percutaneous coronary intervention. Cardiac magnetic resonance imaging was performed in 104 patients on day 1 to 4 after the index event. Infarct size was significantly smaller in the morphine only group as compared with controls (percentage of left ventricular mass, 15.5 versus 17.9; P=0.047). Furthermore, the number of patients with microvascular obstruction was significantly lower after morphine administration (28% versus 54%; P=0.022) and the extent of microvascular obstruction was smaller (percentage of left ventricular mass, 0 versus 0.74; P=0.037). In multivariable regression analysis, morphine administration was independently associated with a reduced risk for the occurrence of microvascular obstruction (odds ratio, 0.37; 95% CI, 0.14–0.93 [P=0.035]). There was no significant difference in infarct size (P=0.491) and extent (P=0.753) or presence (P=0.914) of microvascular obstruction when comparing the morphine+metoclopramide group with the control group. Conclusions In this randomized study, intravenous administration of morphine before primary percutaneous coronary intervention resulted in a significant reduction of myocardial and microvascular damage following acute myocardial infarction. This effect was not observed in the morphine plus metoclopramide group. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02627950.
Collapse
Affiliation(s)
- Thomas Stiermaier
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Philipp Schaefer
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Roza Meyer-Saraei
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Mohammed Saad
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Suzanne de Waha-Thiele
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Janine Pöss
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute Heart Center Leipzig at University of Leipzig Germany
| | - Georg Fuernau
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Tobias Graf
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Thomas Kurz
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine University Hospital Schleswig-Holstein Lübeck Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine University Hospital Schleswig-Holstein Lübeck Germany
| | - Steffen Desch
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany.,Department of Internal Medicine/Cardiology and Leipzig Heart Institute Heart Center Leipzig at University of Leipzig Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Institute Heart Center Leipzig at University of Leipzig Germany
| | - Ingo Eitel
- Medical Clinic II University Heart Center Lübeck Lübeck Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Lübeck Germany
| |
Collapse
|
18
|
Jalali Z, Khademalhosseini M, Soltani N, Esmaeili Nadimi A. Smoking, alcohol and opioids effect on coronary microcirculation: an update overview. BMC Cardiovasc Disord 2021; 21:185. [PMID: 33858347 PMCID: PMC8051045 DOI: 10.1186/s12872-021-01990-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Smoking, heavy alcohol drinking and drug abuse are detrimental lifestyle factors leading to loss of million years of healthy life annually. One of the major health complications caused by these substances is the development of cardiovascular diseases (CVD), which accounts for a significant proportion of substance-induced death. Smoking and excessive alcohol consumption are related to the higher risk of acute myocardial infarction. Similarly, opioid addiction, as one of the most commonly used substances worldwide, is associated with cardiac events such as ischemia and myocardial infarction (MI). As supported by many studies, coronary artery disease (CAD) is considered as a major cause for substance-induced cardiac events. Nonetheless, over the last three decades, a growing body of evidence indicates that a significant proportion of substance-induced cardiac ischemia or MI cases, do not manifest any signs of CAD. In the absence of CAD, the coronary microvascular dysfunction is believed to be the main underlying reason for CVD. To date, comprehensive literature reviews have been published on the clinicopathology of CAD caused by smoking and opioids, as well as macrovascular pathological features of the alcoholic cardiomyopathy. However, to the best of our knowledge there is no review article about the impact of these substances on the coronary microvascular network. Therefore, the present review will focus on the current understanding of the pathophysiological alterations in the coronary microcirculation triggered by smoking, alcohol and opioids.
Collapse
Affiliation(s)
- Zahra Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Khademalhosseini
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
- Department of Pathology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narjes Soltani
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
| | - Ali Esmaeili Nadimi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran.
- Department of Cardiology, School of Medicine, Rafsanjani University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
19
|
Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Res Cardiol 2021; 116:4. [PMID: 33495853 DOI: 10.1007/s00395-021-00842-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023]
Abstract
Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial. Patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention (PPCI) within 6 h of symptoms were randomized to RIC or sham procedure and exenatide or matching placebo. The primary outcome was IS measured by late gadolinium enhancement in cardiac magnetic resonance performed 3-7 days after PPCI. The secondary outcomes were myocardial salvage index, transmurality index, left ventricular ejection fraction and relative microvascular obstruction volume. A total of 378 patients were randomly allocated, and after applying exclusion criteria, 222 patients were available for analysis. There were no significant interactions between the two randomization factors on the primary or secondary outcomes. IS was similar between groups for the RIC (24 ± 11.8% in the RIC group vs 23.7 ± 10.9% in the sham group, P = 0.827) and the exenatide hypotheses (25.1 ± 11.5% in the exenatide group vs 22.5 ± 10.9% in the placebo group, P = 0.092). There were no effects with either RIC or exenatide on the secondary outcomes. Unexpected adverse events or side effects of RIC and exenatide were not observed. In conclusion, neither RIC nor exenatide, or its combination, were able to reduce IS in STEMI patients when administered as an adjunct to PPCI.
Collapse
|
20
|
Effects of morphine on P2Y 12 platelet inhibitors in patients with acute myocardial infarction: A meta-analysis. Am J Emerg Med 2020; 41:219-228. [PMID: 33317866 DOI: 10.1016/j.ajem.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To explore the effects of morphine on P2Y12 platelet inhibitors in patients with acute myocardial infarction (AMI). METHODS PubMed, Embase, Cochrane Library, and Web of Science were used to retrieve literature through 11th May 2019. Standardized weighted mean difference (SMD) and relative risk (RR) with 95% confidence intervals (CI), P-value, and I2 value were used to assess the strength of the association in this meta-analysis. Outcomes included platelet reactivity, high residual platelet reactivity (HRPR), ticagrelor maximum concentration (Cmax), ticagrelor area under curve (AUC), death rate, reinfarction rate, stroke, stent thrombosis, thrombolysis in myocardial infarction (TIMI) hemorrhage, dyspnea, emesis, contrast-induced nephropathy, and pulmonary edema. RESULTS A total of 13 articles were included in this study, containing 5688 patients (morphine group: n = 2014, control group: n = 3674). Results illustrated that the morphine group had a higher platelet reactivity (SMD: 0.834, 95%CI: 0.483-1.186, P < 0.001) and HRPR rate (RR: 1.994, 95%CI: 1.536-2.588, P < 0.001) than the control group, while the Cmax of ticagrelor (WMD: -481.838, 95%CI: -841.242-122.434, P = 0.009) was lower than that of the control group. The death rate of the morphine group was lower than that in the control group (RR: 0.561, 95%CI: 0.337-0.933, P = 0.026). The morphine group had a higher emesis rate than the control group (RR: 4.486, 95%CI: 2.263-8.891, P < 0.001). CONCLUSION Morphine effectively suppresses the inhibition effect of P2Y12 platelet inhibitors in patients with AMI.
