1
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Choi T, Yu H, Chang S, Ha DH, Cho DW, Jang J, Lee C, Lu G, Chang JH, Zhou Q, Park J. Visibility of Bioresorbable Vascular Scaffold in Intravascular Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1090-1101. [PMID: 31944950 DOI: 10.1109/tuffc.2020.2964322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioresorbable vascular scaffold (BVS) has recently been spotlighted for its unique characteristics of absorbing into blood vessels and eventually disappearing. Although intravascular ultrasound (IVUS) is the most common guiding tool for stent deployment, the echogenicity of BVS struts has changed as the center of stent lumen and scanning rotation is not concentric, which may cause a critical erroneous measurement in practice. This study investigated the physical conditions for dimming the stent brightness in IVUS images using a finite-difference method (FDM) to numerically solve acoustic wave propagation through nonhomogeneous medium. The dimmed brightness is caused by an angled rectangular cross section of a strut and its similar acoustic impedance with water. Imaging frequency is not a major cause. However, the angle between the acoustic beam and the BVS surface is the major cause of the dimmed brightness. As a solution, an approach using a frequency compounding method with signal polarity comparator was proposed to recover the reduced brightness without sacrificing spatial resolutions. Based on the simulation study, the signal level from BVS can be attenuated down by 17 dB when the angle between the acoustic beamline and the surface of BVS is more than 45°. With the proposed frequency compounding approach, the reduced signal can be recovered by 6 dB. In the experimental BVS IVUS imaging, strut brightness was reduced by 18 dB with an angled strut position and recovered by 5 dB with the proposed frequency compounding method. A pig coronary was imaged to demonstrate the performance of the proposed method.
Collapse
|