1
|
Bina M, Coats JP, Skowicki M, Malekovic M, Mihali V, Palivan CG. Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23178-23188. [PMID: 39453821 DOI: 10.1021/acs.langmuir.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth. This approach combines the inherent antifouling properties of poly(ethylene oxide) as the hydrophilic domain of one copolymer with the antimicrobial effect of a peptide covalently attached to the hydrophilic domain of the second copolymer. The planar membranes are generated by self-assembly of the amphiphilic copolymer mixture deposited by Langmuir-Blodgett and Langmuir-Schaffer methods on a solid support, followed by covalent attachment of the antimicrobial peptides to one of the copolymers, specifically functionalized. Combining both copolymers, in terms of their properties and functionalities on the same surface, significantly limitsEscherichia colibiofilm formation and effectively eradicates bacteria during short-term incubation. While such multifunctional antimicrobial planar polymer membranes show promising potential in the design of fine coatings for small surgical or implantable devices, they are not limited to this application. Their use can be completely changed by attaching other active molecules or assemblies to induce specific multifunctionality for the targeted application.
Collapse
Affiliation(s)
- Maryame Bina
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - John P Coats
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Mirela Malekovic
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| |
Collapse
|
2
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
3
|
Yushkin AA, Balynin AV, Nebesskaya AP, Chernikova EV, Muratov DG, Efimov MN, Karpacheva GP. Acrylonitrile-Acrylic Acid Copolymer Ultrafiltration Membranes for Selective Asphaltene Removal from Crude Oil. MEMBRANES 2023; 13:775. [PMID: 37755197 PMCID: PMC10538228 DOI: 10.3390/membranes13090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32-55 nm demonstrated a pure toluene permeance of 84.8-130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33-95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile-acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil.
Collapse
Affiliation(s)
- Alexey A. Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexey V. Balynin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexandra P. Nebesskaya
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
- Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Dmitriy G. Muratov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Mikhail N. Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Galina P. Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| |
Collapse
|
4
|
Elgamal AM, Abu Elella MH, Saad GR, Abd El-Ghany NA. Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. MATERIALS TODAY COMMUNICATIONS 2022; 33:104209. [DOI: 10.1016/j.mtcomm.2022.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Zhou L, Zhao C, Yang W. Durable and covalently attached antibacterial coating based on post-crosslinked maleic anhydride copolymer with long-lasting performance. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Kwiatkowski AL, Molchanov VS, Kuklin AI, Orekhov AS, Arkharova NA, Philippova OE. Structural transformations of charged spherical surfactant micelles upon solubilization of water-insoluble polymer chains in salt-free aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Maneewan P, Sajomsang W, Singto S, Lohwacharin J, Suwannasilp BB. Fouling mitigation in an anaerobic membrane bioreactor via membrane surface modification with tannic acid and copper. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118205. [PMID: 34583268 DOI: 10.1016/j.envpol.2021.118205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/07/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have recently received a great amount of attention as an alternative anaerobic treatment process due to their superior capability for sludge retention with high effluent quality. Nevertheless, membrane fouling in AnMBRs has been a major concern. In this study, the surfaces of polyvinylidene fluoride (PVDF) ultrafiltration membranes were modified with tannic acid (TA) and Cu(II) at various molar ratios of TA to Cu(II), including 3:1, 2:1, 1:1, 1:2, and 1:3. The hydrophilicity, morphology, chemical structure, elemental composition, and antibacterial properties of the unmodified and modified membranes were analyzed using water contact angle measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), SEM-energy dispersive X-ray spectrometry (SEM-EDX), and the clear zone method, respectively. The modified membrane with a TA-to-Cu(II) molar ratio of 1:3 had high hydrophilicity with certain antibacterial properties; therefore, it was selected to be further tested in an AnMBR along with an unmodified membrane. The chemical oxygen demand (COD) removal efficiencies of the unmodified membrane and modified membrane were 92.2 ± 3.6% and 91.8 ± 4.0%, respectively. The modified membrane had higher permeability after backwashing with less chemical cleaning (CC) than the unmodified membrane. Surface modification with TA and Cu(II) appeared to reduce irreversible fouling on the membranes.