Collapse
|
21
|
Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V, Wohlfahrt P. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail 2020; 8:222-237. [PMID: 33319509 PMCID: PMC7835562 DOI: 10.1002/ehf2.13144] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of the present paper was to provide an up‐to‐date view on epidemiology and risk factors of heart failure (HF) development after myocardial infarction. Methods and results Based on literature review, several clinical risk factors and biochemical, genetic, and imaging biomarkers were identified to predict the risk of HF development after myocardial infarction. Conclusions Heart failure is still a frequent complication of myocardial infarction. Timely identification of subjects at risk for HF development using a multimodality approach, and early initiation of guideline‐directed HF therapy in these patients, can decrease the HF burden.
Collapse
Affiliation(s)
- Dominik Jenča
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Stehlik
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vladimír Staněk
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří Kettner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Faculty of Medicine, Dentistry of the Palacký University, Olomouc, Czech Republic
| | - Věra Adámková
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Wohlfahrt
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Centre for Cardiovascular Prevention, First Faculty of Medicine and Thomayer Hospital, Charles University, Videnska 800, Prague 4, 140 59, Czech Republic
| |
Collapse
|
22
|
Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, Heusch G. Co-morbidities and co-medications as confounders of cardioprotection-Does it matter in the clinical setting? Br J Pharmacol 2020; 177:5252-5269. [PMID: 31430831 PMCID: PMC7680006 DOI: 10.1111/bph.14839] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The translation of cardioprotection from robust experimental evidence to beneficial clinical outcome for patients suffering acute myocardial infarction or undergoing cardiovascular surgery has been largely disappointing. The present review attempts to critically analyse the evidence for confounders of cardioprotection in patients with acute myocardial infarction and in patients undergoing cardiovascular surgery. One reason that has been proposed to be responsible for such lack of translation is the confounding of cardioprotection by co-morbidities and co-medications. Whereas there is solid experimental evidence for such confounding of cardioprotection by single co-morbidities and co-medications, the clinical evidence from retrospective analyses of the limited number of clinical data is less robust. The best evidence for interference of co-medications is that for platelet inhibitors to recruit cardioprotection per se and thus limit the potential for further protection from myocardial infarction and for propofol anaesthesia to negate the protection from remote ischaemic conditioning in cardiovascular surgery. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Hans Erik Bøtker
- Department of CardiologyAarhus University Hospital SkejbyAarhusDenmark
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de LyonLyonFrance
| | - Derek J. Hausenloy
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Research and DevelopmentThe National Institute of Health Research University College London Hospitals Biomedical Research CentreLondonUK
- Tecnologico de MonterreyCentro de Biotecnologia‐FEMSAMonterreyNuevo LeonMexico
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| |
Collapse
|
23
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
24
|
Sauer F, Jesel L, Marchandot B, Derimay F, Bochaton T, Amaz C, Roubille F, Cayla G, Rioufol G, Garcia-Dorado D, Claeys M, Angoulvant D, Bonnefoy-Cudraz E, Guérin P, Trinh A, Matsushita K, Ohlmann P, Jossan C, Mewton N, Ovize M, Morel O. Life-threatening arrhythmias in anterior ST-segment elevation myocardial infarction patients treated by percutaneous coronary intervention: adverse impact of morphine. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 10:427-436. [PMID: 33620376 DOI: 10.1093/ehjacc/zuaa005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 11/12/2022]
Abstract
AIMS Important controversies remain concerning the determinants of life-threatening arrhythmias during ST-segment elevation myocardial infarction (STEMI) and their impact on late adverse events. This study sought to investigate which factors might facilitate ventricular tachycardia (VT) and ventricular fibrillation (VF), in a homogeneous population of anterior STEMI patients defined by abrupt left anterior descending coronary artery (LAD) occlusion and no collateral flow. METHODS AND RESULTS The 967 patients, who entered into the CIRCUS (Does Cyclosporine ImpRove Clinical oUtcome in ST elevation myocardial infarction patients) study, were assessed for further analysis. Acute VT/VF was defined as VT (run of tachycardia >30 s either self-terminated or requiring electrical/pharmacological cardioversion) or VF documented by electrocardiogram or cardiac monitoring, during transportation to the cathlab or initial hospitalization. VT/VF was documented in 136 patients (14.1%). Patients with VT/VF were younger and had shorter time from symptom onset to hospital arrival. Site of LAD occlusion, thrombus burden, area at risk, pre-percutaneous coronary intervention Thrombolysis in Myocardial Infarction flow, and ST-segment resolution were similar to that of patients without VT/VF. There was no impact of VT/VF on left ventricular remodelling or clinical outcomes. By multivariate analysis, the use of morphine (odds ratio 1.71; 95% confidence interval (1.13-2.60); P = 0.012) was the sole independent predictor of VT/VF occurrence. CONCLUSIONS In STEMI patients with LAD occlusion, our findings support the view that morphine could favour severe ventricular arrhythmias.
