1
|
Alouk I, Lv W, Chen W, Miao S, Chen C, Wang Y, Xu D. Encapsulation of Monascus pigments in gel in oil in water (G/O/W) double emulsion system based on sodium caseinate and guar gum. Int J Biol Macromol 2024; 285:138232. [PMID: 39626818 DOI: 10.1016/j.ijbiomac.2024.138232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
In this study, a gel in oil in water (G/O/W) double emulsion system was developed with the objective of effectively encapsulating Monascus pigments and enhancing its stability. To this end, various formulations were prepared using guar gum co-dissolved with Monascus pigments in the internal phase and sodium caseinate as an outer phase surfactant. Different parameters were examined, including emulsion stability, encapsulation efficiency, rheological and tribological properties, as well as the light and thermal stability of the encapsulated Monascus pigments. The results demonstrated that Monascus pigments were effectively encapsulated in the G/O/W, with an encapsulation efficiency exceeding 90 %. The formulated system exhibited a relatively small particle size, which decreased with increasing guar gum and the external emulsifier contents. This resulted in an increase in viscosity accompanied by the formation of a gel-like structure and improved tribological properties, thereby enhancing the system's stability. The system with 1-1.25 % guar gum and 2.5 % sodium caseinate exhibited the highest stability for Monascus pigments, making them more resistant to heat and light. These findings have the potential to expand applications of Monascus pigments by providing a stable and effective encapsulation and delivery system that can also be utilized in the development of healthier food products.
Collapse
Affiliation(s)
- Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Chao Chen
- Tianmeijian Biotechnology (Beijing) Co. Ltd, Beijing 100101, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Hunter SJ, György C. Sub-micron colloidosomes with tuneable cargo release prepared using epoxy-functional diblock copolymer nanoparticles. J Colloid Interface Sci 2024; 675:999-1010. [PMID: 39003819 DOI: 10.1016/j.jcis.2024.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
HYPOTHESIS Pickering emulsions stabilized using epoxy-functional block copolymer nanoparticles should enable the formation of sub-micron colloidosomes that are stable with respect to Ostwald ripening and allow tuneable small-molecule cargo release. EXPERIMENTS Epoxy-functional diblock copolymer nanoparticles of 24 ± 4 nm were prepared via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization of methyl methacrylate (MMA) in n-dodecane. Sub-micron water-in-n-dodecane Pickering emulsions were prepared by high-pressure microfluidization. The epoxy groups were then ring-opened using 3-aminopropyltriethoxysilane (APTES) to prepare cross-linked colloidosomes. The colloidosomes survived removal of the aqueous phase using excess solvent. The silica shell thickness could be adjusted from 11 to 23 nm by varying the APTES/GlyMA molar ratio. The long-term stability of the colloidosomes was compared to precursor Pickering emulsions. Finally, the permeability of the colloidosomes was examined by encapsulation and release of a small molecule. FINDINGS The Pickering emulsion droplet diameter was reduced from 700 to 200 nm by increasing the salt concentration within the aqueous phase. In the absence of salt, emulsion droplets were unstable due to Ostwald ripening. However, emulsions prepared with 0.5 M NaCl are stable for at least one month. The cross-linked colloidosomes demonstrated much more stable than the precursor sub-micron emulsions prepared without salt. The precursor nanoemulsions exhibited complete release (>99 %) of an encapsulated dye, while higher APTES/GlyMA ratios resulted in much lower dye release, yielding nearly impermeable silica capsules that retained around 95 % of the dye.
Collapse
Affiliation(s)
- Saul J Hunter
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Csilla György
- Dainton Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, UK
| |
Collapse
|
3
|
Xie W, Tang C, Zhang Y, Fan W, Qin J, Xiao H, Guo S, Tang Z. Effect of stigmasterol and polyglycerol polyricinoleate concentrations on the preparation and properties of rapeseed oil-based gel emulsions. Food Chem X 2024; 23:101636. [PMID: 39113734 PMCID: PMC11304884 DOI: 10.1016/j.fochx.2024.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Emulsion gels mimic the rheological properties of solid and semi-solid fats, offering a viable solution to replace conventional fats in low-fat food formulations. In this study, gel emulsions stabilized with stigmasterol (ST) and polyglycerol polyricinoleate (PGPR) complexes were prepared. Initially, we examined the effect of the ST/PGPR complex on the mechanism of gel emulsion stabilization. Our findings revealed that the gel emulsion formulated with 3% PGPR and ST exhibited a robust structure, effectively stabilizing the entire system and ensuring uniform distribution, and increasing ST concentration led to greater stability of the gel emulsion system. Stability assessments demonstrated that gel emulsions containing 3% PGPR and varying ST concentrations exhibited remarkable thermal stability and effectively delayed oil oxidation. These results underscore the high stability of gel emulsions stabilized with the ST/PGPR complex, highlighting their potential as a margarine substitute.
Collapse
Affiliation(s)
- Wenjie Xie
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Caili Tang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Yu Zhang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Jingping Qin
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Singh A, Sharma T, Abdullah MMS, Trivedi JJ. Effect of a Natural Surfactant (Fenugreek Seeds) on Emulsification and Mobilization of Paraffins via Pore-Scale Micromodel Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39143921 DOI: 10.1021/acs.langmuir.4c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The surface characteristics of minerals have been crucial in predicting the interactions between chemicals, particularly in chemical flooding. Thus, this paper evaluates the viability of natural surfactants derived from agricultural products for oil recovery studies using a micromodel filled with paraffinic oil. The study investigates the interfacial tension, viscosity, microscopic, dilution, and oil mobilization characteristics of the natural surfactants. The experimental setup involves conducting interfacial tension measurements between the surfactant solution and paraffinic oil using the Wilhelmy plate method and was found to be 14.2, 10.92, and 9.8 mN/m. Additionally, viscosity measurements and frequency sweep analysis were performed to assess the rheological properties of the prepared emulsion, which was stabilized using a natural surfactant. Microscopic evaluation depicts that, among the prepared emulsions, n-heptane emulsion seems more stable at both 30 and 90 °C. Moreover, dilution studies were conducted for each emulsion system, and the dilution ratio was varied from 1:5 to 1:1 (emulsion/saline solution). It was found that n-heptane emulsion possesses better stability at higher dilution (until a 3:5 ratio). Oil mobilization studies are conducted using a glass micromodel to simulate reservoir conditions and observe the displacement efficiency of the surfactant solutions. The results indicate that natural surfactants exhibit competitive interfacial tension reduction and viscosity modification properties compared to commercial surfactants. Furthermore, oil mobilization studies demonstrate the effectiveness of natural surfactants in enhancing oil recovery from paraffinic oil reservoirs. These findings suggest the potential of natural surfactants derived from agricultural products as sustainable alternatives for improving the oil recovery efficiency in petroleum reservoirs.