Collapse
Affiliation(s)
- Punika Maneewan
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warayuth Sajomsang
- Nanoengineered Soft Materials for Green Environment Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sudkanueng Singto
- Nanoengineered Soft Materials for Green Environment Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Wang Z, Zhu J, Xu S, Zhang Y, Van der Bruggen B. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119397] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
|
11
|
Meng Q, Wei S, Xu Z, Cao Q, Xiao Y, Liu N, Liu H, Han G, Zhang J, Yan J, Palov AP, Wu L. Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform. Anal Chim Acta 2021; 1147:99-107. [PMID: 33485588 DOI: 10.1016/j.aca.2020.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Single-walled carbon nanotube-based field effect transistors (SWCNT-FETs) are ideal candidates for fabricating sensors and have been widely used for chemical sensing applications. SWCNT-FETs have low selectivity because of the environmentally sensitive electronic properties of SWCNTs, and SWCNT-FETs also show a high noise signal and poor sensitivity because of charge trapping from Si-OH hydration of the SiO2/Si substrate on the SWCNTs. Herein, poly (4-vinylpyridine) (P4VP) was used for noncovalent attachment to SWCNTs and selective binding to copper ions (Cu2+). Importantly, the introduction of a hafnium-oxide (HfO2) layer through atomic layer deposition (ALD) overcame the charge trapping by SiO2 hydration and remarkably decreased the interference signal. The sensitivity of the P4VP/SWCNT/HfO2-FET sensor for Cu2+ was 7.9 μA μM-1, which was approximately 100 times higher than that of the P4VP/SWCNT/SiO2-FET sensor, and its limit of detection (LOD) was as low as 33 pmol L-1. Thus, the P4VP/SWCNT/HfO2-FET sensor is a promising candidate for the development of Cu2+-selective sensors and can be designed for the large-scale manufacturing of custom-made sensors in the future.
Collapse
Affiliation(s)
- QingYi Meng
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Zhiyuan Xu
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jing Zhang
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Jiang Yan
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Alexander P Palov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
12
|
Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
14
|
Solimando X, Champagne P, Cunningham MF. Synthesis of Biohybrid Particles by Modification of Chitosan Beads via RAFT Polymerization in Dispersed Media. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xavier Solimando
- Department of Civil Engineering Queen's University 58 University Avenue Kingston ON K7L 3N9 Canada
- Department of Chemical Engineering Queen's University 19 Division Street Kingston ON K7L 3N9 Canada
| | - Pascale Champagne
- Department of Civil Engineering Queen's University 58 University Avenue Kingston ON K7L 3N9 Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering Queen's University 19 Division Street Kingston ON K7L 3N9 Canada
| |
Collapse
|
15
|
Zhao GB, Hao YF, He BQ, Song YF, Ji YH, Zhang YH, Bo L, Li JX. A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117371] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Fan D, Wang G, Ma A, Wang W, Chen H, Bai L, Yang H, Wei D, Yang L. Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38126-38135. [PMID: 31536325 DOI: 10.1021/acsami.9b12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, surface-functionalized microcapsules from porous carbon nanospheres (PCNs) were successfully prepared by mussel-inspired chemistry with polydopamine (PDA) and metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP). These functional microcapsules are introduced into self-healing hydrogels to enhance their mechanical strength. The PCNs synthesized by a simple soft template method are mixed with linseed oil for loading of the biomass healing agent, and the microcapsules are first prepared by coating PDA. PDA coatings were used to immobilize the ATRP initiator for initiating 4-vinylpyridine on the surface of microcapsules by PET-ATRP. Using these functional microcapsules, the self-healing efficiency was about 92.5% after 4 h at ambient temperature and the healed tensile strength can be held at 2.5 MPa with a fracture strain of 625.2%. All results indicated that the surface-functionalized microcapsules for self-healing hydrogels have remarkable biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Dechao Fan
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Guanglin Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Anyao Ma
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites , Ludong University , Yantai 264025 , China
| |
Collapse
|
18
|
The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clin Microbiol Rev 2019; 32:32/4/e00125-18. [PMID: 31413046 DOI: 10.1128/cmr.00125-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Health care-associated infections (HAIs) are a global problem associated with significant morbidity and mortality. Controlling the spread of antimicrobial-resistant bacteria is a major public health challenge, and antimicrobial resistance has become one of the most important global problems in current times. The antimicrobial effect of copper has been known for centuries, and ongoing research is being conducted on the use of copper-coated hard and soft surfaces for reduction of microbial contamination and, subsequently, reduction of HAIs. This review provides an overview of the historical and current evidence of the antimicrobial and wound-healing properties of copper and explores its possible utility in obstetrics and gynecology.
