1
|
Bartolucci G, Adame-Arana O, Zhao X, Weber CA. Controlling composition of coexisting phases via molecular transitions. Biophys J 2021; 120:4682-4697. [PMID: 34600899 DOI: 10.1016/j.bpj.2021.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Phase separation and transitions among different molecular states are ubiquitous in living cells. Such transitions can be governed by local equilibrium thermodynamics or by active processes controlled by biological fuel. It remains largely unexplored how the behavior of phase-separating systems with molecular transitions differs between thermodynamic equilibrium and cases in which the detailed balance of the molecular transition rates is broken because of the presence of fuel. Here, we present a model of a phase-separating ternary mixture in which two components can convert into each other. At thermodynamic equilibrium, we find that molecular transitions can give rise to a lower dissolution temperature and thus reentrant phase behavior. Moreover, we find a discontinuous thermodynamic phase transition in the composition of the droplet phase if both converting molecules attract themselves with similar interaction strength. Breaking the detailed balance of the molecular transition leads to quasi-discontinuous changes in droplet composition by varying the fuel amount for a larger range of intermolecular interactions. Our findings showcase that phase separation with molecular transitions provides a versatile mechanism to control properties of intracellular and synthetic condensates via discontinuous switches in droplet composition.
Collapse
Affiliation(s)
- Giacomo Bartolucci
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Omar Adame-Arana
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Xueping Zhao
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Adame-Arana O, Weber CA, Zaburdaev V, Prost J, Jülicher F. Liquid Phase Separation Controlled by pH. Biophys J 2020; 119:1590-1605. [PMID: 33010236 DOI: 10.1016/j.bpj.2020.07.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
We present a minimal model to study the effects of pH on liquid phase separation of macromolecules. Our model describes a mixture composed of water and macromolecules that exist in three different charge states and have a tendency to phase separate. This phase separation is affected by pH via a set of chemical reactions describing protonation and deprotonation of macromolecules, as well as self-ionization of water. We consider the simple case in which interactions are captured by Flory-Huggins interaction parameters corresponding to Debye screening lengths shorter than a nanometer, which is relevant to proteins inside biological cells under physiological conditions. We identify the conjugate thermodynamic variables at chemical equilibrium and discuss the effective free energy at fixed pH. First, we study phase diagrams as a function of macromolecule concentration and temperature at the isoelectric point of the macromolecules. We find a rich variety of phase diagram topologies, including multiple critical points, triple points, and first-order transition points. Second, we change the pH relative to the isoelectric point of the macromolecules and study how phase diagrams depend on pH. We find that these phase diagrams as a function of pH strongly depend on whether oppositely charged macromolecules or neutral macromolecules have a stronger tendency to phase separate. One key finding is that we predict the existence of a reentrant behavior as a function of pH. In addition, our model predicts that the region of phase separation is typically broader at the isoelectric point. This model could account for both in vitro phase separation of proteins as a function of pH and protein phase separation in yeast cells for pH values close to the isoelectric point of many cytosolic proteins.
Collapse
Affiliation(s)
- Omar Adame-Arana
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
| | - Christoph A Weber
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Vasily Zaburdaev
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Frank Jülicher
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Leisi R, Wolfisberg R, Nowak T, Caliaro O, Hemmerle A, Roth NJ, Ros C. Impact of the isoelectric point of model parvoviruses on viral retention in anion-exchange chromatography. Biotechnol Bioeng 2020; 118:116-129. [PMID: 32886351 DOI: 10.1002/bit.27555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Anion-exchange chromatography (AEX) is used in the downstream purification of monoclonal antibodies to remove impurities and potential viral contamination based on electrostatic interactions. Although the isoelectric point (pI) of viruses is considered a key factor predicting the virus adsorption to the resin, the precise molecular mechanisms involved remain unclear. To address this question, we compared structurally homologous parvoviruses that only differ in their surface charge distribution. A single charged amino acid substitution on the capsid surface of minute virus of mice (MVM) provoked an increased apparent pI (pIapp ) 6.2 compared to wild-type MVM (pIapp = 4.5), as determined by chromatofocusing. Despite their radically different pIapp , both viruses displayed the same interaction profile in Mono Q AEX at different pH conditions. In contrast, the closely related canine parvovirus (pIapp = 5.3) displayed a significantly different interaction at pH 5. The detailed structural analysis of the intricate three-dimensional structure of the capsids suggests that the charge distribution is critical, and more relevant than the pI, in controlling the interaction of a virus with the chromatographic resin. This study contributes to a better understanding of the molecular mechanisms governing virus clearance by AEX, which is crucial to enable robust process design and maximize safety.