Collapse
Affiliation(s)
- François Sauer
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France
| | - Laurence Jesel
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France.,UMR 1260 INSERM Nanomédecine Régénérative Université de Strasbourg, Strasbourg, France
| | - Benjamin Marchandot
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France
| | - François Derimay
- Hopital Cardiovasculaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Thomas Bochaton
- Hopital Cardiovasculaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Camille Amaz
- Centre d'Investigation Clinique de Lyon, CIC 1407, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | | | | | - Gilles Rioufol
- Hopital Cardiovasculaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | | | - Marc Claeys
- University Hospital Antwerp, Edegem, Belgium
| | - Denis Angoulvant
- Centre Hospitalier Regional Universitaire de Tours, Tours, France
| | | | | | - Annie Trinh
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France
| | - Kensuke Matsushita
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France.,UMR 1260 INSERM Nanomédecine Régénérative Université de Strasbourg, Strasbourg, France
| | - Patrick Ohlmann
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France
| | - Claire Jossan
- Centre d'Investigation Clinique de Lyon, CIC 1407, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Nathan Mewton
- Hopital Cardiovasculaire Louis Pradel, Hospices Civils de Lyon, Lyon, France.,Centre d'Investigation Clinique de Lyon, CIC 1407, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Michel Ovize
- Hopital Cardiovasculaire Louis Pradel, Hospices Civils de Lyon, Lyon, France.,Centre d'Investigation Clinique de Lyon, CIC 1407, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Olivier Morel
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, BP 426, 67091 Strasbourg, France.,UMR 1260 INSERM Nanomédecine Régénérative Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Comparison of infarction size, complete ST-segment resolution incidence, mortality and re-infarction and target vessel revascularization between remote ischemic conditioning and ischemic postconditioning in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:278-286. [PMID: 33597992 PMCID: PMC7863805 DOI: 10.5114/aic.2020.99262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction Due to higher morbidity and mortality, ST-segment elevation myocardial infarction (STEMI) causes many public health problems. Aim To observe effects of remote ischemic conditioning (RIC) and ischemic postconditioning (IPC) on patients diagnosed as STEMI undergoing primary percutaneous coronary intervention (pPCI). Material and methods This meta-analysis was conducted using indirect comparison by conducting a network meta-analysis (NMA). We conducted searches by utilizing PubMed and the other databases to identify randomized controlled trials (RCTs) that described IPC or RIC treated patients diagnosed with STEMI during processes of pPCI. Enzymatic infarct size and infarction size were evaluated and cardiac events were assessed during the follow-up. Results Pooled results showed that lower enzymatic infarction size was associated with the RIC group compared to the IPC group (IPC vs. RIC: standardized mean difference (SMD) = 1.126; 95% confidence interval (CI): 0.756–1.677). Compared with IPC, RIC significantly reduced infarction size, which was assessed using cardiac magnetic resonance (CMR) (SMD = 1.113; 95% CI: 0.674–1.837). We noted a potential toward greater complete ST-segment resolution in RIC patients compared with IPC patients (odds ratio (OR) = 0.821; 95% CI: 0.166–4.051). No significant difference existed in all-cause mortality (OR = 2.211; 95% CI: 0.845–5.784), Target vessel revascularization (TVR) (OR = 0.045; 95% CI: 0.001–.662) or re-infarction (OR = 1.763; 95% CI: 0.741–4.193). Conclusions This meta-analysis suggested RIC was correlated with significantly smaller infarction size compared to IPC. No significant superiority between RIC and IPC has been observed in this study on cSTR incidence, mortality and re-infarction or TVR.
Collapse
|
26
|
Tehrani BN, Basir MB, Kapur NK. Acute myocardial infarction and cardiogenic shock: Should we unload the ventricle before percutaneous coronary intervention? Prog Cardiovasc Dis 2020; 63:607-622. [PMID: 32920027 DOI: 10.1016/j.pcad.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Despite early reperfusion and coordinated systems of care, cardiogenic shock (CS) remains the number one cause of morbidity and in-hospital mortality following acute myocardial infarction (AMI). CS is a complex clinical syndrome that begins with hemodynamic instability and can progress to multi-organ failure and profound hemo-metabolic compromise. To improve outcomes, a clear understanding of the treatment objectives in CS and developing time-sensitive management strategies aimed at stabilizing hemodynamics and restoring myocardial perfusion are critical. Left ventricular (LV) load has been identified as an independent predictor of heart failure and mortality following AMI. Decades of preclinical and clinical research have identified several effective LV unloading strategies. Recent initiatives from single and multi-center registries and more recently the Door to Unload (DTU)-STEMI pilot study have provided valuable insight to developing a standardized treatment approach to AMI, based on early invasive hemodynamics and tailored circulatory support to unload the LV. To follow is a review of the pathophysiology and prevalence of shock, limitations of current therapies, and the pre-clinical and translational basis for incorporating LV unloading into contemporary AMI and shock care.
Collapse
Affiliation(s)
- Behnam N Tehrani
- Inova Heart and Vascular Institute, Falls Church, VA, United States of America
| | - Mir B Basir
- Henry Ford Medical Center, Detroit, MI, United States of America
| | - Navin K Kapur
- The CardioVascular Center, Tufts Medical Center, Boston, MA, United States of America.
| |
Collapse
|
27
|
Sun JP, Liang Y, Zhang F, Chen X, Yuan W, Xu L, Bahler RC, Yan J. Serial assessment of focal myocardial function after percutaneous coronary intervention for ST-elevation myocardial infarction: Value of layer-specific speckle tracking echocardiography. Echocardiography 2020; 37:1413-1421. [PMID: 32777137 DOI: 10.1111/echo.14772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) frequently follows successful PCI for STEMI and is recognized by multiple modalities. Multilayer speckle tracking echocardiography (STE) has the potential of detecting myocardial dysfunction in different myocardial layers. Our objective was to describe the changes in layer-specific myocardial function over the 24 hours after successful PCI for ST-elevation myocardial infarction (STEMI). METHODS Patients (n = 120) with STEMI and no prior myocardial infarction underwent echocardiography prior to PCI, immediately after and at 3- and 24-hours post-PCI. Worsening focal dysfunction (WFD) was defined as an immediate reduction, compared to the pre-PCI value, in the amplitude of endo-myocardial longitudinal strain (endo-MLS) within the infarction territory. RESULTS Patients with WFD (52%) had further reductions in endo-MLS, mid-MLS, and epi-MLS in the infarction region immediately post-PCI; at 3 hours strain began to improve and continued to improve at 24 hours. Reductions of endo-MLS strain were more evident than those of global, mid-MLS, and epi-MLS. This same pattern was seen in each of the ischemic territories of the anterior descending, circumflex, and right coronary arteries. Immediate improvement in endo-MLS following PCI was seen in 48% of patients. The time from symptom onset to balloon time was markedly longer in those with WFD (P < .0001). CONCLUSIONS Multilayer SPE is a sensitive method that identifies serial alterations in focal myocardial function following successful PCI for STEMI. Layer-specific reductions in endo-MLS appeared more evident than decreases in global LV strain. Prolonged total ischemic time prior to PCI was directly related to the incidence of WFD.
