1
|
Wang Z, Song H. Phase behaviors, properties and potential application of temperature-responsive microemulsions based on tropine ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Zhang H, Liang L, Xi H, Liu D, Li Z, Lin X. Effects of Fatty Alcohols with Different Chain Lengths on the Performance of Low pH Biomass-Based Foams for Radioactive Decontamination. Molecules 2022; 27:molecules27196627. [PMID: 36235162 PMCID: PMC9571055 DOI: 10.3390/molecules27196627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Compared with polymers and nanoparticles, fatty alcohols can not only increase the stability of foam, but also maintain better foamability at pH < 2, which is beneficial to reduce waste liquid and increase decontamination efficiency for radioactive surface pollution. However, different fatty alcohols have different hydrophobic chain lengths. The effects of fatty alcohols with different chain lengths on the performance of decontamination foam were studied at pH < 2, to assist in the selection of suitable fatty alcohols as foam stabilizers. Combined with betaine surfactant and phytic acid, biomass-based foams were synthesized using fatty alcohols with different chain lengths. When the hydrophobic tail groups of the fatty alcohol and the surfactant were the same, the foam showed the best performance, including the lowest surface tension, the highest liquid film strength, the greatest sag-resistance and the best stability. However, when the hydrophobic tail groups were different, the space between adjacent surface active molecules was increased by thermal motion of the excess terminal tail segments (a tail-wagging effect), and the adsorption density reduced on the gas-liquid interface, leading to increased surface tension and decreased liquid film strength, sag-resistance and stability. The use of decontamination foam stabilized by fatty alcohols with the same hydrophobic group as the surfactant was found to increase the decontamination rate of radioactive uranium pollution from 64 to over 90% on a vertical surface.
Collapse
Affiliation(s)
- Hao Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- School of Science, Xichang University, Xichang 615000, China
| | - Lili Liang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (H.X.); (X.L.)
| | - Datong Liu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhanguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaoyan Lin
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence: (H.X.); (X.L.)
| |
Collapse
|
3
|
Chen X, Zhan Y, Sun A, Feng Q, Yang W, Dong H, Chen Y, Zhang Y. Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Hosseinpour S, Götz V, Peukert W. Einfluss von Tensiden auf die molekulare Struktur der Öl/Wasser‐Grenzfläche. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saman Hosseinpour
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| | - Vanessa Götz
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| | - Wolfgang Peukert
- Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) Interdisziplinäres Zentrum für Funktionale Partikelsysteme (FPS) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Deutschland
| |
Collapse
|
6
|
Hosseinpour S, Götz V, Peukert W. Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface. Angew Chem Int Ed Engl 2021; 60:25143-25150. [PMID: 34478223 PMCID: PMC9293143 DOI: 10.1002/anie.202110091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 12/30/2022]
Abstract
The oil/water interface, for instance in emulsions, is often stabilized by surfactants. Hence, the co-existence of oil, water, and surfactant molecules at the buried oil/water interface determines macroscopic properties such as surface tension or emulsion stability. Utilizing an inherently surface sensitive spectroscopic method, sum frequency generation (SFG) spectroscopy, we show that adsorption of an anionic surfactant to the buried oil/water interface increases the magnitude of the interfacial electric field. Meanwhile, the degree of ordering of the interfacial oil molecules increases with the surfactant concentration owing to the intercalation of aliphatic chains of interfacial oil and surfactant molecules. At sufficiently high surfactant concentrations, the interfacial charge reaches a maximum value and the interfacial oil molecules arrange in a fully ordered conformation, a state which coincides with the significant decrease in interfacial tension and increased emulsion stability.
Collapse
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| | - Vanessa Götz
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG)Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Cauerstrasse 491058ErlangenGermany
| |
Collapse
|
7
|
Zhao J, Dai Y, Gao J, Deng Q, Wan C, Li B, Zhou B. Desalted duck egg white nanogels combined with κ‐carrageenan as stabilisers for food‐grade Pickering emulsion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jingyun Zhao
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Yalei Dai
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Jin Gao
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing Ministry of Agriculture and Rural Affairs Wuhan 430062 China
| | - Chuyun Wan
- Key Laboratory of Oilseeds Processing Ministry of Agriculture and Rural Affairs Wuhan 430062 China
| | - Bin Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
8
|
Ferreira da Silveira TF, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Durand E, Figueroa-Espinoza MC, Baréa B, Barouh N, Castro IA, Villeneuve P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Dai X, Qiang X, Yao T, Chen P. Magnetic Microemulsions Stabilized by Alkyltrimethylammonium-Based Magnetic Ionic Liquids Surfactants (MILSs). J Phys Chem B 2021; 125:1846-1851. [PMID: 33570956 DOI: 10.1021/acs.jpcb.0c09305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While traditional microemulsions are versatile media for nanoscience and nanotechnology, stimulus-responsive microemulsions are more challenging to realize, and only a handful of cases have been reported. We here introduce magnetic microemulsions (MMEs) stabilized by alkyltrimethylammonium-based magnetic ionic liquids surfactants (MILSs), paired with water as the polar phase, aliphatic oils as the nonpolar phase, and aliphatic alcohols as the cosurfactant. n-Hexane coupled with n(MILSs/1-butanol) = 1:4 showed the most excellent ability to form MMEs, and the range of the monophasic region was expanded with increasing alkyl chain length of MILSs cation. Classical oil-in-water (O/W), bicontinuous (BC) sponge structure, and inverse water-in-oil (W/O) subregions were clarified by conductivity method. Dynamic light scattering showed that the diameter of W/O microemulsions droplets were about 2-6 nm. Magnetic susceptibility and rheological measurements revealed that these MMEs are with high magnetic susceptibility and low viscosity, which show interesting potential applications based on a manipulation via external magnetic field. Moreover, these MMEs showed Newtonian-like flow behavior within respective subregions, and their magnetic susceptibility was not affected by the subregion structure but MILSs mass fraction.
