1
|
Huffman BL, Bredar ARC, Dempsey JL. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat Rev Chem 2024:10.1038/s41570-024-00629-8. [PMID: 39039210 DOI: 10.1038/s41570-024-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses.
Collapse
Affiliation(s)
- Brittany L Huffman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria R C Bredar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Fu Y, Pan J, Liu Y, Lu C. Sulfonic Acid-Functionalized Tetraphenylethylene-Amplified Electrochemiluminescence by Regulating π-π Interaction. Anal Chem 2024. [PMID: 39031062 DOI: 10.1021/acs.analchem.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The electrochemiluminescence (ECL) effectiveness of the tris(bipyridine) ruthenium(II) (Ru(bpy)32+) system is hampered by aggregation-caused quenching (ACQ) in optoelectronic systems as a result of π-π accumulation of the aromatic ring structure. In this work, a negatively charged tetraphenylvinyl molecule (TPE-2SO3Na, TPE-4SO3Na) was synthesized to modify the electrode interface, and the π-π accumulation between Ru(bpy)32+ molecules was transformed into the π-π interaction between Ru(bpy)32+ and TPE molecules. Interestingly, the ECL signal intensity of the Ru(bpy)32+-tripropylamine (TPA) system in the presence of TPE-2SO3Na was increased by about 15 times due to the π-π action and electrostatic action. In comparison with traditional physical packaging with porous zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), the fabricated electrode interface modification strategy was simple and efficient to avoid π-π accumulation in aqueous solutions. Our success will inspire other researchers to investigate the supramolecular interaction (π-π interaction, electrostatic interaction, hydrophilic interaction, and host-guest interaction) at the electrode interface to amplify the ECL intensities of Ru(bpy)32+.
Collapse
Affiliation(s)
- Yizhuo Fu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jingke Pan
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Yuhao Liu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Osaki S, Saito M, Nagai H, Tamiya E. Surface Modification of Screen-Printed Carbon Electrode through Oxygen Plasma to Enhance Biosensor Sensitivity. BIOSENSORS 2024; 14:165. [PMID: 38667159 PMCID: PMC11048330 DOI: 10.3390/bios14040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.
Collapse
Affiliation(s)
- Shuto Osaki
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Masato Saito
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hidenori Nagai
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
| | - Eiichi Tamiya
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan (H.N.)
- SANKEN-The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| |
Collapse
|
4
|
Nwambaekwe KC, Ramoroka ME, Yussuf ST, Morudu TC, Ndipingwi MM, Iwuoha EI. Tb- and Eu-doped yttrium oxyselenides as novel absorber layers for superstrate thin-film photovoltaics: improved spectral optical absorption and green-red phosphor activation. NANOSCALE 2023; 15:17147-17172. [PMID: 37853791 DOI: 10.1039/d3nr01162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
To generate and deliver alternative sustainable energy in the face of the current energy crisis, new materials that can capture solar energy and transform it into other useful energies are required. Rare-earth (RE) oxychalcogenides are now being used more frequently as up/down-conversion materials in established photovoltaic (PV) devices to boost their PV performance. Here, through an efficient microwave assisted synthesis procedure, novel nanoplate/sheet shaped nanomaterials of yttrium oxyselenide (YOSe) and its analogues doped with Tb and Eu (YOSe:Tb and YOSe:Eu) were successfully synthesized. Analyses of the structure, stability, morphology, light absorption, and electrochemistry were performed. This work showed that the parent YOSe exhibited green (543 nm) and red (615 nm) emission luminescence when doped with Tb and Eu with a luminescence quantum yield (LQY) of 0.56 and 0.53 for YOSe:Tb and YOSe:Eu nanomaterials, respectively. The surface and material conductivity of YOSe improved with the addition of the dopant elements, with the best outcome shown in YOSe:Eu, according to electrokinetic research evidenced by the enhanced current peaks, reduced charge-transfer resistance (Rct) and low impedance magnitude (Zmag) through electrochemical experiments. These improvements were induced by the distinctive properties of the dopant elements. PCEs of 0.25%, 0.67%, and 1.20% were obtained for YOSe, YOSe:Tb, and YOSe:Eu-based PV devices, respectively, using the nanomaterials as novel absorber layers in a superstrate device design. Our results can initiate further exploitation of the doped host structure for effective down-conversion NIR luminescence for applications in PV devices and to boost the PV performance of existing solar cells.
Collapse
Affiliation(s)
- Kelechi C Nwambaekwe
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Morongwa E Ramoroka
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Sodiq T Yussuf
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Tshaamano C Morudu
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Miranda M Ndipingwi
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Emmanuel I Iwuoha
- Key Laboratory for NanoElectrochemistry, University of the Western Cape Sensor Laboratories (SensorLab), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
5
|
Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Pourali A. Recent Advances in Impedimetric Biosensors Focusing on Myocardial Infarction Diagnosis. Crit Rev Anal Chem 2022; 54:2134-2147. [PMID: 36576219 DOI: 10.1080/10408347.2022.2156771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute myocardial infarction is the most common cardiovascular disease and 85% of cardiovascular disease-related deaths are associated with it. The variation in the cardiac troponin concentration is considered as the most significant judge index for acute myocardial infarction diagnosis. Here, a comprehensive insights is given about the impedimetric methods as powerful electrochemical biosensing platforms for cardiac troponin evaluation. Focusing on nano materials, various impedimetric techniques including faradaic and non-faradaic techniques and different transducer modification techniques are addressed. The steps taken by each of the studied platforms to solve the existing problems are discussed and their advantages and drawbacks are highlighted. A glance at the provided table is given a mind into the features of each impedimetric sensors and their comparison are provided.