Collapse
Affiliation(s)
- Jing Ping Sun
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liang
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Zhang
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinxin Chen
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Yuan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liangjie Xu
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Robert C Bahler
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinchuan Yan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Mechanical and Pharmacological Revascularization Strategies for Prevention of Microvascular Dysfunction in ST-Segment Elevation Myocardial Infarction: Analysis from Index of Microcirculatory Resistance Registry Data. J Interv Cardiol 2020; 2020:5036396. [PMID: 32728350 PMCID: PMC7368229 DOI: 10.1155/2020/5036396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/02/2023] Open
Abstract
Objectives We aimed to identify mechanical and pharmacological revascularization strategies correlated with the index of microcirculatory resistance (IMR) in ST-elevation myocardial infarction (STEMI) patients. Background Microvascular dysfunction (MVD) after STEMI is correlated with infarct size and poor long-term prognosis, and the IMR is a useful analytical method for the quantitative assessment of MVD. However, therapeutic strategies that can reliably reduce MVD remain uncertain. Methods Patients with STEMI who underwent primary percutaneous coronary intervention (PCI) were enrolled. The IMR was measured with a pressure sensor/thermistor-tipped guidewire immediately after primary PCI. High IMR was defined as values ≥66th percentile of IMR in enrolled patients (IMR > 30.9 IU). Results A total of 160 STEMI patients were analyzed (high IMR = 54 patients). Clinical factors for Killip class (P=0.006), delayed hospitalization from symptom onset (P=0.004), peak troponin-I level (P=0.042), and multivessel disease (P=0.003) were associated with high IMR. Achieving final thrombolysis in myocardial infarction myocardial perfusion grade 3 tended to be associated with low IMR (P=0.119), whereas the presence of distal embolization was significantly associated with high IMR (P=0.034). In terms of therapeutic strategies that involved adjusting clinical and angiographic factors associated with IMR, preloading of third-generation P2Y12 inhibitors correlated with reducing IMR value (β = −10.30, P < 0.001). Mechanical therapeutic strategies including stent diameter/length, preballoon dilatation, direct stenting, and thrombectomy were not associated with low IMR value (all P > 0.05), and postballoon dilatation was associated with high IMR (β = 8.30, P=0.020). Conclusions In our study, mechanical strategies were suboptimal in achieving myocardial salvage. Preloading of third-generation P2Y12 inhibitors revealed decreased IMR value, indicative of MVD prevention.
Collapse
|
29
|
Abstract
Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.
Collapse
|
30
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
|
32
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|
33
|
Impact of Morphine Treatment on Infarct Size and Reperfusion Injury in Acute Reperfused ST-Elevation Myocardial Infarction. J Clin Med 2020; 9:jcm9030735. [PMID: 32182847 PMCID: PMC7141264 DOI: 10.3390/jcm9030735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Current evidence regarding the effect of intravenous morphine administration on reperfusion injury and/or cardioprotection in patients with myocardial infarction is conflicting. The aim of this study was to evaluate the impact of morphine administration, on infarct size and reperfusion injury assessed by cardiac magnetic resonance imaging (CMR) in a large multicenter ST-elevation myocardial infarction (STEMI) population. In total, 734 STEMI patients reperfused by primary percutaneous coronary intervention <12 h after symptom onset underwent CMR imaging at eight centers for assessment of myocardial damage. Intravenous morphine administration was recorded in all patients. CMR was completed within one week after infarction using a standardized protocol. The clinical endpoint of the study was the occurrence of major adverse cardiac events (MACE) within 12 months after infarction. Intravenous morphine was administered in 61.8% (n = 454) of all patients. There were no differences in infarct size (17%LV, interquartile range [IQR] 8–25%LV versus 16%LV, IQR 8–26%LV, p = 0.67) and microvascular obstruction (p = 0.92) in patients with versus without morphine administration. In the subgroup of patients with early reperfusion within 120 min and reduced flow of the infarcted vessel (TIMI-flow ≤2 before PCI) morphine administration resulted in significantly smaller infarcts (12%LV, IQR 12–19 versus 19%LV, IQR 10–29, p = 0.035) and reduced microvascular obstruction (p = 0.003). Morphine administration had no effect on hard clinical endpoints (log-rank test p = 0.74) and was not an independent predictor of clinical outcome in Cox regression analysis. In our large multicenter CMR study, morphine administration did not have a negative effect on myocardial damage or clinical prognosis in acute reperfused STEMI. In patients, presenting early ( ≤120 min) morphine may have a cardioprotective effect as reflected by smaller infarcts; but this finding has to be assessed in further well-designed clinical studies
Collapse
|
34
|
Whitehead NJ, Clark AL, Williams TD, Collins NJ, Boyle AJ. Sedation and Analgesia for Cardiac Catheterisation and Coronary Intervention. Heart Lung Circ 2020; 29:169-177. [DOI: 10.1016/j.hlc.2019.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/05/2019] [Accepted: 08/29/2019] [Indexed: 02/01/2023]
|
35
|
Irisin Improves Autophagy of Aged Hepatocytes via Increasing Telomerase Activity in Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6946037. [PMID: 31976032 PMCID: PMC6959141 DOI: 10.1155/2020/6946037] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
An aged liver has decreased reparative capacity during ischemia-reperfusion (IR) injury. A recent study showed that plasma irisin levels predict telomere length in healthy adults. The aim of the present study is to clarify the role of irisin, telomerase activity, and autophagy during hepatic IR in the elderly. To study this, hepatic IR was established in 22-month- and 3-month-old rats and primary hepatocytes were isolated. The results showed that the old rats exhibited more serious liver injury and lower levels of irisin expression, telomerase activity, autophagy ability, and mitochondrial function than young rats during hepatic IR. Irisin activated autophagy and improved mitochondrial function via increasing telomerase activity in aged hepatocytes. Inhibition of telomerase activity by BIBP1532 abolished the protective role of irisin in hepatocytes during hypoxia and reoxygenation. Additionally, this study proved irisin increased the telomerase activity via inhibition of the phosphorylation of JNK during hepatic IR. Administration of exogenous irisin significantly mitigated the inflammation, oxidative stress, apoptosis, and liver injury in an old rat model of hepatic IR. In conclusion, irisin improves autophagy of aged hepatocytes via increasing telomerase activity in hepatic IR. Irisin exhibits conspicuous benefits in increasing reparative capacity of an aged liver during hepatic IR.