Collapse
Affiliation(s)
- Alpana Singh
- Enhanced Oil Recovery Laboratory, Department of Petroleum Engineering and Geo-engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India
| | - Tushar Sharma
- Enhanced Oil Recovery Laboratory, Department of Petroleum Engineering and Geo-engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Japan J Trivedi
- School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
5
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
6
|
Yao X, Teng W, Wang J, Wang Y, Zhang Y, Cao J. Polyglycerol polyricinoleate and lecithin stabilized water in oil nanoemulsions for sugaring Beijing roast duck: Preparation, stability mechanisms and color improvement. Food Chem 2024; 447:138979. [PMID: 38518617 DOI: 10.1016/j.foodchem.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.
Collapse
Affiliation(s)
- Xinshuo Yao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Zhang Y, Xu J, Gong J, Li Y. Fabrication and Stability Improvement of Monoglyceride Oleogel/Polyglycerol Polyricinoleate-Stabilized W/O High Internal Phase Pickering Emulsions. Foods 2024; 13:1944. [PMID: 38928884 PMCID: PMC11203119 DOI: 10.3390/foods13121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
To decrease the lipid content in water-in-oil (W/O) emulsions, high internal phase Pickering W/O emulsions (HIPPE) were fabricated using magnetic stirring using a combination of monoglyceride (MAG) oleogel and polyglycerol polyacrylate oleate (PGPR) as stabilizers. Effects of MAGs (glyceryl monostearate-GMS, glycerol monolaurate-GML and glycerol monocaprylate-GMC) and internal phase components on the formation and properties of HIPPEs were investigated. The results showed that milky-white stabilized W/O HIPPE with up to 85 wt% aqueous phase content was successfully prepared, and the droplet interfaces presented a network of MAG crystals, independent of the MAG type. All HIPPEs exhibited great stability under freeze-thaw cycles but were less plastic. Meanwhile, GML-oleogel-based HIPPEs had larger particle size and were less thermal stable than GMS and GMC-based HIPPEs. Compared to guar gum, the internal phase components of sodium chloride and sucrose were more effective in reducing the particle size of HIPPEs, improving their stability and plasticity, and stabilizing them during 100-day storage. HIPPEs presented great spreadability, ductility and plasticity after whipping treatment. This knowledge provides a new perspective on the use of oleogels as co-stabilizers for the formation of W/O HIPPEs, which can be used as a potential substitute for creams.
Collapse
Affiliation(s)
- Yingzhu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinqi Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinhua Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
8
|
Wang Y, Guo Y, Dong P, Lin K, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Water-in-oil Pickering emulsion using ergosterol as an emulsifier solely. Food Res Int 2024; 186:114374. [PMID: 38729731 DOI: 10.1016/j.foodres.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
9
|
Chen H, Schumacher M, Ianiro A, Stank TJ, Janoszka N, Chen C, Azhdari S, Hellweg T, Gröschel AH. Photocleavable Polymer Cubosomes: Synthesis, Self-Assembly, and Photorelease. J Am Chem Soc 2024; 146:14776-14784. [PMID: 38668645 DOI: 10.1021/jacs.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Polymer cubosomes (PCs) are a recent class of self-assembled block copolymer (BCP) microparticles with an accessible periodic channel system. Most reported PCs consist of a polystyrene scaffold, which provides mechanical stability for templating but has a limited intrinsic functionality. Here, we report the synthesis of photocleavable BCPs with compositions suitable for PC formation. We analyze the self-assembly mechanism and study the model release of dyes during irradiation, where the transition of the BCPs from amphiphilic to bishydrophilic causes the rapid disassembly of the PCs. A combination of modeling and experiment shows that the evolution of PCs proceeds first via liquid-liquid phase separation into polymer-rich droplets, followed by microphase separation within this droplet confinement, and finally, membrane reorganization into high internal order. This insight may encourage exploration of alternative preparation strategies to better control the size and homogeneity of PCs.
Collapse
Affiliation(s)
- Hui Chen
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Marcel Schumacher
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Alessandro Ianiro
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Biophysics Group, Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Tim Julian Stank
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Nicole Janoszka
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Chen Chen
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
- Polymer Materials for Energy Storage (PES), Bavarian Center for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, Bayreuth 95448, Germany
| |
Collapse
|
10
|
Purkait A, Hazra DK, Kole R, Mandal S, Bhattacharrya S, Karmakar R. Harnessing the Carrier Solvent Complexity of Crop Biostimulant Liquid Formulations Using Locally Available Transesterified Waste Cooking Oil: Economic Recycling, Solvent Performance, and Bioefficacy Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1017-1024. [PMID: 38170676 DOI: 10.1021/acs.jafc.3c06167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Locally sourced waste cooking oil (WCO) was successfully base-catalyzed and transesterified with methanol into biodiesel to produce biostimulant (nitrobenzene) formulations and replace high-risk carrier solvents. Ideal synthesis conditions were composed of 1% NaOH, MeOH/oil molar ratio (6:1), reaction temperature (65 °C), a 3 h mixing rate, and 97-98% yields. Gas chromatography-mass spectrometry (GC-MS) analysis identified five fatty acid methyl esters (FAMEs) including palmitic, linoleic, oleic, stearic, and eicosenoic acids with high solubilization and olfactory characteristics. Using anionic and nonionic emulsifiers in conjunction with recycled biodiesel, a stable emulsifiable concentrate (NB 35% EC) was created with greater storage stability, wettability, and spreading capabilities than those of organic solvent-based ones. The highest counts of fruits per plant (35.80), flowers per plant (60.00), yield per plant (3.56 kg), and yield per hectare (143.7 quintals) were recorded in treatments with 4 mL/L biodiesel-based EC in field bioassays. In addition to having superior biosafety, FAME-based EC exhibits minimal phytotoxicity and is less harmful to aquatic creatures. It was discovered that the average cost-effectiveness was 5.49 times less expensive than solvent-based EC. In order to utilize waste oils as a locally obtained, sustainable alternative solvent with a wide solubilization range, low ecotax profile, circular economy, and high renewable carbon index, this integrative technique was expanded.