Collapse
Affiliation(s)
- Remo Leisi
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Raphael Wolfisberg
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Oliver Caliaro
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Andreas Hemmerle
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Xu X, Angioletti-Uberti S, Lu Y, Dzubiella J, Ballauff M. Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5373-5391. [PMID: 30095921 DOI: 10.1021/acs.langmuir.8b01802] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants Kb and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei , Nanjing 210094 , P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials , Imperial College London , London SW7 2AZ - UK , U.K
- International Research Centre for Soft Matter , Beijing University of Chemical Technology , 100099 Beijing , PR China
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Physikalisches Institut , Albert-Ludwigs-Universität , 79104 Freiburg , Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institut für Physik , Humboldt-Universität zu Berlin , 12489 Berlin , Germany
| |
Collapse
|
5
|
El Ichi-Ribault S, Alcaraz JP, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK. Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Performance and stability of chitosan-MWCNTs-laccase biocathode: Effect of MWCNTs surface charges and ionic strength. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Felgueiras HP, Aissa IB, Evans MDM, Migonney V. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:261. [PMID: 26449451 DOI: 10.1007/s10856-015-5596-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 05/25/2023]
Abstract
The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France
| | - Ines Ben Aissa
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France
| | - Margaret D M Evans
- CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW, 2113, Australia
| | - Véronique Migonney
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.
| |
Collapse
|
8
|
Behera T, Swain P. Antigen adsorbed surface modified poly-ɛ-caprolactone microspheres stimulates both adaptive and innate immune response in fish. Vaccine 2012; 30:5278-84. [DOI: 10.1016/j.vaccine.2012.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/30/2012] [Accepted: 05/12/2012] [Indexed: 01/12/2023]
|
9
|
Spada G, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles with and without hydroxypropyl-β-cyclodextrin: a comparative study of nanoparticles designed for colonic drug delivery. NANOTECHNOLOGY 2012; 23:095101. [PMID: 22323085 DOI: 10.1088/0957-4484/23/9/095101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
New solid lipid nanoparticles (SLN), composed of Compritol ATO888 (C) and hydroxypropyl-β-cyclodextrin (HP), were developed in order to study a new colon-specific formulation for diclofenac sodium (D) delivery. The prepared batches differ from each other by the molecular ratio between HP and D and by the composition of the matrix. Nanoparticles composed of an exclusively lipid matrix and nanoparticles with an oligomeric and lipid matrix were compared in order to establish the effect of both components on the drug delivery tests performed. The SLN preparation method was based on the oil/water hot homogenization process. Emulsions produced were cooled at room temperature and lyophilized in order to obtain dried nanoparticles; possible damage to nanoparticle shape and size was avoided by the addition of cryoprotectants to the aqueous dispersion of nanoparticles before exsiccation. An in vitro toxicity study was performed using CaCo(2) cells to establish the safety of the prepared SLN. Data obtained showed that production method studied guarantees emulsions composed of nanosized drops which can be dried by lyophilization into SLN with a size range of 300-600 nm. In vitro and ex vivo tests demonstrated that dried SLN can be considered as colon delivery systems; however, the matrix composition as well as the presence of cryoprotectant on their surface influences the release and permeation rate of D. The in vitro toxicity studies indicated that the SLN are well tolerated.