Collapse
|
36
|
Hausenloy DJ, Kharbanda RK, Møller UK, Ramlall M, Aarøe J, Butler R, Bulluck H, Clayton T, Dana A, Dodd M, Engstrom T, Evans R, Lassen JF, Christensen EF, Garcia-Ruiz JM, Gorog DA, Hjort J, Houghton RF, Ibanez B, Knight R, Lippert FK, Lønborg JT, Maeng M, Milasinovic D, More R, Nicholas JM, Jensen LO, Perkins A, Radovanovic N, Rakhit RD, Ravkilde J, Ryding AD, Schmidt MR, Riddervold IS, Sørensen HT, Stankovic G, Varma M, Webb I, Terkelsen CJ, Greenwood JP, Yellon DM, Bøtker HE. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet 2019; 394:1415-1424. [PMID: 31500849 PMCID: PMC6891239 DOI: 10.1016/s0140-6736(19)32039-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK; National Institute of Health Research Biomedical Research Centre at University College London Hospitals, Research & Development, London, UK; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Centro de Biotecnologia-FEMSA, Tecnologico de Monterrey, Monterrey, Mexico.
| | - Rajesh K Kharbanda
- Oxford Heart Centre, Oxford University Hospitals National Health Service Trust, Oxford, UK; Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | | | - Manish Ramlall
- The Hatter Cardiovascular Institute, University College London, London, UK; University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Jens Aarøe
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Robert Butler
- Department of Cardiology, University Hospitals of North Midlands, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | | | - Tim Clayton
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Ali Dana
- Portsmouth Hospitals National Health Service Trust, Portsmouth, UK
| | - Matthew Dodd
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Thomas Engstrom
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Richard Evans
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - José Manuel Garcia-Ruiz
- Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Universitario de Cabueñes, Oviedo, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Diana A Gorog
- Department of Cardiology, Lister Hospital, East and North Hertfordshire National Health Service Trust, Stevenage, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Jakob Hjort
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Centro de Investigacion Biomedica En Red Cardiovascular, Madrid, Spain; IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Rosemary Knight
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Freddy K Lippert
- Prehospital Emergency Medical Services, Capital Region of Denmark, Denmark
| | - Jacob T Lønborg
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael Maeng
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Dejan Milasinovic
- Department of Cardiology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ranjit More
- Lancashire Cardiac Centre, Blackpool Teaching Hospitals National Health Service Foundation Trust, Blackpool, UK
| | - Jennifer M Nicholas
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Alexander Perkins
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Nebojsa Radovanovic
- Cardiology Clinic, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Emergency Centre, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Roby D Rakhit
- Royal Free Hospital London and Institute of Cardiovascular Science, University College London, London, UK
| | - Jan Ravkilde
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Alisdair D Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Michael R Schmidt
- The Hatter Cardiovascular Institute, University College London, London, UK
| | | | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Goran Stankovic
- Cardiology Clinic, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Department for Diagnostic and Catheterization Laboratories, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Madhusudhan Varma
- The Heart Centre, North Cumbria University Hospitals National Health Service Trust, Carlisle, UK
| | - Ian Webb
- King's College Hospital, King's Health Partnership, London, UK
| | | | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK; Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Hans Erik Bøtker
- The Hatter Cardiovascular Institute, University College London, London, UK.
| |
Collapse
|
37
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
38
|
Noronha Osório D, Viana-Soares R, Marto JP, Mendonça MD, Silva HP, Quaresma C, Viana-Baptista M, Gamboa H, Vieira HLA. Autonomic nervous system response to remote ischemic conditioning: heart rate variability assessment. BMC Cardiovasc Disord 2019; 19:211. [PMID: 31500561 PMCID: PMC6734354 DOI: 10.1186/s12872-019-1181-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) is a procedure applied in a limb for triggering endogenous protective pathways in distant organs, namely brain or heart. The underlying mechanisms of RIC are still not fully understood, and it is hypothesized they are mediated either by humoral factors, immune cells and/or the autonomic nervous system. Herein, heart rate variability (HRV) was used to evaluate the electrophysiological processes occurring in the heart during RIC and, in turn to assess the role of autonomic nervous system. Methods Healthy subjects were submitted to RIC protocol and electrocardiography (ECG) was used to evaluate HRV, by assessing the variability of time intervals between two consecutive heart beats. This is a pilot study based on the analysis of 18 ECG from healthy subjects submitted to RIC. HRV was characterized in three domains (time, frequency and non-linear features) that can be correlated with the autonomic nervous system function. Results RIC procedure increased significantly the non-linear parameter SD2, which is associated with long term HRV. This effect was observed in all subjects and in the senior (> 60 years-old) subset analysis. SD2 increase suggests an activation of both parasympathetic and sympathetic nervous system, namely via fast vagal response (parasympathetic) and the slow sympathetic response to the baroreceptors stimulation. Conclusions RIC procedure modulates both parasympathetic and sympathetic autonomic nervous system. Furthermore, this modulation is more pronounced in the senior subset of subjects. Therefore, the autonomic nervous system regulation could be one of the mechanisms for RIC therapeutic effectiveness. Electronic supplementary material The online version of this article (10.1186/s12872-019-1181-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Noronha Osório
- LIBPhys-UNL - Laboratorio de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516, Caparica, Portugal.,PLUX - Wireless Biosignals, S.A, Lisboa, Portugal
| | - Ricardo Viana-Soares
- CEDOC - NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - João Pedro Marto
- CEDOC - NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Department of Neurology, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
| | - Marcelo D Mendonça
- CEDOC - NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Department of Neurology, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, 7IT - Instituto de Telecomunicações, Lisboa, Portugal
| | - Hugo P Silva
- PLUX - Wireless Biosignals, S.A, Lisboa, Portugal.,EST/IPS - Escola Superior de Tecnologia do Instituto Politécnico de Setúbal, Setúbal, Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Quaresma
- LIBPhys-UNL - Laboratorio de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516, Caparica, Portugal
| | - Miguel Viana-Baptista
- CEDOC - NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Department of Neurology, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
| | - Hugo Gamboa
- LIBPhys-UNL - Laboratorio de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516, Caparica, Portugal.
| | - Helena L A Vieira
- CEDOC - NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
39
|
Influence of Cardiovascular Risk Factors, Comorbidities, Medication Use and Procedural Variables on Remote Ischemic Conditioning Efficacy in Patients with ST-Segment Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133246. [PMID: 31269650 PMCID: PMC6650921 DOI: 10.3390/ijms20133246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Remote ischemic conditioning (RIC) confers cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI). Despite intense research, the translation of RIC into clinical practice remains a challenge. This may, at least partly, be due to confounding factors that may modify the efficacy of RIC. The present review focuses on cardiovascular risk factors, comorbidities, medication use and procedural variables which may modify the efficacy of RIC in patients with STEMI. Findings of such efficacy modifiers are based on subgroup and post-hoc analyses and thus hold risk of type I and II errors. Although findings from studies evaluating influencing factors are often ambiguous, some but not all studies suggest that smoking, non-statin use, infarct location, area-at-risk of infarction, pre-procedural Thrombolysis in Myocardial Infarction (TIMI) flow, ischemia duration and coronary collateral blood flow to the infarct-related artery may influence on the cardioprotective efficacy of RIC. Results from the on-going CONDI2/ERIC-PPCI trial will determine any clinical implications of RIC in the treatment of patients with STEMI and predefined subgroup analyses will give further insight into influencing factors on the efficacy of RIC.