Collapse
Affiliation(s)
- Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, North Cyprus, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pourali
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Calvillo Solís JJ, Galicia García M, González Bravo FJ, Ortiz‐Ledón CA. Electrografting a
p
‐Propylaniline/L–Cys Nanofilm onto a Glassy Carbon Electrode Resulting in Enhanced Electrosensing of Cd(II), Pb(II) and Hg(II). ChemistrySelect 2022. [DOI: 10.1002/slct.202203592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Jonathan J. Calvillo Solís
- Department of Chemistry-Biological Sciences Universidad Autónoma de Ciudad Juárez 32300 Ciudad Juárez Chihuahua México
| | - Mónica Galicia García
- Department of Chemistry-Biological Sciences Universidad Autónoma de Ciudad Juárez 32300 Ciudad Juárez Chihuahua México
| | - Felipe J. González Bravo
- Department of Chemistry Centro de Investigación y de Estudios Avanzados del IPN 07360 México City México
| | - César A. Ortiz‐Ledón
- Department of Chemistry University of Wisconsin-Madison Madison Wisconsin 53706 United States
| |
Collapse
|
7
|
Drobysh M, Liustrovaite V, Baradoke A, Rucinskiene A, Ramanaviciene A, Ratautaite V, Viter R, Chen CF, Plikusiene I, Samukaite-Bubniene U, Slibinskas R, Ciplys E, Simanavicius M, Zvirbliene A, Kucinskaite-Kodze I, Ramanavicius A. Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies. Int J Mol Sci 2022; 23:ijms23126768. [PMID: 35743208 PMCID: PMC9223850 DOI: 10.3390/ijms23126768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Maryia Drobysh
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Viktorija Liustrovaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Alma Rucinskiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center of Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Vilma Ratautaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia;
- Center for Collective Use of Research Equipment, Sumy State University, 40000 Sumy, Ukraine
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan;
| | - Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Urte Samukaite-Bubniene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +37-060-032-332
| |
Collapse
|
8
|
Drobysh M, Liustrovaite V, Baradoke A, Rucinskiene A, Ramanaviciene A, Ratautaite V, Viter R, Chen CF, Plikusiene I, Samukaite-Bubniene U, Slibinskas R, Ciplys E, Simanavicius M, Zvirbliene A, Kucinskaite-Kodze I, Ramanavicius A. Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies. Int J Mol Sci 2022. [PMID: 35743208 DOI: 10.1149/1945-7111/ac5d91] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Maryia Drobysh
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Alma Rucinskiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center of Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Vilma Ratautaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
- Center for Collective Use of Research Equipment, Sumy State University, 40000 Sumy, Ukraine
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Ieva Plikusiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022; 302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
The ability to design nanoprobe devices with the capability of quantitative/qualitative operation in complex media will probably underpin the main upcoming progress in healthcare research and development. However, the biomolecules abundances in real samples can considerably alter the interface performance, where unwanted adsorption/adhesion can block signal response and significantly decrease the specificity of the assay. Herein, this review firstly offers a brief outline of several significances of fabricating high-sensitivity and low-background interfaces to adjust various targets' behaviors induced via bioactive molecules on the surface. Besides, some important strategies to resist non-specific protein adsorption and cell adhesion, followed by imperative categories of antifouling reagents utilized in the construction of high-performance solid sensory interfaces, are discussed. The next section specifically highlights the various nanocomposite probes based on antifouling-nanomaterials for electrode modification containing carbon nanomaterials, noble metal nanoparticles, magnetic nanoparticles, polymer, and silicon-based materials in terms of nanoparticles, rods, or porous materials through optical or chemical strategies. We specially outline those nanoprobes that are capable of identification in complex media or those using new constructions/methods. Finally, the necessity and requirements for future advances in this emerging field are also presented, followed by opportunities and challenges.
Collapse
|
10
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022. [PMID: 35072456 DOI: 10.1021/acs.analchem.1c04282/suppl_file/ac1c04282_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
11
|
Yun YR, Lee SY, Seo B, Kim H, Shin MG, Yang S. Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker. Talanta 2022; 238:123053. [PMID: 34801909 DOI: 10.1016/j.talanta.2021.123053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Blood cancers are difficult to cure completely and frequently show a poor prognosis. Recently, prohibitin 2 (PHB2) has been shown to be a potential biomarker for blood cancers. Sandwich ELISA can be used as a reference method for quantitative analysis of PHB2; however, ELISA can be challenging for early diagnosis and continuous monitoring method due to the need for large sample volumes (25 μL <), technical expertise, complex procedure, relative high cost, and non-portability. Thus, this study developed a sensitive and time efficient electrochemical immunosensor for detecting PHB2 from a blood cancer patient. It is a simple and portable platform consisting of a disposable electrode and blood sample volume of 4 μL. The sensor uses a gold nanostructured electrode and square wave voltammetry (SWV) measurement of a horseradish peroxidase (HRP) label to amplify the electrochemical signal. The immunosensor could quantitatively detect PHB2 with high sensitivity (limit of detection [LoD] = 0.04 ng/mL) and satisfactory reproducibility (relative standard deviation [RSD] <5.2%). The sensor achieved an LoD of 0.63 ng/mL with satisfactory recovery (89.1-104.7%) and reproducibility (RSD <6.4%) with PHB2 spiked into white blood cell (WBC) lysates. When the sensor was compared to a reference ELISA to determine the PHB2 concentrations in WBC lysate samples from healthy patients and those with blood cancer, the correlation coefficient (R2) was 0.996. A 3.3-fold difference was detected in the measured PHB2 concentration between blood cancer patients and healthy individuals. Accordingly, this study suggests a sensitive and accurate analytical method for quantitatively detecting the PHB2 in blood samples.