Collapse
|
19
|
|
20
|
Wang X, Cheng H, Hong P, Zhang X, Lai Z. A DNA-mimic contact-active functional group for antifouling ultrafiltration membranes. CHEMOSPHERE 2019; 216:669-676. [PMID: 30391888 DOI: 10.1016/j.chemosphere.2018.10.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Despite advanced materials and techniques to reduce the fouling issue of membranes, 10-30% of the cost of ultrafiltration (UF) processes have been spent on membrane cleaning. Particularly in water treatment, the traditional heavy metal-based method is challenged due to its environmental pollution risk and increasing public health awareness. Here, we report the synthesis of a metal-free contact-active antifouling and antimicrobial membrane by covalently functionalizing a commercial polyacrylonitrile (PAN) UF membrane with 2,4-diamino-1,3,5-triazine (DAT) via a one-step catalyst-free hydrothermal [4 + 2] cyclization of dicyandiamide reaction. The proposed mechanism of the antimicrobial activity of the DAT-functionalized membrane is through strong attraction between the DAT groups and the microbial membrane protein via strong hydrogen bonding, leading to microbial membrane disruption and thus microbe death. A high water flux and good reusability of the membrane against protein in a UF experiment were achieved. The low cost, easy availability of the compounds, as well as the facile reaction offer a high potential of the membrane for real applications in ultrafiltration.
Collapse
Affiliation(s)
- Xinbo Wang
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Hong Cheng
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiying Hong
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 239955, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Liu Q, Huang S, Zhang Y, Zhao S. Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development. J Colloid Interface Sci 2018; 515:109-118. [DOI: 10.1016/j.jcis.2018.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
|
23
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Kaur G, Sriranganathan N, Waldrop SG, Sharma P, Chudasama BN. Effect of copper on the up-regulation/down-regulation of genes, cytotoxicity and ion dissolution for mesoporous bioactive glasses. ACTA ACUST UNITED AC 2017; 12:045020. [PMID: 28791964 DOI: 10.1088/1748-605x/aa7664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, copper-based (25 - x)CaO - xCuO -10P2O5 - 5B2O3 - 60SiO2 (x = 2.5, 5, 7.5, 10 mol%) mesoporous bioactive glasses (MBGs) were synthesized using the sol-gel technique with cetyltrimethyl ammonium bromide as the structure-directing agent. The live-dead cell count and cytocompatibility of MBGs for J774A.1 murine macrophages have also been investigated for different concentrations of MBGs. The ionic dissolution profile for Ca, P and Si has been evaluated in the simulated body fluid. The effect of copper content as well as the ionic dissolution products on the up-regulation and down-regulation of TGIF-2, HDAC-4, Smurf-1, mir-30c and mir-130a genes for the murine model are investigated using reverse transcription-polymerase chain reaction. Silica and calcium release follows a similar trend as followed by gene up-regulation of TGIF-2, HDAC-4 and mir-30c genes. This indicates that silica and calcium release influence gene expression.