Collapse
Affiliation(s)
- Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli-Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Birbhum, 731 236 Sriniketan, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Ramen Kole
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Swagata Mandal
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Sudip Bhattacharrya
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| |
Collapse
|
11
|
Garg S, Chawla M, Dixit M, Sharma A, Singh M, Singh V, Ahmad SF, Attia SM. Mapping the psoriasis research landscape: A comprehensive bibliometric analysis from 2012-2023. Int J Immunopathol Pharmacol 2024; 38:3946320241290341. [PMID: 39393083 PMCID: PMC11492216 DOI: 10.1177/03946320241290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024] Open
Abstract
An extensive investigation explores the complex terrain of psoriasis, a persistent inflammatory dermatological disorder that impacts between 1% and 3% of the worldwide populace. Acknowledging the intricate interplay between environmental, genetic, and immunological influences on the etiology of psoriasis, the study utilizes sophisticated bibliometric techniques to investigate patterns, gaps in knowledge, and emergent trends within the field. The study utilizes advanced bibliometric techniques to analyze patterns, gaps in knowledge, and emerging trends in the field while acknowledging the intricate interplay between environmental, genetic, and immune-related influences on the etiology of psoriasis. An examination of 18,765 documents from December 2012 to December 2023 was conducted using machine learning techniques and the Scopus database. The explanation for conducting analysis is rooted in its capacity to provide significant perspectives on the dynamic progression of psoriasis research. The study facilitates the identification of significant subject areas, exposes patterns in publication trends, emphasizes influential authors and journals, and outlines the worldwide contributions to the field. The study demonstrates a steady and progressive increase in publications, with significant contributions from the Journal of the American Academy of Dermatology, the British Journal of Dermatology, and the Journal of the European Academy of Dermatology and Venereology. Prominent scholars in research output, such as the United States, China, and Germany, as well as authors including Feldman, Wu, Griffiths, Puig, and Reich K., are identified. Biochemistry, genetics, and molecular biology come to the forefront as esteemed fields that make substantial contributions to the study of psoriasis alongside medicine. This research highlights the interdisciplinary aspects of psoriasis by uncovering knowledge hubs and international collaborations between authors and organizations. The findings highlight the global reach of research on psoriasis and the importance of international cooperation.
Collapse
Affiliation(s)
- Sneha Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Muskan Chawla
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Muskan Dixit
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Arushal Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| |
Collapse
|
12
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. A novel reverse micelle based cationic double nanoemulsion as a potential nanoplatform for enhancing the anitglucomal activity of betaxolol hydrochloride; formulation, in vitro characterization, ex vivo permeation and in vivo pharmacodynamic evaluation in glaucomatous rabbits’ eyes. J Drug Deliv Sci Technol 2023; 90:105112. [DOI: 10.1016/j.jddst.2023.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
|
13
|
Koirala P, Sriprablom J, Winuprasith T. Anthocyanin-Rich Butterfly Pea Petal Extract Loaded Double Pickering Emulsion Containing Nanocrystalline Cellulose: Physicochemical Properties, Stability, and Rheology. Foods 2023; 12:4173. [PMID: 38002230 PMCID: PMC10671032 DOI: 10.3390/foods12224173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Butterfly pea petal extract (BPE)-loaded water-in-oil-in-water (W/O/W) emulsions were fabricated using nanocrystalline cellulose (NCC) as a hydrophilic stabilizer and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier. The impact of different concentrations of NCC and PGPR in different phase proportions on the emulsion formation, rheology, and stability of an anthocyanin-loaded (pH ≈ 7.0) emulsion was investigated. The mean droplet size of the emulsions increased as the NCC concentration increased, while color intensity (greenness) decreased as the PGPR and NCC concentrations increased. A microscopic examination confirmed that the NCC nanoparticles stabilized the inner W1/O phase, whereas the excess concentration of non-adsorbing NCC nanoparticles was suspended in the continuous aqueous phase. The rheological results showed that robust emulsion networks were formed when the NCC concentration increased. A network structure between the droplets and the development of the NCC network during the continuous phase were attributed to a gel-like behavior. Over the course of seven days, the emulsions with a higher proportion of NCC remained stable, as in samples 3%P-%N, 5%P-2%N, and 5%P@1%N, the total anthocyanin content decreased from 89.83% to 76.49%, 89.40% to 79.65, and 86.63% to 71.40%, respectively. These findings have significant implications for the accurate formulation of particle-stabilized double emulsions for anthocyanin delivery with higher stability.
Collapse
Affiliation(s)
| | | | - Thunnalin Winuprasith
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73070, Thailand; (P.K.); (J.S.)
| |
Collapse
|
14
|
Su C, De Meulenaer B, Van der Meeren P. Analytics and applications of polyglycerol polyricinoleate (PGPR)-Current research progress. Compr Rev Food Sci Food Saf 2023; 22:4282-4301. [PMID: 37583303 DOI: 10.1111/1541-4337.13223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Polyglycerol polyricinoleate (PGPR) is a synthetic food additive containing a complex mixture of various esters. In recent years, there has been a growing trend to use PGPR-stabilized water-in-oil (W/O) emulsions to replace fat in order to produce low-calorie food products. In this respect, it is essential to comprehensively characterize the PGPR molecular species composition, which might enable to reduce its required amount in emulsions and foods based on a better understanding of the structure-activity relationship. This review presents the recent research progress on the characterization and quantitative analysis of PGPR. The influencing factors of the emulsifying ability of PGPR in W/O emulsions are further illustrated to provide new insights on the total or partial replacement of PGPR. Moreover, the latest progress on applications of PGPR in food products is described. Current studies have revealed the complex structure of PGPR. Besides, recent research has focused on the quantitative determination of the composition of PGPR and the quantification of the PGPR concentration in foods. However, research on the quantitative determination of the (poly)glycerol composition of PGPR and of the individual molecular species present in PGPR is still limited. Some natural water- or oil-soluble surfactants (e.g., proteins or lecithin) have been proven to enable the partial replacement of PGPR in W/O emulsions. Additionally, water-dispersible phytosterol particles and lecithin have been successfully used as a substitute of PGPR to create stable W/O emulsions.