Collapse
Affiliation(s)
- Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Bokyung Seo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital (CNUHH), Hwasun, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; School of Mechanical Engineering, GIST, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022; 94:2465-2475. [PMID: 35072456 PMCID: PMC9096790 DOI: 10.1021/acs.analchem.1c04282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
biomolecular contents of extracellular vesicles, such as exosomes,
have been shown to be crucial in intercellular communication and disease
propagation. As a result, there has been a recent surge in the exploration
of novel biosensing platforms that can sensitively and specifically
detect exosomal content such as proteins and nucleic acids, with a
view toward application in diagnostic assays. Here, we demonstrate
dual-mode and label-free detection of plasma exosomes using an electrochemical
quartz crystal microbalance with dissipation monitoring (EQCM-D).
The platform adopts a direct immunosensing approach to effectively
capture exosomes via their surface protein expression of CD63. By
combining QCM-D with a tandem in situ electrochemical impedance spectroscopy
measurement, we are able to demonstrate relationships between mass,
viscoelasticity and impedance inducing properties of each functional
layer and analyte. In addition to lowering the limit of detection
(by a factor of 2–4) to 6.71 × 107 exosome-sized
particles (ESP) per mL in 25% v/v serum, the synergy between dissipation
and impedance response introduces improved sensing specificity by
offering further distinction between soft and rigid analytes, thereby
promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
13
|
Rahpeima S, Dief EM, Ciampi S, Raston CL, Darwish N. Impermeable Graphene Oxide Protects Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38799-38807. [PMID: 34342425 DOI: 10.1021/acsami.1c06495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of a natural silicon oxide (SiOx) layer over the surface of silicon (Si) has been a roadblock for hybrid semiconductor and organic electronics technology. The presence of an insulating oxide layer is a limiting operational factor, which blocks charge transfer and therefore electrical signals for a range of applications. Etching the SiOx layer by fluoride solutions leaves a reactive Si-H surface that is only stable for few hours before it starts reoxidizing under ambient conditions. Controlled passivation of silicon is also of key importance for improving Si photovoltaic efficiency. Here, we show that a thin layer of graphene oxide (GOx) prevents Si surfaces from oxidation under ambient conditions for more than 30 days. In addition, we show that the protective GOx layer can be modified with molecules enabling a functional surface that allows for further chemical conjugation or connections with upper electrodes, while preserving the underneath Si in a nonoxidized form. The GOx layer can be switched electrochemically to reduced graphene oxide, allowing the development of a dynamic material for molecular electronics technologies. These findings demonstrate that 2D materials are alternatives to organic self-assembled monolayers that are typically used to protect and tune the properties of Si and open a realm of possibilities that combine Si and 2D materials technologies.
Collapse
Affiliation(s)
- Soraya Rahpeima
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Essam M Dief
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
14
|
Laschuk NO, Easton EB, Zenkina OV. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv 2021; 11:27925-27936. [PMID: 35480766 PMCID: PMC9038008 DOI: 10.1039/d1ra03785d] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Ontario Tech University 2000 Simcoe St N Oshawa ON L1G 0C5 Canada
| | - E Bradley Easton
- Ontario Tech University 2000 Simcoe St N Oshawa ON L1G 0C5 Canada
| | - Olena V Zenkina
- Ontario Tech University 2000 Simcoe St N Oshawa ON L1G 0C5 Canada
| |
Collapse
|
15
|
Steinrück HG. Modeling cyclic voltammetry during solid electrolyte interphase formation: Baseline scenario of a dynamically evolving tunneling barrier resulting from a homogeneous single-phase insulating film. J Chem Phys 2021; 154:174703. [PMID: 34241083 DOI: 10.1063/5.0049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The solid electrolyte interphase (SEI) is an insulating film on anode surfaces in Li-ion batteries, which forms via the reaction of Li ions with reduced electrolyte species. The SEI leads to a reduction in the electrochemical current in heterogeneous electrochemical redox reactions at the electrode/electrolyte interface. Hence, the growth of the SEI is, in principle, self-limited. Toward our ultimate goal of an improved understanding of SEI formation, we develop a baseline quantitative model within Butler-Volmer electrode kinetics, which describes the cyclic voltammetry (CV) of a flat macroelectrode during SEI growth. Here, the SEI building up electrochemically during CV forms a homogeneous single-phase electronically insulating thin film due to the corresponding current. The model is based on a dynamically evolving electron tunneling barrier with increasing film thickness. Our objective is to provide a framework, which allows for both the qualitative, intuitive interpretation of characteristic features of CV measurements and the quantitative extraction of physicochemical parameters via model fitting. We also discuss the limitations of the baseline model and give a brief outlook for improvements. Finally, comparisons to exemplary CVs from the literature relevant to Li-ion battery science are presented.