Collapse
Affiliation(s)
- Xuezhi Dai
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.,Institute of Systems Engineering, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Xiaolian Qiang
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany
| | - Tian Yao
- West China School of Pharmacy, Sichuan University, 610041 Chengdu, China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, 610039 Chengdu, China
| |
Collapse
|
10
|
Wang Y, Luo S, Chen A, Shang C, Peng L, Shao J, Liu Z. Environmentally friendly kaolin-coated meshes with superhydrophilicity and underwater superoleophobicity for oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Utilization of ultra-light carbon foams for the purification of emulsified oil wastewater and their adsorption kinetics. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Dai X, Qiang X, Gao J, Teng J, Zang H, Song H. Phase behaviors and characterization of magnetic microemulsions containing pentaalkylguanidinium-based magnetic room-temperature ionic liquids (MRTILs). NEW J CHEM 2018. [DOI: 10.1039/c8nj01049h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strong magnetic susceptibility and low viscosity magnetic microemulsions containing pentaalkylguanidinium-based magnetic room temperature ionic liquids.
Collapse
Affiliation(s)
- Xuezhi Dai
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaolian Qiang
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang 621900
- China
- Department of Physical Chemistry and Centre for Nanointegration (CENIDE)
| | - Jing Gao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Juan Teng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Huimin Zang
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
13
|
Yu B, Zhang H, Cong H, Gu C, Gao L, Yang B, Usman M. Diazoresin modified monodisperse porous poly(glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography. NEW J CHEM 2017. [DOI: 10.1039/c6nj04001b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazoresin modified monodisperse porous PGMA–DVB microspheres were used as a novel tool for the separation and purification of the N-vinyl-1,2,4-triazole product from its by-product was developed.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hongbo Zhang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bo Yang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
14
|
Tuning Interfacial Activity of Polymeric Resin–Surfactant/n-Alcohol Solution Interactions. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1849-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Jiao M, Wu ZL, Liu Y, Liu W, Li R. Surfactant-assisted separation of ginkgo flavonoids fromGinkgo bilobaleaves using leaching and foam fractionation. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Jiao
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Zhao Liang Wu
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Yan Liu
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Wei Liu
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Rui Li
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| |
Collapse
|
16
|
Ng SK, Choong YH, Tan CP, Long K, Nyam KL. Effect of total solids content in feed emulsion on the physical properties and oxidative stability of microencapsulated kenaf seed oil. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Polat BE, Lin S, Mendenhall JD, VanVeller B, Langer R, Blankschtein D. Experimental and molecular dynamics investigation into the amphiphilic nature of sulforhodamine B. J Phys Chem B 2011; 115:1394-402. [PMID: 21222449 PMCID: PMC3037431 DOI: 10.1021/jp109866q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces a significant decrease in the cmc of SDS. Molecular dynamics simulations were conducted to gain a deeper understanding of these findings. The simulations revealed that SRB has defined polar "head" and nonpolar "tail" regions when adsorbed at the air/water interface as a monomer. In contrast, when incorporated into SDS micelles, only the sulfonate groups were found to be highly hydrated, suggesting that the majority of the SRB molecule penetrates into the micelle. To illustrate the implications of the amphiphilic nature of SRB, an interesting case study involving the effect of SRB on ultrasound-mediated transdermal drug delivery is presented.
Collapse
Affiliation(s)
- Baris E. Polat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shangchao Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan D. Mendenhall
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brett VanVeller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Liu J, Li L, Miao C, Tian Q, Ran Q, Wang Y. Characterization of the monolayers prepared from emulsions and its effect on retardation of water evaporation on the plastic concrete surface. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Rojas O, Koetz J, Kosmella S, Tiersch B, Wacker P, Kramer M. Structural studies of ionic liquid-modified microemulsions. J Colloid Interface Sci 2009; 333:782-90. [DOI: 10.1016/j.jcis.2009.02.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/13/2009] [Accepted: 02/14/2009] [Indexed: 01/16/2023]
|
20
|
Lane TJ, Cheng CYH, Dixon MC, Oom A, Johal MS. Quartz Resonator-Based Approach to Ultrasonic Rheology of a Mixed-Phase Micellar System. Anal Chem 2008; 80:7840-5. [DOI: 10.1021/ac800861s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. Lane
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, and Q-Sense Inc., 808 Landmark Drive, Suite 124, Glen Burnie, Maryland 21061
| | - Connie Y. H. Cheng
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, and Q-Sense Inc., 808 Landmark Drive, Suite 124, Glen Burnie, Maryland 21061
| | - Matthew C. Dixon
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, and Q-Sense Inc., 808 Landmark Drive, Suite 124, Glen Burnie, Maryland 21061
| | - Anna Oom
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, and Q-Sense Inc., 808 Landmark Drive, Suite 124, Glen Burnie, Maryland 21061
| | - Malkiat S. Johal
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, and Q-Sense Inc., 808 Landmark Drive, Suite 124, Glen Burnie, Maryland 21061
| |
Collapse
|