Collapse
Affiliation(s)
- Chunxia Su
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno De Meulenaer
- nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Wang R, Ma C, Yan H, Wang P, Yu S, Zhang T, Yin Z. Preparation and Characterization of GX-50 and Vitamin C Co-encapsulated Microcapsules by a Water-in-Oil-in-Water (W 1/O/W 2) Double Emulsion-Complex Coacervation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13863-13875. [PMID: 37733306 DOI: 10.1021/acs.langmuir.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Co-encapsulated xanthoxylin (GX-50) and vitamin C (Vc) microcapsules (GX-50-Vc-M) were prepared by the combination of a water-in-oil-in-water (W1/O/W2) double emulsion with complex coacervation. The W1/O/W2 double emulsion was prepared by two-step emulsification, and it has a uniform particle size of 8.388 μm and high encapsulation efficiencies of GX-50 (85.95%) and Vc (67.35%) under optimized process conditions. Complex coacervation occurs at pHs 4.0-4.7, which has the highest encapsulation efficiency of GX-50 and Vc at pH 4.5. The complex coacervate with tannic acid solidifying (namely, wet microcapsules) has better mechanical properties and also enhances the ability of co-encapsulation of active ingredients. The resulting microcapsules by freeze-drying of wet microcapsules were characterized by UV-vis absorbance spectroscopy (UV-vis), Fourier infrared spectroscopy (FI-IR), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), X-ray diffraction (XRD), 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging, and in vitro permeation measurements. Under optimal conditions, the encapsulation efficiency and drug loading of GX-50-Vc-M for GX-50 and Vc are, respectively, 78.38 ± 0.51 and 59.34 ± 0.56%, and 35.6 ± 0.68 and 29.8 ± 0.92%. A slight shift in the FTIR peak between single GX-50 or Vc and GX-50-Vc-M confirmed the successful co-encapsulation of GX-50 and Vc in microcapsules. GX-50-Vc-M has bridged irregular spherical aggregates, while GX-50 and Vc are, respectively, encapsulated in hydrophobic and hydrophilic cavities of microcapsules in an amorphous dissolved state. GX-50-Vc-M has the highest DPPH· radical scavenging rate of 62.51%, and the scavenging process of GX-50-Vc-M on DPPH· radicals is more in line with the pseudo-second-order kinetic equation model. Moreover, the in vitro permeation of GX-50 and Vc in GX-50-Vc-M can reach maximum values of 40 and 60%, respectively. This concludes that GX-50-Vc-M is a promising delivery system for the penetration of the antioxidant into the deeper layers of the skin for the antioxidant effect.
Collapse
Affiliation(s)
- Ruijuan Wang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Chunliu Ma
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Haitao Yan
- Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, Henan 450000, People's Republic of China
| | - Pu Wang
- Shanghai Youren Biotechnology Co., Ltd., Shanghai 200444, People's Republic of China
| | - Shuyan Yu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Tongyan Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Zhigang Yin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| |
Collapse
|
16
|
Lee J, Kwak E, Kim HT, Jo YJ, Choi MJ. Influence of different electrolytes and oils on the stability of W 1/O/W 2 double emulsion during storage and in vitro digestion. Food Sci Biotechnol 2023; 32:1515-1529. [PMID: 37637838 PMCID: PMC10449744 DOI: 10.1007/s10068-023-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The aim of this study is to formulate a stable water-in-oil-in-water (W1/O/W2) double emulsion using different types of oils and electrolytes. W1/O was formulated with different electrolyte solutions (W1) dispersed in various oils (O) using polyglycerol polyricinoleate as a stabilizer. External aqueous phase was Tween-80 (W2), and W1/O dispersed in W2 was used. The emulsion containing NaCl or MgCl2 exhibited high encapsulation efficiency (EE) and maintained particle size. Regarding the oil type, the emulsion with MCT oil showed a small droplet size and a high viscosity and EE, presenting a stable droplet distribution in optical observation. The stability of emulsion containing NaCl was maintained during the in vitro digestion experiments. MCT oil, NaCl and MgCl2 have the potential to produce stable double emulsions for storage stability and in vitro digestion studies. The findings would be useful for preparing stable double emulsions used in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiseon Lee
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Eunji Kwak
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| | - Hyo-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| | - Yeon-Ji Jo
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung, Gangwon 25457 Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| |
Collapse
|
17
|
Bao Y, Pignitter M. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Compr Rev Food Sci Food Saf 2023; 22:2678-2705. [PMID: 37097053 PMCID: PMC10962568 DOI: 10.1111/1541-4337.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.