Collapse
Affiliation(s)
- Gianpiera Spada
- Department of Drug Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the "protein-adsorption problem" to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations C(B). This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume V(I) by expulsion of either-or-both interphase water and initially adsorbed protein. Interphase protein concentration C(I) increases as V(I) decreases, resulting in slow reduction in interfacial energetics. Steady state is governed by a net partition coefficient P=(C(I)/C(B)). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This "adsorption-dehydration" step is the significant free energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, adsorbent capacity monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ→65(°). Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ<65(°). For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔG(ads)(o) is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the "protein-adsorption problem" that is so fundamental to biomaterials surface science.
Collapse
Affiliation(s)
- Erwin A Vogler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Su J, de la Cruz MO, Guo H. Solubility and transport of cationic and anionic patterned nanoparticles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011504. [PMID: 22400574 DOI: 10.1103/physreve.85.011504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/05/2012] [Indexed: 05/31/2023]
Abstract
We analyze bulk diffusion and transport through hydrophobic nanochannels of nanoparticles (NPs) with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. Ten different charge pattern types including Janus charged-hydrophobic NPs are studied. The cationic NPs are more affected by the patterns and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. The NP-water Coulomb interaction of anionic NPs in the bulk, which are much stronger than the hydrophobic NP-water interactions, are stronger for NPs with higher localized charge, and stronger than in the cationic NPs counterparts. The diffusion and transport of anionic NPs such as proteins and protein charge ladders with the same total charge but different surface charge patterns are slowest for the highest localized charge pattern, which also adsorb strongest onto surfaces. Our model demonstrates the separation (by reverse osmosis, capillary electrophoresis, or chromatography) of cationic NPs, including proteins with equal net charge but different surface charge distributions.
Collapse
Affiliation(s)
- Jiaye Su
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
12
|
|
13
|
Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 2011; 162:87-106. [PMID: 21295764 DOI: 10.1016/j.cis.2010.12.007] [Citation(s) in RCA: 992] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 11/21/2022]
Abstract
Protein adsorption at solid surfaces plays a key role in many natural processes and has therefore promoted a widespread interest in many research areas. Despite considerable progress in this field there are still widely differing and even contradictive opinions on how to explain the frequently observed phenomena such as structural rearrangements, cooperative adsorption, overshooting adsorption kinetics, or protein aggregation. In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed. The main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions. Relevant experimental and computational strategies to practically approach the field of protein adsorption mechanisms and their impact on current successes are outlined.
Collapse
|
14
|
Anand G, Sharma S, Dutta AK, Kumar SK, Belfort G. Conformational transitions of adsorbed proteins on surfaces of varying polarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10803-10811. [PMID: 20433160 DOI: 10.1021/la1006132] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Combining a wide range of protein adsorption experiments (three globular proteins on eight well-defined homogeneous surfaces) with Monte Carlo simulations of lattice proteins at different concentrations and on surfaces of varying "polarity", we explore the extent and rheological behavior of adsorbed proteins as a function of substrate polarity, "on" rate constants (k(a)) and steric parameters (|A(1)|) from the random sequential adsorption model, and demonstrate a folding to unfolding transition upon adsorption. We show that model globular proteins (hen egg lysozyme, ribonuclease A, and insulin dimer) behave similarly with respect to adsorption. Experimentally, above a substrate wettability cos theta > 0.4 (where theta is the sessile contact angle of water on a substrate in air), the adsorbed mass, rigidity, and k(a) of the proteins are diminished, while the steric factor |A(1)| is increased, suggesting a lower packing density. To analyze these results, we have invoked computer simulations. We show that changing surface polarity has two profound effects. First, the amount adsorbed increases as the surfaces become more apolar. Further, the proteins become less stable as their adsorbed amount increased because they gain a large number of interprotein and protein-surface interactions. Finally, apolar surfaces served to reduce the unfolding free energy barriers, further facilitating the reorganizing of proteins on these surfaces. Thus, increasing the nonpolar nature of the surfaces resulted in a more rigid adsorbed layer, in good agreement with the experiments.