Collapse
|
16
|
Tortolini C, Capecchi E, Tasca F, Pofi R, Venneri MA, Saladino R, Antiochia R. Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-Friendly Biosensing Development. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:718. [PMID: 33809211 PMCID: PMC8001205 DOI: 10.3390/nano11030718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Novel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the gold bare electrode, an evident decrease in the faradaic current and increase of the ΔEp were observed in cyclic voltammograms. In addition, larger semicircles were registered in Nyquist plots. These results suggest a strong inhibition effect of the electron transfer reaction by LNPs layer, especially in the case of KLNPs. The modified electrodes, properly assembled with concanavalin A (ConA) and glucose oxidase (GOx), were successively tested as biosensing platforms for glucose, showing a sensitivity of (4.53 ± 0.467) and (13.74 ± 1.84) μA mM-1 cm2 for Au/SAMCys/OLNPs/ConA/GOx and Au/KLNPs/ConA/GOx biosensors, respectively. Finally, different layers of the KNLPs/ConA/GOx-modified Au electrode were tested, and the three-layered Au(KNLPs/ConA/GOx)3 showed the best analytical performance.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Eliana Capecchi
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile;
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
17
|
Ahmad HMN, Dutta G, Csoros J, Si B, Yang R, Halpern JM, Seitz WR, Song E. Stimuli-Responsive Templated Polymer as a Target Receptor for a Conformation-based Electrochemical Sensing Platform. ACS APPLIED POLYMER MATERIALS 2021; 3:329-341. [PMID: 33748761 PMCID: PMC7971449 DOI: 10.1021/acsapm.0c01120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of highly crosslinked molecularly imprinted polymers as a synthetic target receptor has the limitations of restricted accessibility to the binding sites resulting in slow response time. Moreover, such artificial receptors often require additional transduction mechanisms to translate target binding events into measurable signals. Here, we propose the development of a single-chain stimuli-responsive templated polymer, without using any covalent interchain crosslinkers, as a target recognition element. The synthesized polymer chain exhibits preferential binding with the target molecule with which the polymer is templated. Moreover, upon specific target recognition, the polymer undergoes conformation change induced by its particular stimuli responsiveness, namely the target binding event. Such templated single-chain polymers can be attached to the electrode surface to implement a label-free electrochemical sensing platform. A target analyte, 4-nitrophenol (4-NP), was used as a template to synthesize a poly-N-isopropylacrylamide (PNIPAM)-based copolymer chain which was anchored to the electrode to be used as a selective receptor for 4-NP. The electrode surface chemistry analysis and the electrochemical impedance study reveal that the polymer concentration, the interchain interactions, and the Hofmeister effect play a major role in influencing the rate of polymer grafting as well as the morphology of the polymers grafted to the electrode. We also show that the specific binding between 4-NP and the copolymer results in a substantial change in the charge transfer kinetics at the electrode signifying the polymer conformation change.
Collapse
Affiliation(s)
- Habib M. N. Ahmad
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Gaurab Dutta
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - John Csoros
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Bo Si
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Rongfang Yang
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - W. Rudolf Seitz
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
- Materials Science Program, University of New Hampshire, Durham, NH 03824, United States
- Corresponding Author: Edward Song, . Phone: +1-603-862-5498
| |
Collapse
|
18
|
Çelik HH, Özcan S, Mülazımoğlu AD, Yılmaz E, Mercimek B, Çukurovalı A, Yılmaz İ, Solak AO, Mülazımoğlu İE. The synthesis of a novel DDPHC diazonium salt: Investigation of its usability in the determination of phenol and chlorophenols using CV, SWV and DPV techniques. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Dalkıran B. Amperometric determination of heavy metal using an HRP inhibition biosensor based on ITO nanoparticles-ruthenium (III) hexamine trichloride composite: Central composite design optimization. Bioelectrochemistry 2020; 135:107569. [PMID: 32464529 DOI: 10.1016/j.bioelechem.2020.107569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023]
Abstract
A novel horseradish peroxidase (HRP) enzyme inhibition biosensor based on indium tin oxide (ITO) nanoparticles, hexaammineruthenium (III) chloride (RUT), and chitosan (CH) modified glassy carbon electrode (GCE) was developed. The biosensor fabrication process was investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The amounts of ITO nanoparticles and RUT were optimized using a 22 central composite design for the optimization of electrode composition. The detection limits were determined as 8 nM, 3 nM, and 1 nM for Pb2+, Ni2+, and Cd2+, respectively. The inhibition calibration curves of the biosensor were found to be within the range of 0.009-0.301 µM with a sensitivity of 11.97 µA µM-1 cm-2 (0.85 µA µM-1) for Pb2+, 0.011-0.368 µM with a sensitivity of 10.84 µA µM-1 cm-2 (0.77 µA µM-1) for Ni2+, and 0.008-0.372 µM with a sensitivity of 10.99 µA µM-1 cm-2 (0.78 µA µM-1) for Cd2+. The type of HRP inhibition by Pb2+, Ni2+ and Cd2+ was investigated by the Dixon and Cornish-Bowden plots. The effects of possible interfering species on the biosensor response were examined. The analysis of Pb2+, Ni2+, and Cd2+ in tap water was demonstrated using the HRP/ITO-RUT-CH/GCE with satisfactory experimental results. The proposed method agreed with the atomic absorption spectrometry results.