Collapse
Affiliation(s)
- Yifan Bao
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Marc Pignitter
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
| |
Collapse
|
18
|
Shafiei M, Kazemzadeh Y, Martyushev DA, Dai Z, Riazi M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Sci Rep 2023; 13:4100. [PMID: 36907931 PMCID: PMC10008830 DOI: 10.1038/s41598-023-31379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Due to population growth, the need for energy, especially fossil fuels, is increased every year. Since the costs of exploring new reservoirs and drilling new wells are very high, most reservoirs have passed their first and second periods of life, and it is necessary to use EOR methods. Water-based enhanced oil recovery (EOR) methods are one of the popular methods in this field. In this method, due to the possibility of emulsion formation is high, and by creating a stable emulsion, viscosity and mobility improved. In this study, the parameters affecting the stability and viscosity of the emulsion have been investigated step by step. In the first step, 50% (v/v) of water has been selected as the best water cut. The type of salt and its best concentration was evaluated in the second step by measuring the average droplets size. The third step investigated the effect of SiO2 nanoparticles and surfactant (span80) on emulsion stability and viscosity. According to the results, the best amount of water cut was 50% due to the maximum viscosity. In salts the yield was as follows: MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl. The best yield was related to MgCl2 at a concentration of 10,000 ppm. Finally, it was shown that the synergy of nanoparticles and surfactants resulted in higher stability and viscosity than in the case where each was used alone. It should be noted that the optimal concentration of nanoparticles is equal to 0.1% (w/w), and the optimal concentration of surfactant is equal to 200 ppm. In general, a stable state was obtained in 50% water-cut with MgCl2 salt at a concentration of 10,000 ppm and in the presence of SiO2 nanoparticles at a concentration of 0.1% and span 80 surfactants at a concentration of 200 ppm. The results obtained from this study provide important insights for optimal selection of the water-based EOR operation parameters. Viscosity showed a similar trend with stability and droplet size. As the average particle size decreased (or stability increased), the emulsion viscosity increased.
Collapse
Affiliation(s)
- Masoud Shafiei
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Yousef Kazemzadeh
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Dmitriy A Martyushev
- Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm, 614990, Russia
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, China
| | - Masoud Riazi
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
19
|
Iqbal N, Hazra DK, Purkait A, Agrawal A, Saini MK, Kumar J. Eco-Oriented Formulation and Stabilization of Oil-Colloidal Biodelivery Systems Based on GC-MS/MS-Profiled Phytochemicals from Wild Tomato for Long-Term Retention and Penetration on Applied Surfaces for Effective Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3719-3731. [PMID: 36802590 DOI: 10.1021/acs.jafc.2c08612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vegetable oils as hydrophobic reserves in oil dispersions (OD) provide a practical approach to halt bioactive degradation for user and environment-efficient pest management. Using biodegradable soybean oil (57%), castor oil ethoxylate (5%), calcium dodecyl benzenesulfonates as nonionic and an-ionic surfactants, bentonite (2%), and fumed silica as rheology modifiers, we created an oil-colloidal biodelivery sytem (30%) of tomato extract with homogenization. The quality-influencing parameters, such as particle size (4.5 μm), dispersibility (97%), viscosity (61 cps), and thermal stability (2 years), have been optimized in accordance with specifications. Vegetable oil was chosen for its improved bioactive stability, high smoke point (257 °C), coformulant compatibility, and as a green build-in-adjuvant by improving spreadability (20-30%), retention and penetration (20-40%). In in vitro testing, it efficiently controlled aphids with 90.5% mortalities and 68.7-71.2% under field-conditions without producing phytotoxicity. Wild tomato-derived phytochemicals can be a safe and efficient alternative to chemical pesticides when combined wisely with vegetable oils.
Collapse
Affiliation(s)
- Nusrat Iqbal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli-Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, Birbhum, West Bengal 731236, India
| | - Amrish Agrawal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Mahesh Kumar Saini
- National Institute of Plant Health Management, Himayat Sagar Rd, Hyderabad, Telangana 500030, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| |
Collapse
|
20
|
Abbas A, Zhang C, Hussain S, Li Y, Gao R, Li J, Liu X, Zhang M, Xu S. A Robust Switchable Oil-In-Water Emulsion Stabilized by Electrostatic Repulsions between Surfactant and Similarly Charged Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206621. [PMID: 36581561 DOI: 10.1002/smll.202206621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
How to control the stability of oil-in-water (O/W) emulsions is one of the main topics for scientists working in colloidal systems. Recently, carbon dots (CDs) have received great interest as smart materials because of their excellent physicochemical properties and versatile applications. Herein, for the first time, advanced and switchable O/W emulsions are presented that are stabilized by the synergistic effect of cationic surfactant cetyltrimethylammonium bromide CTAB (emulsifier) and similarly charged CDs (stabilizer). In the formulated emulsion, the cationic surfactant molecules are adsorbed at the oil and water interface to decrease the interfacial tension and enrich the drops with a positive charge to ensure intensive electrostatic repulsions among them. On the contrary, cationic CDs are distributed in the water phase among the droplets to reduce the water secretion and prevent flocculation and droplet coalescence. The stabilizing effect is found to be universal for emulsions of a range of oil phases. Furthermore, the formulated emulsion is found to be switchable between "stable" and "unstable" modes by adding an equivalent of anionic surfactant sodium dodecyl benzene sulphonate (SDBS). The stabilized and switchable O/W emulsions are believed to have wide practical applications in water purification, pharmaceuticals, protein recognition, as well as catalysis.
Collapse
Affiliation(s)
- Ansar Abbas
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chen Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sameer Hussain
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Li
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ruixia Gao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyi Liu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Minghui Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Silong Xu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
21
|
Effects of W/O Nanoemulsion on Improving the Color Tone of Beijing Roast Duck. Foods 2023; 12:foods12030613. [PMID: 36766142 PMCID: PMC9914772 DOI: 10.3390/foods12030613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Traditional Beijing roast duck is often brushed with a high concentration of maltose solution (15% w/v) and shows ununiform color after roasting. A novel W/O nanoemulsion was applied to improve the color tone of Beijing roast ducks and, meanwhile, reduced the amount of sugar. For the W/O emulsion, 3% (w/v) xylose solution as the aqueous phase, soybean oil as the oil phase, and polyglycerol polyricinoleate (PGPR) and whey protein isolate (WPI) as co-emulsifiers were fabricated by high-pressure homogenization. Particle size measurement by Zetasizer and stability analysis by Turbiscan stability analyzer showed that WPI as co-emulsifier and internal aqueous phase at pH 9 decreased the droplet size and improved the emulsion stability. In addition, by color difference evaluation, the W/O nanoemulsion improved the Maillard reaction degree and color tone of Beijing roast duck. The molecular structure and key composition of pigments on the surface of Beijing roast duck skins were also identified and characterized by UV-vis spectroscopy and UHPLC-MS. This study creatively offers theoretical guidance for increasing applications of W/O-nanoemulsion-based Maillard reaction in the roast food industry, especially for the development of reduced-sugar Beijing roast duck with uniform and desired color satisfying consumers' acceptance and marketability.