Collapse
Affiliation(s)
- Gaurav Anand
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | | | | | |
Collapse
|
15
|
Ibarguren C, Audisio MC, Torres EMF, Apella MC. Silicates characterization as potential bacteriocin-carriers. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2009.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Melenevsky AT, Ochkur OV, Demin AA. The influence of the degree of carboxylation on the pore structure of polymeric monolithic media. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2009. [DOI: 10.1134/s0036024410010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Xu X, Lenhoff AM. Binary adsorption of globular proteins on ion-exchange media. J Chromatogr A 2009; 1216:6177-95. [DOI: 10.1016/j.chroma.2009.06.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 06/24/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
18
|
Stutz H. Protein attachment onto silica surfaces - a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009; 30:2032-61. [DOI: 10.1002/elps.200900015] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Melenevskii AT, Ochkur OV, Demin AA. The influence of the density of ionogenic groups in the sorbent on the competitive sorption of proteins. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2009. [DOI: 10.1134/s0036024409010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Florindo HF, Pandit S, Gonçalves LMD, Alpar HO, Almeida AJ. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine 2008; 26:4168-77. [PMID: 18599166 DOI: 10.1016/j.vaccine.2008.05.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/25/2008] [Indexed: 10/21/2022]
Abstract
Streptococcus equi subsp. equi is the causative agent of Strangles, which is one of the most costly and widespread infectious diseases, affecting the respiratory tract of Equidae. In this work, polyvinyl alcohol, alginate and chitosan were used in formulations of surface modified poly-epsilon-caprolactone microspheres which were evaluated after adsorption of S.equi enzymatic extract for physicochemical characteristics and in vivo immune responses in mice. After subcutaneous immunisation, the formulations induced higher lymphokines levels, in accordance with cellular and humoral immune responses, as compared to the free antigen, successfully activating the paths leading to Th1 and Th2 cells. The obtained results highlight the role of these microspheres as an adjuvant and their use to protect animals against strangles.
Collapse
Affiliation(s)
- H F Florindo
- iMED, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
21
|
Volumetric interpretation of protein adsorption: ion-exchange adsorbent capacity, protein pI, and interaction energetics. Biomaterials 2008; 29:2033-48. [PMID: 18289663 DOI: 10.1016/j.biomaterials.2008.01.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/20/2008] [Indexed: 11/21/2022]
Abstract
Adsorption of lysozyme (Lys), human serum albumin (HSA), and immunoglobulin G (IgG) to anion- and cation-exchange resins is dominated by electrostatic interactions between protein and adsorbent. The solution-depletion method of measuring adsorption shows, however, that these proteins do not irreversibly adsorb to ion-exchange surfaces, even when the charge disparity between adsorbent and protein inferred from protein pI is large. Net-positively-charged Lys (pI=11) and net-negatively-charged HSA (pI=5.5) adsorb so strongly to sulfopropyl sepharose (SP; a negatively-charged, strong cation-exchange resin, -0.22 mmol/mL exchange capacity) that both resist displacement by net-neutral IgG (pI=7.0) in simultaneous adsorption competition experiments. By contrast, IgG readily displaces both Lys and HSA adsorbed either to quaternary ammonium sepharose (Q; a positively-charged, strong anion exchanger, +0.22 mmol/mL exchange capacity) or to octadecyl sepharose (ODS; a neutral hydrophobic resin, 0 mmol/mL exchange capacity). Thus it is concluded that adsorption results do not sensibly correlate with protein pI and that pI is actually a rather poor predictor of affinity for ion-exchange surfaces. Adsorption of Lys, HSA, and IgG to ion-exchange resins from stagnant solution leads to adsorbed multi-layers, into or onto which IgG adsorbs in adsorption competition experiments. Comparison of adsorption to ion-exchange resins and neutral ODS leads to the conclusion that the apparent standard free-energy of adsorption Delta Gads( degrees ) of Lys, HSA, and IgG is not large in comparison to thermal energy due to energy-compensating interactions between water, protein, and ion-exchange surfaces that leaves a small net Delta Gads( degrees ). Thus water is found to control protein adsorption to a full range of substratum types spanning hydrophobic (poorly water wettable) surfaces, hydrophilic surfaces bearing relatively-weak Lewis acid/base functionalities that wet with (hydrogen bond to) water but do not exhibit ion-exchange properties, and surfaces with strong Lewis acid/base functional groups that exhibit ion-exchange properties in the conventional chemistry sense of ion-exchange.
