1
|
Wang H, Yuan H, Zhang J, Yan W. Targeting threonine deaminase with chiral Au NPs: A novel strategy for E. coli inhibition. Biochem Biophys Res Commun 2024; 737:150924. [PMID: 39486138 DOI: 10.1016/j.bbrc.2024.150924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Bacterial infections are becoming a significant threat to global human health due to the growing prevalence of biofilm-related infections and the rise in antibiotic resistance. D/l-cysteine functionalized chiral gold nanoparticles (D/P-Au NPs or L/P-Au NPs) have demonstrated a potent antibacterial effect against E. coli, while the mechanism remains to be elucidated through additional research. Threonine deaminase (TD) is a crucial enzyme involved in branched-chain amino acid (BCAA) biosynthesis in E. coli and is involved in cysteine's antimicrobial effects. This study investigated the interaction between chiral Au NPs (D/P-Au NPs or L/P-Au NPs) and TD as well as its effect on enzyme activity. It demonstrates that chiral Au NPs interact with TD through hydrophobic forces, forming a ground state complex that induces changes in the secondary structure of TD and reduces enzyme activity in a concentration-dependent manner. We found that the exogenous supplementation of isoleucine and valine (2 mg/mL) significantly reduced the antibacterial activity of chiral Au NPs, especially for L/P-Au NPs. The proteomics results indicate that the expression of ilvA and ilvB was down-regulated after L/P-Au NPs treatment, which would interfere with the synthesis of BCAAs. These results demonstrate that chiral Au NPs cause cell death of E. coli partly due to inhibition of TD enzyme activity and the synthesis of branched-chain amino acids.
Collapse
Affiliation(s)
- He Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidu Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Food Contact Materials Safety, State Administration for Market Regulation, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Food Contact Materials Safety, State Administration for Market Regulation, China.
| |
Collapse
|
2
|
Bhatt S, Dasgupta S, Tupe C, Prashar C, Adhikari U, Pandey KC, Kundu S, Chakraborti S. Antimalarial Delivery with a Ferritin-Based Protein Cage: A Step toward Developing Smart Therapeutics against Malaria. Biochemistry 2024; 63:1738-1751. [PMID: 38975628 DOI: 10.1021/acs.biochem.3c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Over the past two decades, the utilization of protein cages has witnessed exponential growth driven by their extensive applications in biotechnology and therapeutics. In the context of the recent Covid-19 pandemic, protein-cage-based scaffolds played a pivotal role in vaccine development. Beyond vaccines, these protein cages have proven valuable in diverse drug delivery applications thanks to their distinctive architecture and structural stability. Among the various types of protein cages, ferritin-based cages have taken the lead in drug delivery applications. This is primarily attributed to their ease of production, exceptional thermal stability, and nontoxic nature. While ferritin-based cages are commonly employed in anticancer drug delivery and contrast agent delivery, their efficacy in malarial drug delivery had not been explored until this study. In this investigation, several antimalarial drugs were encapsulated within horse spleen ferritin, and the binding and loading processes were validated through both experimental and computational techniques. The data unequivocally demonstrate the facile incorporation of antimalarial drugs into ferritin without disrupting its three-dimensional structure. Computational docking and molecular dynamics simulations were employed to pinpoint the precise location of the drug binding site within ferritin. Subsequent efficacy testing on Plasmodium revealed that the developed nanoconjugate, comprising the drug-ferritin conjugate, exhibited significant effectiveness in eradicating the parasite. In conclusion, the findings strongly indicate that ferritin-based carrier systems hold tremendous promise for the future of antimalarial drug delivery, offering high selectivity and limited side effects.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Subrata Dasgupta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Chiging Tupe
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Cherish Prashar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Utpal Adhikari
- National Institute of Technology, Durgapur, West Bengal 713209, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa 403726, India
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
- Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
3
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
4
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Johnson Raja S, Gurusamy S, Nandini Asha R, Jeyakumar TC. Synthesis, spectral, DFT calculation, antimicrobial, antioxidant, DNA/BSA binding and molecular docking studies of bio-pharmacologically active pyrimidine appended Cu(II) and Zn(II) complexes. J Biomol Struct Dyn 2023; 41:14914-14928. [PMID: 37021479 DOI: 10.1080/07391102.2023.2196696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