Collapse
|
22
|
Romero‐Peña M, Ghosh S. Stabilization of liquid water‐in‐oil emulsions by modifying the interfacial interaction of glycerol monooleate with aqueous phase ingredients. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Maria Romero‐Peña
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources University of Saskatchewan Saskatoon Saskatchewan Canada
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción Guayaquil Ecuador
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
23
|
ØYE G, SIMON S, RUSTAD T, PASO K. Trends in Food Emulsion Technology: Pickering, Nano and Double Emulsions. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Song Z, Wang S, Yang L, Hou R, Wang R, Zhang N, Wang Y, Li C, Tan Y, Huang S, Chen J, Zhang Z. Rotenone encapsulated in pH-responsive alginate-based microspheres reduces toxicity to zebrafish. ENVIRONMENTAL RESEARCH 2023; 216:114565. [PMID: 36243052 DOI: 10.1016/j.envres.2022.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Rotenone is a botanical pesticide and has long been used for control of insect pests and also as a natural piscicide for management of fish populations in many countries. Field application for pest control, however, often encounters the movement of rotenone into surface water due to spray drift or surface runoff after rainfall, which could potentially result in water pollution and unexpected death of fishes. To minimize its effect on freshwater and the problem of fish dying, one solution was to encapsulate rotenone in specific microspheres, limiting its release and reducing its toxicity since rotenone can be quickly degraded under sunlight. In this study, pH-responsive alginate-based microspheres were synthesized to encapsulating rotenone, which were designated as rotenone beads. The rotenone beads, along with alginate beads (devoid of rotenone) were characterized and evaluated for their responses to pH and effects on zebrafish. Results showed that the microspheres had high loading efficiency (4.41%, w/w) for rotenone, and rotenone beads well responded to solution pH levels. The cumulative release rates of rotenone from the beads were 27.91%, 42.72%, and 90.24% at pH 5.5, 7.0, and 9.0, respectively. Under acidic conditions, the rotenone release rate was lower due to hydrogen bonding. On the contrary, rotenone became more quickly released at the high pH due to intermolecular repulsion. The toxicity of rotenone beads to zebrafish and fish embryos at a pH of 5.5 was reduced by 2- and 4-fold than chemical rotenone. Since pH levels in most freshwater lakes, ponds, and streams vary from 6 to 8, rotenone release from the beads in such freshwater could be limited. Thus, the synthesized rotenone beads could be relatively safely used for pest control with limited effects on freshwater fishers.
Collapse
Affiliation(s)
- Zixia Song
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, 32703, USA
| | - Shiying Wang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Liupeng Yang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiquan Hou
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ruifei Wang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Wang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Li
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Tan
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, 32703, USA.
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
He M, Pu W, Yang X, Liu R. Predicting the emulsion phase inversion point during self-emulsification using an improved free energy model and determining the model applicability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Kwak E, Lee J, Jo YJ, Choi MJ. Effect of electrolytes in the water phase on the stability of W1/O/W2 double emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Shafiei M, Kazemzadeh Y, Shirazy GM, Riazi M. Evaluating the role of salts on emulsion properties during water-based enhanced oil recovery: Ion type, concentration, and water content. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Demulsification of (W1+W2+W3)/O Reverse Cerberus Emulsion from Vibrational Emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Wu C, Ye Z, Nie X, Liu D, Lai N. Synthesis and evaluation of depressurization and injection treatment agent suitable for low-permeability reservoirs. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Fabrication of High-Acyl Gellan-Gum-Stabilized β-Carotene Emulsion: Physicochemical Properties and In Vitro Digestion Simulation. Foods 2022; 11:foods11121742. [PMID: 35741940 PMCID: PMC9222914 DOI: 10.3390/foods11121742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The β-carotene emulsion system using high-acyl gellan gum (HA) as an emulsifier was fabricated and systematically studied. The stability and stabilizing mechanism of the emulsion using medium-chain triglyceride as oil phase with a water-oil mass ratio of 9:1 under different physicochemical conditions of heat, pH, and ions were investigated by analyzing mean particle size (MPS), emulsion yield (EY), and dynamic stability. The effects of the HA-β-carotene emulsion system on the bioaccessibility of β-carotene in vitro were conducted. During the simulated oral digestion stage (SODP) and simulated gastric digestion stage (SGDP), the emulsion systems stabilized with different HA contents showed good stability, and the changes of MPS and zeta potential (ZP) were within 2.5 μm and 3.0 mV, respectively. After entering the simulated intestinal digestion phase (SIDP), β-carotene was released from oil droplets and formed micelles with bile salts, phospholipids, etc. HA-β-carotene emulsion can enhance the release rate of free fatty acid (FFA), which ultimately affects the β-carotene bioaccessibility. These results indicate that HA can be used to prepare carotene emulsion and improve its bioavailability. The study provides a reference for the application of HA as a natural emulsifier and the delivery of β-carotene.