Collapse
|
22
|
|
23
|
Hehmeyer OJ, Arya G, Panagiotopoulos AZ, Szleifer I. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. J Chem Phys 2007; 126:244902. [PMID: 17614585 DOI: 10.1063/1.2747600] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.
Collapse
Affiliation(s)
- Owen J Hehmeyer
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
24
|
Ochkur OV, Demin AA. Cation exchangers for selective sorption of large proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:231-5. [PMID: 17142115 DOI: 10.1016/j.jchromb.2006.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/28/2006] [Accepted: 10/27/2006] [Indexed: 11/28/2022]
Abstract
The sorption of bovine serum albumin, cytochrom c and fibrinogen on the series of carboxylic cation-exchangers with various concentrations of ionogenic groups has been investigated. The dependence of sorption selectivity on protein size and on concentration of ionogenic groups was demonstrated.
Collapse
Affiliation(s)
- O V Ochkur
- Institute of Macromolecular Compounds, Russian Academy of Science, Bolshoi pr. 31, St. Petersburg, Russian Federation.
| | | |
Collapse
|
25
|
Szumski M, Kłodzińska E, Jarmalaviciene R, Maruska A, Buszewski B. Considerations on influence of charge distribution on determination of biomolecules and microorganisms and tailoring the monolithic (continuous bed) materials for bioseparations. ACTA ACUST UNITED AC 2007; 70:107-15. [PMID: 17137631 DOI: 10.1016/j.jbbm.2006.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
The importance of continuous beds (monoliths) as separation materials is connected with their better chromatographic properties and easier preparation in comparison to particulate-packed columns. Moreover the tuning of porosity as well as surface chemistry can lead to obtaining of highly selective materials, especially useful in separation of biologically important compounds or even microorganisms. To obtain high selectivity for such analytes as e.g. proteins, it is often important to have a knowledge about their shape, size, charge and finally charge distribution. This article presents our considerations on the charge distribution on the monolithic stationary phase and surface of such species as proteins or microorganisms as well as its eventual influence on the separation or sample preparation processes and tuning of their selectivity.
Collapse
Affiliation(s)
- Michał Szumski
- Department of Environmental Chemistry and Ecoanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87-100 Toruń, Poland
| | | | | | | | | |
Collapse
|
26
|
Kazakevich IL, Snow NH. Adsorption behavior of hexafluorophosphate on selected bonded phases. J Chromatogr A 2006; 1119:43-50. [PMID: 16574131 DOI: 10.1016/j.chroma.2006.02.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 02/03/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
The adsorption behavior of ammonium hexafluorophosphate was studied on four HPLC columns packed with adsorbents of different ability for dispersive interactions using frontal chromatography with LC/MS detection in negative ESI mode. Hexafluorophosphate (PF(6)(-)) adsorption isotherms were measured from acetonitrile/water and methanol/water mixtures. Increased PF(6)(-) adsorption with increased acetonitrile content was found between 0 and 15% of acetonitrile in the eluent. Further increase of the acetonitrile concentration leads to an exponential decrease of PF(6)(-) adsorption. Methanol, on the other hand, causes a steady decrease of PF(6)(-) adsorption with increased organic concentration in the mobile phase.