Collapse
|
40
|
Mahmoudi M, Mariathas M. Optimizing Myocardial Recovery Post-ST-Elevation Myocardial Infarction – An Unfulfilled Promise. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2019; 20:287-288. [DOI: 10.1016/j.carrev.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Vaidya GN, Khan A, Ghafghazi S. Effect of morphine use on oral P2Y12 platelet inhibitors in acute myocardial infarction: Meta-analysis. Indian Heart J 2019; 71:126-135. [PMID: 31280824 PMCID: PMC6620420 DOI: 10.1016/j.ihj.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Morphine is the recommended analgesic in acute myocardial infarction (AMI). This recommendation has come under scrutiny because of possible slow uptake of oral antiplatelet agents. OBJECTIVE We performed a meta-analysis of all available studies in AMI patients treated with prasugrel or ticagrelor (P2Y12 inhibitors) that reported use of morphine prior to loading the antiplatelet agents to critically assess the safety of co-administration of morphine and the newer P2Y12 inhibitors. METHODS Several sources were searched from inception to December 2017 with inclusion of eight studies, largely observational. Mean difference (MD) was calculated for continuous variables, and standardized mean difference (SMD) for platelet function was assessed by the various platelet assays, 2 h after the loading dose of oral P2Y12 inhibitors. RESULTS Higher platelet activity was noted among morphine group [SMD = 0.8, 95% confidence interval (CI) = 0.4-1.1, p < 0.01]. Morphine use caused higher odds of "high residual platelet reactivity" at 2 h (odds = 3.3, 95 %CI = 2.2-5.1, p < 0.01). Ticagrelor reached a lower plasma concentration in morphine group (MD = -481.8 ng/ml, 95% CI = -841.2 to -122.4 ng/ml, p < 0.01) with a higher vomiting rate (odds = 5.3, 95% CI = 2.5-11.1, p < 0.01). However, the composite of in-hospital mortality, stroke, and re-infarction was not significantly different between the groups (p = 0.83). CONCLUSION Co-administration of morphine with P2Y12 inhibitors possibly decreases their efficacy in platelet inhibition. However, this did not translate into higher adverse outcomes because of low event rates, inadequate for analysis. A large randomized study is needed to evaluate the narcotic-P2Y12 interaction.
Collapse
Affiliation(s)
- Gaurang Nandkishor Vaidya
- Department of Cardiovascular Medicine, University of Louisville, 201 Abraham Flexner Way, Louisville, KY 40202, USA.
| | - Abdur Khan
- Department of Cardiovascular Medicine, University of Louisville, 201 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Shahab Ghafghazi
- Department of Cardiovascular Medicine, University of Louisville, 201 Abraham Flexner Way, Louisville, KY 40202, USA
| |
Collapse
|
42
|
Gong R, Wu YQ. Remote ischemic conditioning during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis. J Cardiothorac Surg 2019; 14:14. [PMID: 30696461 PMCID: PMC6352430 DOI: 10.1186/s13019-019-0834-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
Objective This systematic review was designed to evaluate the efficacy of remote ischemic conditioning (RIC) with primary percutaneous coronary intervention (PCI) versus primary PCI alone for ST-segment elevation myocardial infarction (STEMI). Search strategy Computerized search for trials from PubMed, EMBASE, CENTRAL and Cochrane Database of Systematic Reviews databases. Selection criteria Trials investigating RIC plus primary PCI (group A) versus primary PCI alone (group B). Outcome measures Myocardial enzyme levels; left ventricular ejection fraction (LVEF); major adverse cardiac and cerebrovascular events (MACCEs); TIMI flow grade III; myocardial salvage index or infarct size per patients. Results In all, 14 studies involving 3165 subjects were included. There was a significant association of myocardial edema levels, myocardial salvage index and incidence of MACCEs in group A compared with group B (myocardial edema levels: SMD = − 0.36, 95% CI (− 0.59, − 0.13); myocardial salvage index: MD = 0.06, 95% CI (0.02, 0.10); MACCE: OR = 0.70, 95% CI (0.57, 0.85)). With regard to infarct size, TIMI flow grade III and LVEF, group A appeared to be equivalent with group B (infarct size: MD = − 1.67, 95% CI (− 3.46, 0.11); TIMI flow grade III: OR = 1.04, 95% CI (0.71, 1.52); LVEF: MD = 0.74, 95% CI (− 0.80, 2.28)). Conclusion RIC was associated with lower myocardial edema levels, myocardial salvage index and incidence of MACCE, while non-significant beneficial effect on infarct size, TIMI flow grade III or LVEF. These findings suggest that RIC is a promising adjunctive treatment to PCI for the prevention of reperfusion injury in STEMI patients.