Collapse
Affiliation(s)
- Berna Dalkıran
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
20
|
Picomolar-sensitive impedimetric sensor for salivary calcium analysis at POC based on SAM of Schiff base–modified gold electrode. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04500-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lin PH, Li BR. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020; 145:1110-1120. [DOI: 10.1039/c9an02017a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| |
Collapse
|
22
|
Impedimetric Immunosensor Utilizing Polyaniline/Gold Nanocomposite-Modified Screen-Printed Electrodes for Early Detection of Chronic Kidney Disease. SENSORS 2019; 19:s19183990. [PMID: 31527396 PMCID: PMC6767334 DOI: 10.3390/s19183990] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/15/2023]
Abstract
The presence of small amounts of human serum albumin (HSA) in urine or microalbuminuria (30–300 µg/mL) is a valuable clinical biomarker for the early detection of chronic kidney disease (CKD). Herein, we report on the development of an inexpensive and disposable immunosensor for the sensitive, specific, and label-free detection of HSA using electrochemical impedance spectroscopy (EIS). We have utilized a simple one-step screen-printing protocol to fabricate the carbon-based three-electrode system on flexible plastic substrates. To enable efficient antibody immobilization and improved sensitivity, the carbon working electrode was sequentially modified with electropolymerized polyaniline (PANI) and electrodeposited gold nanocrystals (AuNCs). The PANI matrix serves as an interconnected nanostructured scaffold for homogeneous distribution of AuNCs and the resulting PANI/AuNCs nanocomposite synergically improved the immunosensor response. The PANI/AuNCs-modified working electrode surface was characterized using scanning electron microscopy (SEM) and the electrochemical response at each step was analyzed using EIS in a ferri/ferrocyanide redox probe solution. The normalized impedance variation during immunosensing increased linearly with HSA concentration in the range of 3–300 µg/mL and a highly repeatable response was observed for each concentration. Furthermore, the immunosensor displayed high specificity when tested using spiked sample solutions containing different concentrations of actin protein and J82 cell lysate (a complex fluid containing a multitude of interfering proteins). Consequently, these experimental results confirm the feasibility of the proposed immunosensor for early diagnosis and prognosis of CKD at the point of care.
Collapse
|
23
|
Kaur S, Kaur I. Self‐assembly of p‐Aminothiophenol on Gold Surface: Application for Impedimetric and Potentiometric Sensing of Cobalt (II) Ions – A Comparative Study. ELECTROANAL 2019. [DOI: 10.1002/elan.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| |
Collapse
|
24
|
Ahmad HMN, Si B, Dutta G, Csoros JR, Seitz WR, Song E. NON-ENZYMATIC ELECTROCHEMICAL DETECTION OF GLUTAMATE USING TEMPLATED POLYMER-BASED TARGET RECEPTORS. INTERNATIONAL SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS CONFERENCE : [PROCEEDINGS]. INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS, AND MICROSYSTEMS 2019; 2019:613-616. [PMID: 32719735 PMCID: PMC7384742 DOI: 10.1109/transducers.2019.8808688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a novel electrochemical biosensing platform for the detection of neurotransmitter glutamate using templated polymer-based target receptors. Our sensing approach demonstrates, for the first time, a non-enzymatic approach without the need of glutamate oxidase, leading to a more specific and rapid response. The proposed detection principle is based on the following two claims: (1) our templated polymer-based receptor results in specific molecular recognition of the target glutamate and, (2) upon target binding, the polymer undergoes a conformation change which can then be measured via electrochemical techniques. This sensing platform has the potential to provide direct monitoring of a variety of non-electroactive species and to eliminate the incorporation of enzymes thereby providing a simpler and more robust alternative to enzyme-based sensors.
Collapse
Affiliation(s)
- Habib M N Ahmad
- Department of Electrical and Computer Engineering, University of New Hampshire, USA
| | - Bo Si
- Department of Electrical and Computer Engineering, University of New Hampshire, USA
| | - Gaurab Dutta
- Department of Electrical and Computer Engineering, University of New Hampshire, USA
| | - John R Csoros
- Department of Chemistry, University of New Hampshire, USA
| | | | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, USA
| |
Collapse
|
25
|
Kaur A, Kaur S, Sharma M, Kaur I. Self-assembled monolayers of 3‑Hydroxy‑N‑(5‑mercapto‑1,3,4‑thiadiazol‑2‑yl) benzamide (HMTB): A platform for Impedimetric sensing of Co(II). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens Bioelectron 2018; 127:25-30. [PMID: 30583283 DOI: 10.1016/j.bios.2018.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gold electrodes have been used in a wide range of electrochemical biosensors because their functionalization process with thiols has been well described and, in general, they offer good chemical stability. However, one of the most commonly used redox-pairs in electrochemical impedance spectroscopy, Hexacyanoferrate (II)/(III), causes corrosion of the gold electrodes and consequently damages the surface modification. This leads to alterations of the sensing signals, and thus, renders the quantitative and sensitive detection of target molecules virtually impossible. To overcome this problem we introduced the in-situ generation of Hexaammineruthenium (II)/(III) as redox-pair during the impedimetric measurement by applying a DC-bias. This DC-bias was chosen in such a way that it supplied Hexaammineruthenium (II) in a suitable concentration at the electrode surface by reducing Hexaammineruthenium (III). We compared the stability of photolithographically fabricated thin-film and screen-printed gold electrodes in Hexacyanoferrate and Hexaammineruthenium solutions. Further, long-time characterization of the electrochemical properties with cyclic voltammetry and electrochemical impedance spectroscopy revealed that Hexaammineruthenium (II)/(III) was an excellent redox-pair for stable impedimetric measurements with gold electrodes. To demonstrate the suitability of Hexaammineruthenium for biosensing we applied it for the impedimetric detection of human-IgG. This biosensor exhibited a linear range from 11.3 ng/mL to 113 μg/mL, which is a suitable range for diagnostic applications.