Collapse
Affiliation(s)
- Gurbinder Kaur
- School of Physics and Materials Science, Thapar University, Patiala-147004, India
| | | | | | | | | |
Collapse
|
25
|
Surface initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA-ATRP) of 4-vinylpyridine on poly(ethylene terephthalate). J Colloid Interface Sci 2017; 500:69-78. [DOI: 10.1016/j.jcis.2017.03.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022]
|
26
|
Wang H, Wang ZM, Yan X, Chen J, Lang WZ, Guo YJ. Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Liu Z, Hu Y, Liu C, Zhou Z. Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem Commun (Camb) 2016; 52:12245-12248. [DOI: 10.1039/c6cc06015c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties.
Collapse
Affiliation(s)
- Zhongyun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Yunxia Hu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Caifeng Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| | - Zongyao Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology of Shandong Province
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
| |
Collapse
|
29
|
Ronen A, Walker SL, Jassby D. Electroconductive and electroresponsive membranes for water treatment. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0060] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn populated, water-scarce regions, seawater and wastewater are considered as potable water resources that require extensive treatment before being suitable for consumption. The separation of water from salt, organic, and inorganic matter is most commonly done through membrane separation processes. Because of permeate flux and concentration polarization, membranes are prone to fouling, resulting in a decline in membrane performance and increased energy demands. As the physical and chemical properties of commercially available membranes (polymeric and ceramic) are relatively static and insensitive to changes in the environment, there is a need for stimuli-reactive membranes with controlled, tunable surface and transport properties to decrease fouling and control membrane properties such as hydrophilicity and permselectivity. In this review, we first describe the application of electricity-conducting and electricity-responsive membranes (ERMs) for fouling mitigation. We discuss their ability to reduce organic, inorganic, and biological fouling by several mechanisms, including control over the membrane’s surface morphology, electrostatic rejection, piezoelectric vibrations, electrochemical reactions, and local pH changes. Next, we examine the use of ERMs for permselectivity modification, which allows for the optimization of rejection and control over ion transport through the application of electrical potentials and the use of electrostatically charged membrane surfaces. In addition, electrochemical reactions coupled with membrane filtration are examined, including electro-oxidation and electro-Fenton reactions, demonstrating the capability of ERMs to electro-oxidize organic contaminates with high efficiency due to high surface area and reduced mass diffusion limitations. When applicable, ERM applications are compared with commercial membranes in terms of energy consumptions. We conclude with a brief discussion regarding the future directions of ERMs and provide examples of several applications such as pore size and selectivity control, electrowettability, and capacitive deionization. To provide the reader with the current state of knowledge, the review focuses on research published in the last 5 years.
Collapse
|
30
|
Kavitha T, Kang IK, Park SY. Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications. POLYM INT 2015. [DOI: 10.1002/pi.4968] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thangavelu Kavitha
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| | - Inn-Kyu Kang
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| |
Collapse
|
31
|
Pallavicini P, Dacarro G, Diaz-Fernandez YA, Taglietti A. Coordination chemistry of surface-grafted ligands for antibacterial materials. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Li X, Cao Y, Yu H, Kang G, Jie X, Liu Z, Yuan Q. A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Yi Z, Zhu LP, Zhao YF, Wang ZB, Zhu BK, Xu YY. Effects of coagulant pH and ion strength on the dehydration and self-assembly of poly(N, N-dimethylamino-2-ethyl methacrylate) chains in the preparation of stimuli-responsive polyethersulfone blend membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Dong A, Huang Z, Lan S, Wang Q, Bao S, Siriguleng, Zhang Y, Gao G, Liu F, Harnoode C. N-halamine-decorated polystyrene nanoparticles based on 5-allylbarbituric acid: From controllable fabrication to bactericidal evaluation. J Colloid Interface Sci 2014; 413:92-9. [DOI: 10.1016/j.jcis.2013.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
35
|
Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:384-93. [PMID: 24308843 DOI: 10.1021/es404232s] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed.