Collapse
Affiliation(s)
- Ren Gong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yan-Qing Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
43
|
Le Corvoisier P, Gallet R, Lesault PF, Audureau E, Paul M, Ternacle J, Ghostine S, Champagne S, Arrouasse R, Bitari D, Mouillet G, Dubois-Randé JL, Berdeaux A, Ghaleh B, Deux JF, Teiger E. Intra-coronary morphine versus placebo in the treatment of acute ST-segment elevation myocardial infarction: the MIAMI randomized controlled trial. BMC Cardiovasc Disord 2018; 18:193. [PMID: 30340532 PMCID: PMC6194573 DOI: 10.1186/s12872-018-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/09/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Experimental studies suggest that morphine may protect the myocardium against ischemia-reperfusion injury by activating salvage kinase pathways. The objective of this two-center, randomized, double-blind, controlled trial was to assess potential cardioprotective effects of intra-coronary morphine in patients with ST-segment elevation myocardial infarction (STEMI) referred for primary percutaneous intervention. METHODS Ninety-one patients with STEMI were randomly assigned to intracoronary morphine (1 mg) or placebo at reperfusion of the culprit coronary artery. The primary endpoint was infarct size/left ventricular mass ratio assessed by magnetic resonance imaging on day 3-5. Secondary endpoints included the areas under the curve (AUC) for troponin T and creatine kinase over three days, left ventricular ejection fraction assessed by echocardiography on days 1 and 6, and clinical outcomes. RESULTS Infarct size/left ventricular mass ratio was not significantly reduced by intracoronary morphine compared to placebo (27.2% ± 15.0% vs. 30.5% ± 10.6%, respectively, p = 0.28). Troponin T and creatine kinase AUCs were similar in the two groups. Morphine did not improve left ventricular ejection fraction on day 1 (49.7 ± 10.3% vs. 49.3 ± 9.3% with placebo, p = 0.84) or day 6 (48.5 ± 10.2% vs. 49.0 ± 8.5% with placebo, p = 0.86). The number of major adverse cardiac events, including stent thrombosis, during the one-year follow-up was similar in the two groups. CONCLUSIONS Intracoronary morphine at reperfusion did not significantly reduce infarct size or improve left ventricular systolic function in patients with STEMI. Presence of comorbidities in some patients may contribute to explain these results. TRIAL REGISTRATION ClinicalTrials.gov, NCT01186445 (date of registration: August 23, 2010).
Collapse
Affiliation(s)
- Philippe Le Corvoisier
- Department VERDI, Inserm, CIC1430, AP-HP, Henri Mondor Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, F-94010, Creteil, France. .,Inserm, U955 team 3, F-94010, Creteil, France.
| | - Romain Gallet
- Inserm, U955 team 3, F-94010, Creteil, France.,Interventional Cardiology Unit, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | | | - Etienne Audureau
- Department of Public Health and CEPIA EA7376, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Muriel Paul
- Department of Pharmacy, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Julien Ternacle
- Interventional Cardiology Unit, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Saïd Ghostine
- Department of Cardiology, Marie-Lannelongue Hospital, F-92350, Le Plessis-Robinson, France
| | - Stéphane Champagne
- Interventional Cardiology Unit, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Raphaele Arrouasse
- Department VERDI, Inserm, CIC1430, AP-HP, Henri Mondor Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, F-94010, Creteil, France
| | - Dalila Bitari
- Department VERDI, Inserm, CIC1430, AP-HP, Henri Mondor Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, F-94010, Creteil, France
| | - Gauthier Mouillet
- Interventional Cardiology Unit, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Jean-Luc Dubois-Randé
- Inserm, U955 team 3, F-94010, Creteil, France.,Department of Cardiology, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | | | | | - Jean-François Deux
- Department of Radiology, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| | - Emmanuel Teiger
- Inserm, U955 team 3, F-94010, Creteil, France.,Interventional Cardiology Unit, AP-HP, Henri Mondor Hospital, F-94010, Creteil, France
| |
Collapse
|
44
|
|
45
|
Song L, Yan H, Zhou P, Zhao H, Liu C, Sheng Z, Tan Y, Yi C, Li J, Zhou J. Effect of comprehensive remote ischemic conditioning in anterior ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: Design and rationale of the CORIC-MI randomized trial. Clin Cardiol 2018; 41:997-1003. [PMID: 29726013 DOI: 10.1002/clc.22973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) applied during or after ST-segment elevation myocardial infarction (STEMI) is currently the most promising adjuvant therapy to reduce reperfusion injury. Recent animal studies showed that RIC may help the myocardium recover if applied daily during the month after STEMI. The Comprehensive Remote Ischemic Conditioning in Myocardial Infarction (CORIC-MI) trial is a single-center randomized controlled study in which 200 patients undergoing primary percutaneous coronary intervention (PPCI) for anterior STEMI will be randomized in a 1:1 ratio into comprehensive RIC (CORIC) or no intervention (control) groups. CORIC consists of per-RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb immediately after randomization and before reperfusion), post-RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb immediately post-PPCI), and delayed RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb once daily on 2-28 days). Primary endpoint is left ventricular ejection fraction assessed by cardiac magnetic resonance imaging at 30 days. Major secondary endpoints include infarct size and left ventricular volume assessed by cardiac magnetic resonance imaging at 30 days, left ventricular ejection fraction assessed by echocardiography, and major adverse cardiovascular events up to 12 months. This report presents the baseline characteristics of 93 patients (CORIC group, n = 49; control group, n = 44) enrolled into the study as of March 31, 2018. The CORIC-MI trial aims to test the hypothesis that CORIC will improve cardiac function and remodeling in patients with anterior STEMI undergoing PPCI.
Collapse
Affiliation(s)
- Li Song
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbing Yan
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peng Zhou
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanjun Zhao
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Liu
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhaoxue Sheng
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Tan
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Yi
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiannan Li
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinying Zhou
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Haller PM, Vargas KG, Haller MC, Piackova E, Wojta J, Gyöngyösi M, Gersh BJ, Kiss A, Podesser BK, Huber K. Remote ischaemic conditioning for myocardial infarction or elective PCI: systematic review and meta-analyses of randomised trials. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2018; 9:82-92. [PMID: 29911392 DOI: 10.1177/2048872618784150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The efficacy of remote ischaemic conditioning in clinical trials of ST-segment elevation myocardial infarction (STEMI) or elective percutaneous coronary intervention is controversial. We aimed to systematically review and meta-analyse whether remote ischaemic conditioning reduces myocardial damage in those patients. METHODS We searched PubMed, Embase and Web of Science from inception until December 2017 for randomised clinical trials evaluating remote ischaemic conditioning versus a control group. Two independent reviewers extracted data of 23 trials (2118 patients with STEMI; 2048 patients undergoing elective percutaneous coronary intervention) which were meta-analysed using random-effects models. RESULTS Remote ischaemic conditioning reduced infarct size in STEMI patients when assessed by imaging (mean difference of infarct size as percentage of left ventricle -2.43, 95% confidence interval (CI) -4.37 to -0.48; P=0.01; I2=44%; n=925) or biomarkers related to myocardial injury (peak values of cardiac biomarker release reported as standardised mean difference -0.19, 95% CI -0.37 to -0.02; P=0.03; I2=58%; n=1483) and increased myocardial salvage index (mean difference 0.07, 95% CI 0.01 to 0.13; P=0.02; I2=49%; n= 636). Left ventricular ejection fraction was increased when assessed during the first days after STEMI (mean difference 1.53, 95% CI 0.23 to 2.83; P=0.02; I2=28%; n=1192). Remote ischaemic conditioning had no influence on biomarker values after elective percutaneous coronary intervention (standardised mean difference 0.06, 95% CI -0.17 to 0.30; P=0.59). CONCLUSIONS Despite a statistically significant reduction of myocardial damage in STEMI patients, the magnitude of the reduction was small and a significant impact on clinical events is unlikely. With respect to elective percutaneous coronary intervention, remote ischaemic conditioning had no influence on myocardial injury and its use is not supported by our analysis.