Collapse
|
27
|
Electrochemistry Study of Permselectivity and Interfacial Electron Transfers of a Branch-Tailed Fluorosurfactant Self-Assembled Monolayer on Gold. Molecules 2018; 23:molecules23112998. [PMID: 30453539 PMCID: PMC6278534 DOI: 10.3390/molecules23112998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
We investigated the permselectivity and interfacial electron transfers of an amphiphilic branch-tailed fluorosurfactant self-assembled monolayer (FS-SAM) on a gold electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FS-SAM was prepared by a self-assembly technique and a "click" reaction. The barrier property and interfacial electron transfers of the FS-SAM were also evaluated using various probes with different features. The FS-SAM allowed a higher degree of permeation by small hydrophilic (Cl- and F-) electrolyte ions than large hydrophobic (ClO₄- and PF₆-) ones. Meanwhile, the redox reaction of the Fe(CN)₆3- couple was nearly completely blocked by the FS-SAM, whereas the electron transfer of Ru(NH₃)₆3+ was easier than that of Fe(CN)₆3-, which may be due to the underlying tunneling mechanism. For hydrophobic dopamine, the hydrophobic bonding between the FS-SAM exterior fluoroalkyl moieties and the hydrophobic probes, as well as the hydration resistance from the interior hydration shell around the oligo (ethylene glycol) moieties, hindered the transport of hydrophobic probes into the FS-SAM. These results may have profound implications for understanding the permselectivity and electron transfers of amphiphilic surfaces consisting of molecules containing aromatic groups and branch-tailed fluorosurfactants in their structures.
Collapse
|
28
|
A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Muñoz J, Montes R, Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Danyıldız Z, Uzun D, Calam TT, Hasdemir E. A voltammetric sensor based on glassy carbon electrode modified with 1H-1,2,4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Park S, Park JH, Hwang S, Kwak J. Programmable Electrochemical Rectifier Based on a Thin-Layer Cell. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20955-20962. [PMID: 28541653 DOI: 10.1021/acsami.7b02215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 μm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.
Collapse
Affiliation(s)
- Seungjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| | - Jun Hui Park
- Department of Chemistry Education and Institute of Fusion Science, Chonbuk National University , Jeonju 54896, Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University , Sejong 30019, Korea
| | - Juhyoun Kwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| |
Collapse
|
32
|
Sharma A, Bhattarai JK, Nigudkar SS, Pistorio SG, Demchenko AV, Stine KJ. Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: Implications for pore wetting. J Electroanal Chem (Lausanne) 2016; 782:174-181. [PMID: 28413373 PMCID: PMC5388453 DOI: 10.1016/j.jelechem.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is used to compare the apparent electron transfer rate constant (kapp) for a series of alkanethiol and of carbohydrate-terminated alkanethiol self-assembled monolayers (SAMs) on both flat gold and on nanoporous gold (np-Au). Using the surface area for np-Au determined by oxide stripping, the values of kapp for the alkanethiol modified np-Au are initially over two orders of magnitude smaller than the values found on flat Au. This result provides evidence that the diffusing redox probe Fe(CN)63-/4- only accesses a fraction of the np-Au surface after alkanethiol modification suggesting very limited wetting of the internal pores due to the hydrophobic nature of these surfaces. In contrast, for np-Au modified by carbohydrate-terminated (mannose or galactose) alkanethiols the values of kapp are about 10-40 fold smaller than on flat gold, suggesting more extensive access of the diffusing redox probe within the pores and better but still incomplete wetting, a result also found for modification of np-Au with mercaptododecanoic acid. A short chain PEG thiol derivative is found to result in a comparison of kapp values that suggests nearly complete wetting of the internal pores for this highly hydrophilic derivative. These results are of significance for the potential applications of SAM modified np-Au in electrochemical sensors, especially for those based on carbohydrate-protein recognition, or those of np-Au modified by SAMs with polar terminal groups.