Collapse
Affiliation(s)
- Moshe Ben-Sasson
- Department of Chemical and Environmental Engineering Yale University New Haven, Connecticut 06520-8286, United States
| | | | | | | | | | | |
Collapse
|
36
|
Ding X, Wang H, Chen W, Liu J, Zhang Y. Preparation and antibacterial activity of copper nanoparticle/halloysite nanotube nanocomposites via reverse atom transfer radical polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra03762f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Copper nanoparticle supported halloysite nanotubes with a 15 nm lumen and 30 nm external diameterviasurface initiation reverse atom transfer radical polymerization were fabricated and showed good antibacterial activity againstEscherichia coli(E. coli).
Collapse
Affiliation(s)
- Xiaoxu Ding
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou 450001, China
| | - Huixian Wang
- School of Civil Engineering and Communication
- North China University of Water Resources and Electric Power
- Zhengzhou 450045, China
| | - Weihang Chen
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou 450001, China
| | - Jindun Liu
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou 450001, China
| | - Yatao Zhang
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou 450001, China
| |
Collapse
|
37
|
Meng X, Liang L, Liu B, Peng G, Wang B, Chen H, Luo R. Influence of 2-Methylacryloylxyethyl Trimethyl Ammonium Chloride on the Properties of Cationic Poly(vinyl acetate-butyl acrylate-DMC) Copolymer Emulsions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.742381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Chen Y, Zhang Y, Liu J, Zhang H, Wang K. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. CHEMICAL ENGINEERING JOURNAL 2012; 210:298-308. [DOI: 10.1016/j.cej.2012.08.100] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
|
39
|
Well-defined macromolecular architectures through consecutive condensation and reversible-deactivation radical polymerizations. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.07.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Xu J, Feng X, Chen P, Gao C. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Borkow G, Monk A. Fighting nosocomial infections with biocidal non-intrusive hard and soft surfaces. World J Clin Infect Dis 2012; 2:77-90. [DOI: 10.5495/wjcid.v2.i4.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Approximately 7 million people worldwide acquire a healthcare associated infection each year. Despite aggressive monitoring, hand washing campaigns and other infection control measures, nosocomial infections (NI) rates, especially those caused by antibiotic resistant pathogens, are unacceptably high worldwide. Additional ways to fight these infections need to be developed. A potential overlooked and neglected source of nosocomial pathogens are those found in non-intrusive soft and hard surfaces located in clinical settings. Soft surfaces, such as patient pyjamas and beddings, can be an excellent substrate for bacterial and fungal growth under appropriate temperature and humidity conditions as those present between patients and the bed. Bed making in hospitals releases large quantities of microorganisms into the air, which contaminate the immediate and non-immediate surroundings. Microbes can survive on hard surfaces, such as metal trays, bed rails and door knobs, for very prolonged periods of time. Thus soft and hard surfaces that are in direct or indirect contact with the patients can serve as a source of nosocomial pathogens. Recently it has been demonstrated that copper surfaces and copper oxide containing textiles have potent intrinsic biocidal properties. This manuscript reviews the recent laboratory and clinical studies, which demonstrate that biocidal surfaces made of copper or containing copper can reduce the microbiological burden and the NI rates.
Collapse
|
42
|
Antifouling and antibacterial improvement of surface-functionalized poly(vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.12.038] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Zhang J, Zhang Y, Chen Y, Du L, Zhang B, Zhang H, Liu J, Wang K. Preparation and Characterization of Novel Polyethersulfone Hybrid Ultrafiltration Membranes Bending with Modified Halloysite Nanotubes Loaded with Silver Nanoparticles. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202473u] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingyi Zhang
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Yifeng Chen
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Lei Du
- Department
of Bioengineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Zhang
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Haoqin Zhang
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Jindun Liu
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou
450001, P. R. China
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
44
|
Esma CB, Zoulikha D, Ali M. Molecular Weight Effect on the Quaternization of Poly(4-vinylpyridine) with Alkylbromide. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.728488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J Colloid Interface Sci 2011; 360:415-21. [DOI: 10.1016/j.jcis.2011.04.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 11/22/2022]
|