Collapse
Affiliation(s)
- I L Kazakevich
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | | |
Collapse
|
27
|
Nap R, Gong P, Szleifer I. Weak polyelectrolytes tethered to surfaces: Effect of geometry, acid–base equilibrium and electrical permittivity. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.20896] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Greene G, Radhakrishna H, Tannenbaum R. Protein binding properties of surface-modified porous polyethylene membranes. Biomaterials 2005; 26:5972-82. [PMID: 15890400 DOI: 10.1016/j.biomaterials.2005.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/23/2005] [Indexed: 11/23/2022]
Abstract
In this study, we quantified the adsorption of immunoglobulin G (IgG) protein onto several polyelectrolyte-modified sintered porous polyethylene (PPE) membranes. The polymer surfaces had both cationic and anionic charges obtained via the adsorption of polyethylenimine (PEI) and polyacrylic acid (PAA), respectively, onto plasma-activated PPE. The amount of IgG adsorption was determined by measuring the gamma radiation emitted by [125I]-IgG radio labeled protein. By studying the impact of pH and ionic strength on IgG adsorption, we attempted to characterize the role and nature of the electrostatic interactions involved in the adsorption process to better understand how these interactions were influenced by the charge and structure of immobilized polyelectrolyte complexes at modified membrane surfaces. We were able to show that surface modification of PPE membranes with adsorbed PEI monolayers and PEI-PAA bilayers can greatly improve the IgG binding ability of the membrane under optimized conditions. We also showed that the observed improvement in the IgG binding is derived from electrostatic interactions between IgG and the polyelectrolyte surface. In addition, we found that the greatest IgG adsorption occurred when the IgG and the surface possessed predominantly opposite charges, rather than when the surface possessed the greatest electrostatic charge. Finally, we have found that the molecular weight of the terminating polyelectrolyte has a noticeable effect upon the electrostatic interactions between IgG and the PEI-PAA bilayer-modified PPE surfaces.
Collapse
Affiliation(s)
- George Greene
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
29
|
Rezwan K, Meier LP, Gauckler LJ. A prediction method for the isoelectric point of binary protein mixtures of bovine serum albumin and lysozyme adsorbed on colloidal titania and alumina particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:3493-3497. [PMID: 15807593 DOI: 10.1021/la047288g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine serum albumin and lysozyme mixtures of different mole fractions were adsorbed to colloidal alumina (116 nm) and titania particle (271 nm) suspensions of 2 vol % solid content for 16 h at pH 7.5. The total protein amount normalized to the powder surface area was 1000 ng/cm2. The zeta potential of the protein-treated suspensions was measured as a function of pH and the isoelectric point (IEP) obtained. A simple prediction model in two refinement steps was derived and evaluated for the obtained IEPs. The best model fit which takes into account moles of protein and surface fractions yielded an average prediction error of 7.5% and a maximum error of 16.7%.
Collapse
Affiliation(s)
- Kurosch Rezwan
- Nonmetallic Inorganic Materials, Materials Department, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
30
|
Biesheuvel PM, van der Veen M, Norde W. A Modified Poisson−Boltzmann Model Including Charge Regulation for the Adsorption of Ionizable Polyelectrolytes to Charged Interfaces, Applied to Lysozyme Adsorption on Silica. J Phys Chem B 2005; 109:4172-80. [PMID: 16851479 DOI: 10.1021/jp0463823] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The equilibrium adsorption of polyelectrolytes with multiple types of ionizable groups is described using a modified Poisson-Boltzmann equation including charge regulation of both the polymer and the interface. A one-dimensional mean-field model is used in which the electrostatic potential is assumed constant in the lateral direction parallel to the surface. The electrostatic potential and ionization degrees of the different ionizable groups are calculated as function of the distance from the surface after which the electric and chemical contributions to the free energy are obtained. The various interactions between small ions, surface and polyelectrolyte are self-consistently considered in the model, such as the increase in charge of polyelectrolyte and surface upon adsorption as well as the displacement of small ions and the decrease of permittivity. These interactions may lead to complex dependencies of the adsorbed amount of polyelectrolyte on pH, ionic strength, and properties of the polymer (volume, permittivity, number, and type of ionizable groups) and of the surface (number of ionizable groups, pK, Stern capacity). For the adsorption of lysozyme on silica, the model qualitatively describes the gradual increase of adsorbed amount with pH up to a maximum value at pHc, which is below the iso-electric point, as well as the sharp decrease of adsorbed amount beyond pHc. With increasing ionic strength the adsorbed amount decreases (for pH > pHc), and pHc shifts to lower values.
Collapse
Affiliation(s)
- P Maarten Biesheuvel
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | | | | |
Collapse
|
31
|
|