Collapse
Affiliation(s)
- Abeera Sharma
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| | - Jay K Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| | - Swati S Nigudkar
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| | - Salvatore G Pistorio
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121
| |
Collapse
|
33
|
Operamolla A, Punzi A, Farinola GM. Synthetic Routes to Thiol-Functionalized Organic Semiconductors for Molecular and Organic Electronics. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alessandra Operamolla
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via Orabona 4 70126 Bari Italy
- CNR-ICCOM Istituto di Chimica dei Composti Organometallici; Via Orabona 4 70126 Bari Italy
| | - Angela Punzi
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via Orabona 4 70126 Bari Italy
| | - Gianluca M. Farinola
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via Orabona 4 70126 Bari Italy
- CNR-ICCOM Istituto di Chimica dei Composti Organometallici; Via Orabona 4 70126 Bari Italy
| |
Collapse
|
34
|
Ghanbari K, Moloudi M. Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal Biochem 2016; 512:91-102. [DOI: 10.1016/j.ab.2016.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
|
35
|
Yu Y, Zhang Q, Buscaglia J, Chang CC, Liu Y, Yang Z, Guo Y, Wang Y, Levon K, Rafailovich M. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst 2016; 141:4424-31. [DOI: 10.1039/c6an00375c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a real time potentiometric biosensor based on the 3D surface molecular imprinting was developed for CEA detection.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Jonathan Buscaglia
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | | | - Ying Liu
- ThINC Facility
- Advanced Energy Center
- Stony Brook
- USA
| | - Zhenhua Yang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yichen Guo
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yantian Wang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
36
|
Electrochemical studies on Li+/K+ ion exchange behaviour in K4Fe(CN)6 cathode material for Li, K-ion battery. J CHEM SCI 2015. [DOI: 10.1007/s12039-014-0759-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B 2015; 3:1921-1930. [DOI: 10.1039/c4tb01766h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of well-controlled bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymers were grafted to gold surfaces through an in situ aminolysis reaction to reduce protein adsorption and platelet adhesion.
Collapse
Affiliation(s)
- Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Chong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| |
Collapse
|
38
|
Saha S, Sarkar P, Turner APF. Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. ELECTROANAL 2014. [DOI: 10.1002/elan.201400332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Pissinis DE, Linarez Pérez OE, Cometto FP, López Teijelo M. Preparation and characterization of self assembled monolayers of 2-mercaptonicotinic acid on Au(111). J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Langmuir–Blodgett Approach to Investigate Antimicrobial Peptide–Membrane Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00003-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Mishra SK, Srivastava AK, Kumar D, Rajesh R. Bio-functionalized Pt nanoparticles based electrochemical impedance immunosensor for human cardiac myoglobin. RSC Adv 2014. [DOI: 10.1039/c4ra00105b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the covalent immobilization of three-dimensional carboxyl-functionalized Pt(MPA) nanoparticles with myoglobin protein antibody by carbodiimide coupling reaction deposited onto an indium-tin-oxide-coated glass plate for the construction of a bioelectrode.
Collapse
Affiliation(s)
- Sujeet K. Mishra
- CSIR-National Physical Laboratory
- New Delhi-110012, India
- Department of Applied Chemistry
- Delhi Technological University
- Delhi-110042, India
| | | | - Devendra Kumar
- Department of Applied Chemistry
- Delhi Technological University
- Delhi-110042, India
| | - Rajesh Rajesh
- CSIR-National Physical Laboratory
- New Delhi-110012, India
| |
Collapse
|
42
|
Xue Z, Lian H, Hu C, Feng Y, Zhang F, Liu X, Lu X. Electrochemical Reduction and Detection of Nitrobenzene Based on Porphyrin Composite-modified Glassy Carbon Electrode. Aust J Chem 2014. [DOI: 10.1071/ch13607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrocatalytic platform and electrochemical sensor for nitrobenzene using tetra(4-methoxyphenyl) porphyrin-functionalized N-doped ordered mesoporous carbon (TMPP/N-OMC) as sensitive material is reported. Glassy carbon electrodes modified with TMPP/N-OMC were characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode shows high electrocatalytic activity towards the reduction of nitrobenzene in sodium chloride solution (pH 7.00). Electrocatalytic reduction currents of nitrobenzene were found to be linearly related to concentration over the range 0.528 to 132.00 μM with a correlation coefficient of 0.9971 using a differential pulse voltammogram method. The detection limits were determined as 0.2162 μM at a signal-to-noise ratio of 3. The results show TMPP/N-OMC-modified glassy carbon electrodes open new opportunities for fast, simple, and sensitive field analysis of nitrobenzene.
Collapse
|
43
|
Umadevi S, Ganesh V, Berchmans S. Liquid crystal (LC) monolayer on Indium Tin Oxide (ITO): structural and electrochemical characterization. RSC Adv 2014. [DOI: 10.1039/c4ra00556b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Superior quality, stable monolayers of LC compounds on ITO substrates are found to be very effective in orienting bulk LC samples.