Collapse
|
31
|
Chevalier RC, Gomes A, Cunha RL. Role of aqueous phase composition and hydrophilic emulsifier type on the stability of W/O/W emulsions. Food Res Int 2022; 156:111123. [DOI: 10.1016/j.foodres.2022.111123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
|
32
|
Zhu Q, Wei W, Zhang L, Meng J, Sui W, Wu T, Li J, Wang P, Zhang M. Fabrication and characterization of gel-in-oil-water (G/O/W) double emulsion stabilized by flaxseed gum/whey protein isolate complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
The influence of heat and mechanical stress on encapsulation efficiency and droplet size of w/o/w multiple emulsions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pérez‐Salas JL, Medina‐Torres L, Rocha‐Guzmán NE, Calderas F, González‐Laredo RF, Bernad‐Bernad MJ, Moreno‐Jiménez MR, Gallegos‐Infante JA. A Water in Oil Gelled Emulsion as a Topical Release Vehicle for Curcumin. STARCH-STARKE 2022. [DOI: 10.1002/star.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Luis Pérez‐Salas
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - Luis Medina‐Torres
- Facultad de Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | - Nuria Elizabeth Rocha‐Guzmán
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - F. Calderas
- Facultad de Estudios Superiores‐Zaragoza Batalla 5 de mayo s/n Colonia Ejército de Oriente Iztapalapa Universidad Nacional Autónoma de México Ciudad de México 09230 México
| | - Rubén Francisco González‐Laredo
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | | | - Martha Rocío Moreno‐Jiménez
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
35
|
Enhancement of the Stability of Encapsulated Pomegranate (Punica granatum L.) Peel Extract by Double Emulsion with Carboxymethyl Cellulose. CRYSTALS 2022. [DOI: 10.3390/cryst12050622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pomegranate peel enriched with high value of bioactive phenolics with valuable health benefits. However, after extraction of the phenolic compounds, diverse factors can affect their stability. Therefore, we, herein, aimed to prepare W1/O/W2 double nanoemulsions loaded with phenolic-rich extract from pomegranate peel in the W1 phase. Double emulsions were fabricate during a two-step emulsification technique. Furthermore, the influence of sodium carboxymethyl cellulose (CMC) in the outer aqueous phase was also investigated. We found that W1/O/W2 emulsions containing phenolic-rich extract showed good physical stability, especially in the particle size, polydispersity index, zeta potential, and creaming index. Intriguingly, high encapsulation rates of pomegranate polyphenols >95% were achieved; however, emulsion with CMC had the best encapsulation stability during storage. Thus, our study provides helpful information about the double nanoemulsions delivery system for polyphenols generated from pomegranate peel, which may lead to the development of innovative polyphenol-enriched functional foods.
Collapse
|
36
|
Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions. Food Chem 2022; 372:131305. [PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
Collapse
Affiliation(s)
- Yingwei Liu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
37
|
Díaz-Ruiz R, Laca A, Sánchez M, Fernández MR, Matos M, Gutiérrez G. Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties. Int J Mol Sci 2021; 23:ijms23010085. [PMID: 35008506 PMCID: PMC8744663 DOI: 10.3390/ijms23010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-resveratrol (RSV) needs to be encapsulated to maintain its beneficial properties on the human body. This is due to its extreme photosensitivity, short biological half-life, and easy oxidation. In this study, the use of double emulsions for RSV encapsulation and their further application on functional yoghurts was studied. Different types of yoghurts were prepared: with and without RSV and with two types of volumetric emulsion formulations (20/80 and 30/70). In order to study the influence of the addition of double emulsions to the physical properties of the prepared yoghurts, they were characterised fresh and after a month under storage at 4 °C, in terms of droplet size, morphology, stability, rheology, texturometry, colorimetry, and antioxidant capacity. Results obtained showed that the presence of emulsion in the yoghurts produced a generalised decrease in the predominant droplet size (from 48 µm to 15-25 µm) and an increase in the stability. Additionally, a predominantly elastic character was observed. The firmness values obtained were very similar for all the yoghurts analysed and did not suffer important modifications with time. A slight colour variation was observed with storage time in the control sample, whereas a more notable variation in the case of emulsion yoghurts was observed. An appreciable increase of the antioxidant capacity of the final functional yoghurt (100 g) was observed when it contained 5-8 mg of RSV. Encapsulated RSV added to yoghurts presented a larger protection against RSV oxidation compared with free RSV, presenting a larger antioxidant inhibition after one month of storage. Moreover, the antioxidant capacity of yoghurts with encapsulated RSV was not affected under storage, since slight reductions (3%) were registered after one month of storage at 4 °C.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Manuel Ramón Fernández
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: ; Tel.: +34-985103509; Fax: +34-985103434
| |
Collapse
|
38
|
Leister N, Pfaff D, Karbstein HP. Coalescence of Inner Water Droplets in Double Emulsions Due to Surfactant Transport through Oil. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nico Leister
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| | - Daniel Pfaff
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| | - Heike Petra Karbstein
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| |
Collapse
|
39
|
Safian MTU, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN. Utilization of lignocellulosic biomass: A practical journey towards the development of emulsifying agent. Talanta 2021; 239:123109. [PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
Collapse
Affiliation(s)
- Muhammad Taqi-Uddeen Safian
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Siti Hajar Sekeri
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mohd Dzahir Jamudin
- Ekahala Resourses Sdn. Bhd., 52-1, Jalan Musytari AN U5/AN, Subang Pelangi, Seksyen U5, 40150, Shah Alam, Selangor, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
40
|
Stability and rheological properties of water-in-oil (W/O) emulsions prepared with a soyasaponin-PGPR system. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Singh S, Sharma N, Behl T, Sarkar BC, Saha HR, Garg K, Singh SK, Arora S, Amran MS, Abdellatif AAH, Bilgrami AL, Ashraf GM, Rahman MS. Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics 2021; 13:pharmaceutics13111978. [PMID: 34834393 PMCID: PMC8623849 DOI: 10.3390/pharmaceutics13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disorder that moderately affects social and interpersonal relationships. Conventional treatments for psoriasis have certain problems, such as poor drug penetration through the skin, hyper-pigmentation, and a burning sensation on normal and diseased skin. Colloidal drug delivery systems overcome the pitfalls of conventional approaches for psoriasis therapeutics and have improved patient safety parameters, compliance, and superior effectiveness. They also entail reduced toxicity. This comprehensive review’s topics include the pathogenesis of psoriasis, causes and types of psoriasis, conventional treatment alternatives for psoriasis, the need for colloidal drug delivery systems, and recent studies in colloidal drug delivery systems for the treatment of psoriasis. This review briefly describes colloidal drug delivery approaches, such as emulsion systems—i.e., multiple emulsion, microemulsion, and nano-emulsion; vesicular systems—i.e., liposomes, ethosomes, noisomes, and transferosomes; and particulate systems—i.e., solid lipid nanoparticles, solid lipid microparticles, nano-structured lipid carriers, dendrimers, nanocrystals, polymeric nanoparticles, and gold nanoparticles. The review was compiled through an extensive search of the literature through the PubMed, Google Scholar, and ScienceDirect databases. A survey of literature revealed seven formulations based upon emulsion systems, six vesicular drug delivery systems, and fourteen particulate systems reported for antipsoriatic drugs. Based on the literature studies of colloidal approaches for psoriasis management carried out in recent years, it has been concluded that colloidal pharmaceutical formulations could be investigated broadly and have a broad scope for effective management of many skin disorders in the coming decades.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| | - Bidhan Chandra Sarkar
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Hasi Rani Saha
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Kanika Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Supriya Kamari Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Sandeep Arora
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| |
Collapse
|
43
|
Jiang F, Gao D, Feng X, Pan J, Pu W. W/O high internal phase emulsions (HIPEs) stabilized by a piperazinyl based emulsifier. SOFT MATTER 2021; 17:9859-9865. [PMID: 34723315 DOI: 10.1039/d1sm01460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a piperazinyl-based emulsifier (EA/AMPA) was synthesized to prepare water-in-oil (W/O) high internal phase emulsions (HIPEs). Using kerosene as the oil phase, stable HIPEs with internal phase fractions of up to 98% were prepared. This enabled the EA/AMPA to have a high efficiency, as the HIPEs with a 90% internal phase fraction could be easily prepared with 0.1% of EA/AMPA. In addition, the formation of HIPEs was not affected by the addition of Na+. Because of the fact that EA/AMPA has a hydrophilic head with two tertiary amines, EA/AMPA could be easily recovered from the oil phase by adjusting the pH to acidic values. Moreover, the unique structure promoted the formation of stable HIPEs, even with crude oil used as the oil phase. The results indicate that EA/AMPA has the potential to significantly contribute to the preparation of W/O HIPEs and that the design of the hydrophilic head with two tertiary amines can provide a reference for the fabrication of new W/O emulsifiers.