Collapse
Affiliation(s)
- Paul M Haller
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Austria.,Department of Internal Medicine II, Medical University of Vienna, Austria
| | - Kris G Vargas
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Austria
| | - Maria C Haller
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
| | - Edita Piackova
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research, Austria.,Department of Internal Medicine II, Medical University of Vienna, Austria.,Core Facilities, Medical University of Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Austria
| | | | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Austria.,Center for Biomedical Research, Medical University of Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Austria.,Sigmund Freud University, Faculty of Medicine, Vienna, Austria
| |
Collapse
|
47
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
48
|
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2018; 113:564-585. [PMID: 28453734 DOI: 10.1093/cvr/cvx049] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic-however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore 169857; National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d Hebron University Hospital and Research Institute. Universitat Autònoma, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, 5851 USA Dr. N., MSB 3074, Mobile, AL 36688, USA
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nßrnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Robert Jennings
- Department of Cardiology, Duke University, Durham, NC 27708, USA
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, 7925, Cape Town, Western Cape, South Africa
| | - Jonathan Leor
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Neufeld Cardiac Research Institute, Tel-Aviv University, Sheba Medical Center, Tel Hashomer, 5265601, Israel; Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, 5265601, Israel
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy; Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, "G. d'Annunzio University, Chieti, Italy; Texas Heart Institute and University of Texas Medical School in Houston, Department of Internal Medicine, 6770 Bertner Avenue, Houston, Texas 77030 USA
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, 28 Avenue du Doyen Jean Lépine, 69500 Bron, France; UMR 1060 (CarMeN), Université Claude Bernard Lyon, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University Corso Umberto I, 40, 80138 Napoli, Italy
| | - Fabrice Prunier
- Department of Cardiology, University of Angers, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig, University of Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Joost P G Sluijter
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Nagyvárad tér 4, 1089 Hungary; Pharmahungary Group, Graphisoft Park, 7 Záhony street, Budapest, H-1031, Hungary
| |
Collapse
|
49
|
Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 2018; 38:774-784. [PMID: 27354052 DOI: 10.1093/eurheartj/ehw224] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
The incidence of ST segment elevation myocardial infarction (STEMI) has decreased over the last two decades in developed countries, but mortality from STEMI despite widespread access to reperfusion therapy is still substantial as is the development of heart failure, particularly among an expanding older population. In developing countries, the incidence of STEMI is increasing and interventional reperfusion is often not available. We here review the pathophysiology of acute myocardial infarction and reperfusion, notably the temporal and spatial evolution of ischaemic and reperfusion injury, the different modes of cell death, and the resulting coronary microvascular dysfunction. We then go on to briefly characterize the cardioprotective phenomena of ischaemic preconditioning, ischaemic postconditioning, and remote ischaemic conditioning and their underlying signal transduction pathways. We discuss in detail the attempts to translate conditioning strategies and drug therapy into the clinical setting. Most attempts have failed so far to reduce infarct size and improve clinical outcomes in STEMI patients, and we discuss potential reasons for such failure. Currently, it appears that remote ischaemic conditioning and a few drugs (atrial natriuretic peptide, exenatide, metoprolol, and esmolol) reduce infarct size, but studies with clinical outcome as primary endpoint are still underway.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | - Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
50
|
Kleinbongard P, Amanakis G, Skyschally A, Heusch G. Reflection of Cardioprotection by Remote Ischemic Perconditioning in Attenuated ST-Segment Elevation During Ongoing Coronary Occlusion in Pigs: Evidence for Cardioprotection From Ischemic Injury. Circ Res 2018; 122:1102-1108. [PMID: 29467197 DOI: 10.1161/circresaha.118.312784] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/04/2023]
Abstract
RATIONALE Reduction of infarct size by remote ischemic perconditioning (perRIC) is evident only after several hours reperfusion. OBJECTIVE To develop a potential real-time estimate of cardioprotection by perRIC, we have analyzed the time course of ST-segment elevation. METHODS AND RESULTS Anesthetized open-chest pigs were subjected to 60-minute coronary occlusion and 180-minute reperfusion (placebo; n=19). PerRIC (n=18; 4×5 min/5 min hindlimb occlusion/reperfusion) was induced 20 minutes after coronary occlusion. Regional myocardial blood flow was measured with microspheres, areas of no-reflow with thioflavin-S, area at risk with blue dye, and infarct size with triphenyl tetrazolium chloride staining. Phosphorylation of protein kinase B α/β/γ, extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 3 was determined by Western blot. ST-segment elevation was analyzed in a V2-like ECG-lead at baseline, 5- and 55-minute coronary occlusion, and 10-, 30-, 60-, and 120-minute reperfusion. Transmural blood flow at 5-minute coronary occlusion was not different between perRIC (0.029±0.015 mL/min per gram; mean±SD) and placebo (0.024±0.018 mL/min per gram) as was area at risk (perRIC: 24±6% of the left ventricle; placebo: 21±4%). Areas of no-reflow tended to be smaller with perRIC (9±12% of area at risk versus 15±14% with placebo; P=0.13). Infarct size with perRIC was 23±12% of area at risk versus 40±11% with placebo (P<0.001). PerRIC increased phosphorylation of signal transducer and activator of transcription 3 at 120-minute reperfusion by 196±142% versus 109±120% with placebo (P=0.047). The time courses of ST-segment elevation in perRIC and placebo protocols, respectively, were different (P=0.017). With similar ST-segment elevation at 5-minute coronary occlusion (perRIC 282±34 µV; placebo 259±28 µV), partial recovery of ST-segment elevation between 5- and 55-minute coronary occlusion was more pronounced with perRIC than placebo (by 111±84 versus 15±94 µV; P=0.028). CONCLUSION Infarct size reduction by perRIC is reflected in the ST-segment elevation during coronary occlusion in pigs, supporting the notion of protection from ischemic injury.
Collapse
Affiliation(s)
- Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Georgios Amanakis
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany.
| |
Collapse
|