Collapse
Affiliation(s)
- S. Umadevi
- Electrodics and Electrocatalysis (EEC) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi 630 006, India
| | - V. Ganesh
- Electrodics and Electrocatalysis (EEC) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi 630 006, India
| | - Sheela Berchmans
- Electrodics and Electrocatalysis (EEC) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi 630 006, India
| |
Collapse
|
44
|
Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.136] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Lai CH, Chiang CY, Lin PC, Yang KY, Hua CC, Lee TC. Surface-engineered growth of AgIn₅S₈ crystals. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3530-3540. [PMID: 23551172 DOI: 10.1021/am401121w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The growth of semiconductor crystals and thin films plays an essential role in industry and academic research. Considering the environmental damage caused by energy consumption during their fabrication, a simpler and cheaper method is desired. In fact, preparing semiconductor materials at lower temperatures using solution chemistry has potential in this research field. We found that solution chemistry, the physical and chemical properties of the substrate surface, and the phase diagram of the multicomponent compound semiconductor have a decisive influence on the crystal structure of the material. In this study, we used self-assembled monolayers (SAMs) to modify the silicon/glass substrate surface and effectively control the density of the functional groups and surface energy of the substrates. We first employed various solutions to grow octadecyltrichlorosilane (OTS), 3-mercaptopropyl-trimethoxysilane (MPS), and mixed OTS-MPS SAMs. The surface energy can be adjusted between 24.9 and 50.8 erg/cm(2). Using metal sulfide precursors in appropriate concentrations, AgIn5S8 crystals can be grown on the modified substrates without any post-thermal treatment. We can easily adjust the nucleation in order to vary the density of AgIn5S8 crystals. Our current process can achieve AgIn5S8 crystals of a maximum of 1 μm in diameter and a minimum crystal density of approximately 0.038/μm(2). One proof-of-concept experiment demonstrated that the material prepared from this low temperature process showed positive photocatalytic activity. This method for growing crystals can be applied to the green fabrication of optoelectronic materials.
Collapse
Affiliation(s)
- Chia-Hung Lai
- Department of Chemical and Materials Engineering, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 2013; 42:5944-62. [DOI: 10.1039/c3cs60077g] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Ntsendwana B, Sampath S, Mamba BB, Arotiba OA. Photoelectrochemical oxidation of p-nitrophenol on an expanded graphite–TiO2 electrode. Photochem Photobiol Sci 2013; 12:1091-102. [DOI: 10.1039/c3pp25398h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Romdhani-Younes M, Gara I, Mezni A, Chaabouni MM. Synthesis of New Symmetric Disubstituted Dithioether Dithiols. PHOSPHORUS SULFUR 2012. [DOI: 10.1080/10426507.2012.668984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Moufida Romdhani-Younes
- a Laboratoire de Chimie Organique Structurale, Département de Chimie, Faculté des Sciences de Tunis , Université Tunis El Manar , Tunis , Tunisia
| | - Ines Gara
- a Laboratoire de Chimie Organique Structurale, Département de Chimie, Faculté des Sciences de Tunis , Université Tunis El Manar , Tunis , Tunisia
| | - Amine Mezni
- b Unité de Recherche Synthèse et Structure des Matériaux Inorganiques 99/UR12-30, Département de Chimie , Faculté des Sciences de Bizerte , Jarzouna , Tunisia
| | - Mohamed Moncef Chaabouni
- a Laboratoire de Chimie Organique Structurale, Département de Chimie, Faculté des Sciences de Tunis , Université Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
49
|
Lokesh KS, Chardon-Noblat S, Lafolet F, Traoré Y, Gondran C, Guionneau P, Guérente L, Labbé P, Deronzier A, Létard JF. One-step vs stepwise immobilization of 1-D coordination-based Rh-Rh molecular wires on gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11779-11789. [PMID: 22809216 DOI: 10.1021/la3012537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reaction of dimeric [Rh(II)(2)(phen)(2)(μ-OAc)(2)(MeCN)(2)](BF(4))(2) (phen =1,10-phenanthroline) with pyrazine (pz) in a 1:2 ratio leads to the new 1-D metal-metal-bonded coordination oligomer {[Rh(II)(2)(phen)(2)(μ-OAc)(2)(pz)](BF(4))(2)}(n) (Rh-Rhpz)(n) (1), where each Rh atom of the dimeric unit (Rh-Rh) is coordinated in the equatorial plane to a nitrogen atom of a rigid and linear bifunctionalized organic linker (pz). Single X-ray diffraction analysis reveals the 1-D straight oligomeric chain structure (molecular wire, MW) consists of alternating (Rh-Rh) units and pz linking ligands with free BF(4)(-) as counteranions, and each metal center has a slightly distorted octahedral arrangement. The presence of accessible labile MeCN groups on both ends of these MWs ("free ends") enables functionalization of a 4-mercaptopyridine-gold coordinating platform (Au/MP) to form in one step a layer of coordination oligomer (Au/MP(Rh-Rhpz)(n); n ≈ 50). Furthermore (Rh-Rhpz)(n) (n = 1-6) MWs were grafted to Au/MP surfaces by a conventional step-by-step assembly construction involving coordination reactions between the Rh dimer ([Rh(2)(phen)(2)(μ-OAc)(2)(MeCN)(2)](BF(4))(2) (2)) and pz. A detailed physicochemical study (UV-vis, RAIR, QCM-D, ellipsometry, contact angle measurements, as well as impedance spectroscopy and cyclic voltammetry) has been made during both assembly methods to characterize the resulting surface-anchored coordination molecular wire (CMW) layers (Au/MP(Rh-Rhpz)(n)). The results indicate that the immobilized molecular assemblies (MAs) were successfully fabricated using both methods of assembly. The efficiency of the two methods is discussed.
Collapse
Affiliation(s)
- Koodlur Sannegowda Lokesh
- Département de Chimie Moléculaire UMR 5250, Laboratoire de Chimie Inorganique Redox, Université Joseph Fourier-Grenoble1/CNRS, Institut de Chimie Moléculaire de Grenoble FR-CNRS-2607, BP53, Grenoble, F-38041, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oztekin Y, Tok M, Bilici E, Mikoliunaite L, Yazicigil Z, Ramanaviciene A, Ramanavicius A. Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|