Collapse
Affiliation(s)
- Feng Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637002, China.
- School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Donghui Gao
- School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xi Feng
- School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jiaming Pan
- China West Normal University, Nanchong 637002, China
| | - Wanfen Pu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
44
|
Patel V, Andrade J, Rousseau D. Fat crystal-stabilized water-in-oil emulsion breakdown and marker release during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Zhang S, Tian L, Yi J, Zhu Z, Dong X, Decker EA. Impact of high-intensity ultrasound on the chemical and physical stability of oil-in-water emulsions stabilized by almond protein isolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
47
|
Alassmy YA, Sebakhy KO, Picchioni F, Pescarmona PP. Novel non-ionic surfactants synthesised through the reaction of CO2 with long alkyl chain epoxides. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Díaz-Ruiz R, Valdeón I, Álvarez JR, Matos M, Gutiérrez G. Simultaneous encapsulation of trans-resveratrol and vitamin D 3 in highly concentrated double emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3654-3664. [PMID: 33280118 DOI: 10.1002/jsfa.10995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Encapsulation of biocompounds is essential to protect them from environmental factors that could enhance their oxidation or cause them to lose their beneficial properties due to extreme photosensitivity, among other factors. The main goal of this work was to study the feasibility of preparing concentrated double emulsions with a high loading capacity containing simultaneously trans-resveratrol (RSV) and vitamin D3 (VitD3 ). Such emulsions could be used for food fortification or pharmaceutical formulations or as vehicles for targeted controlled release. RESULTS In order to achieve large concentrations of the encapsulated compounds, all the double emulsions were formulated using a W1 /O in W2 ratio of 80/20, while the ratios tested for W1 in O where 20/80 and 30/70. All the emulsions were characterized by droplet size, morphology, colloidal stability and encapsulation efficiency (EE) over a period of 6 weeks. VitD3 and RSV concentration were determined by a technique based on reverse-phase high-performance liquid chromatography. The viability of preparing concentrated W1 /O/W2 emulsions containing both biocompounds has been demonstrated with satisfactory results. Initial RSV concentrations in the concentrated double emulsions formulated varied from 5.0 to 8.3 mg L-1 , while for VitD3 values of 28-32 mg L-1 were obtained. The presence of VitD3 retarded RSV release in the formulated emulsions. It was observed that after 1 week of storage RSV EE increased around 10-50% when VitD3 was simultaneously encapsulated. CONCLUSION Simultaneous encapsulation of RSV and VitD3 was possible in high internal phase emulsions. The emulsions presented high colloidal stability, being suitable for food fortification applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Irene Valdeón
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - José Ramón Álvarez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| |
Collapse
|
49
|
García-González DO, Yánez-Soto B, Dibildox-Alvarado E, Ornelas-Paz JDJ, Pérez-Martínez JD. The effect of interfacial interactions on the rheology of water in oil emulsions oleogelled by candelilla wax and saturated triacylglycerols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Seweryn A, Wasilewski T, Bocho-Janiszewska A. Correlations between the Type of Aggregates in the Bulk Phase and the Functionality and Safety of All-Purpose Cleaners. Int J Mol Sci 2021; 22:ijms22126592. [PMID: 34205441 PMCID: PMC8234690 DOI: 10.3390/ijms22126592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
The article shows that the type and concentration of inorganic salt can be translated into the structure of the bulk phase and the performance properties of ecological all-purpose cleaners (APC). A base APC formulation was developed. Thereafter, two types of salt (sodium chloride and magnesium chloride) were added at various concentrations to obtain different structures in the bulk phase. The salt addition resulted in the formation of spherical micelles and-upon addition of more electrolyte-of aggregates having a lamellar structure. The formulations had constant viscosities (ab. 500 mPa·s), comparable to those of commercial products. Essential physical-chemical and performance properties of the four formulations varying in salt types and concentrations were evaluated. It was found that the addition of magnesium salt resulted in more favorable characteristics due to the surface activity of the formulations, which translated into adequately high wettability of the investigated hydrophobic surfaces, and their ability to emulsify fat. A decreasing relationship was observed in foaming properties: higher salt concentrations lead to worse foaming properties and foam stability of the solutions. For the magnesium chloride composition, the effect was significantly more pronounced, as compared to the sodium chloride-based formulations. As far as safety of use is concerned, the formulations in which magnesium salt was used caused a much lesser irritation compared with the other investigated formulations. The zein value was observed to decrease with increasing concentrations of the given type of salt in the composition.
Collapse
|