A new pyrimidine derivative Schiff base (HL) [HL = 2-((4-amino-6-chloropyrimidin-2-ylimino)methyl)-4-nitrophenol] has been synthesized using 2,6-diamino-4-chloropyrimidine and 5-nitrosalicylaldehyde. Transition metal complexes of Cu(II) and Zn(II) complexes [CuL(OAc)] (1), [ZnL(OAc)] (2) are prepared with HL/metal(II) acetate with molar ratio of 1:1. The Schiff base (HL) and the complexes 1 and 2 are evaluated by UV-Visible, 1H-NMR, FT-IR, EI-MS and ESR spectral techniques. Complexes 1 and 2 are confirmed as square planar geometry. Electrochemical studies of the complexes 1 and 2 are used to analyse the quasi reversible process. Density Functional Theory (DFT) using the B3LYP/6-31++G(d,p) level basis set was used to get the optimised geometry and non-linear optical properties. The complexes 1 and 2 are good antimicrobial agents than Schiff base (HL). The interactions of the HL and complexes 1 and 2 with Calf Thymus (CT) DNA are investigated by electronic absorption methods and viscosity measurements. Various molecular spectroscopy techniques, such as UV absorption and fluorescence, were used to explore the mechanism of interaction between the BSA and the ligand HL and complexes 1 & 2 under physiological settings. Complexes 1 and 2 are act as potential antioxidants than free Schiff base (HL) by DPPH radical scavenging assay. Furthermore, the purpose of the molecular docking studies was to better understand how metal complexes interact with biomolecules (CT-DNA and BSA). From these biological analyses, complex 1 acts as good intercalator with CT DNA & BSA and potent antioxidant with DPPH radical than complex 2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
5
|
Wang J, Cheng J. Spectroscopic and molecular docking studies of the interactions of sunset yellow and allura red with human serum albumin. J Food Saf 2022. [DOI: 10.1111/jfs.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun Wang
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| | - Jing‐jing Cheng
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| |
Collapse
|
6
|
Baker A, Khalid M, Uddin I, Khan MS. Targeted non AR mediated smart delivery of abiraterone to the prostate cancer. PLoS One 2022; 17:e0272396. [PMID: 36018864 PMCID: PMC9416994 DOI: 10.1371/journal.pone.0272396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the second-deadliest tumor in men all over the world. Different types of drugs with various delivery systems and pathways were developed, but no one showed prominent results against cancer. Meanwhile, nanoparticles have shown good results against cancer. Therefore, in the given study, citrate mediated synthesized gold nanoparticles (CtGNPs) with immobilized survivin antibodies (SvGNPs) were bioconjugated to the substantially potent drug abiraterone (AbSvGNPs) to develop as a combinatorial therapeutic against prostate cancer. The AbSvGNPs are made up of CtGNPs, survivin antibodies, and abiraterone. The selected drug abiraterone (Abira) possesses exceptionally good activity against prostate cancer, but cancer cells develop resistance against this drug and it also poses several severe side effects. Meanwhile, survivin antibodies were used to deliver AbSvGNPs specifically into cancer cells by considering survivin, an anti-apoptotic overexpressed protein in cancer cells, as a marker. The survivin antibodies have also been used to inhibit cancer cells as an immunotherapeutic agent. Similarly, CtGNPs were discovered to inhibit cancer cell proliferation via several transduction pathways. The given bioconjugated nanoparticles (AbSvGNPs) were found to be substantially effective against prostate cancer with an IC50 of 11.8 and 7.3 μM against DU145 and PC-3 cells, respectively. However, it was found safe against NRK and showed less than 25% cytotoxicity up to 20μM concentration. The as-synthesized nanoparticles CtGNPs, SvGNPs, and AbSvGNPs were characterized by several physical techniques to confirm their synthesis, whereas the immobilization of survivin antibodies and bioconjugation of Abira was confirmed by UV-visible spectroscopy, DLS, TEM, FTIR, and zeta-potential. The anticancer potential of AbSvGNPs was determined by MTT, DAPI, ROS, MITO, TUNEL ASSAY, and caspase-3 activity against DU145 and PC3 cells.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abduaziz University, Al-kharj, Saudi Arabia
| | - Imran Uddin
- Department of Physics, SRM University-AP, Amaravati, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
- * E-mail: ,
| |
Collapse
|
7
|
Qin S, Wu B, Gong T, Zhang ZR, Fu Y. Targeted delivery via albumin corona nanocomplex to renal tubules to alleviate acute kidney injury. J Control Release 2022; 349:401-412. [PMID: 35835398 DOI: 10.1016/j.jconrel.2022.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Renal tubular epithelial cell (RTEC) is a critical target cell for the treatment of acute kidney injury (AKI). Despite various RTEC targeting strategies using ligand modified nanoparticles (NPs) following systemic administration, the nonspecific interaction between NPs and plasma proteins greatly weakens the targeting efficiency as well as the stability of NPs. Herein, celastrol (CLT) was entrapped in D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) forming a CLT-loaded nanocomplex core (CT) with a high loading capacity of ~50%. Bovine serum albumin (BSA) was then adsorbed onto the CT surface to afford a complete albumin corona without obvious denaturation (CTB). CTB showed uniform particle size distribution and sufficient stability in vitro and in vivo. Besides clathrin-mediated and macropinocytosis pathways, CTB was actively internalized through megalin receptor-mediated endocytosis in HK-2 cells. Per biodistribution studies, CTB demonstrates enhanced renal tubule-specific distribution and targetability in mice compared to CT without albumin corona. Furthermore, pharmacodynamic studies in vivo further support that CTB effectively alleviated ischemia-reperfusion induced injuries without obvious systemic side effects in AKI mice models.
Collapse
Affiliation(s)
- Shuo Qin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Beibei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Halder S, Aggrawal R, Saha SK. Concentration-dependent β-cyclodextrin-promoted refolding of gold nanoparticles-conjugated bovine serum albumin complexed with gemini surfactants with different spacer groups. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Aggrawal R, Halder S, Dyagala S, Saha SK. Refolding of denatured gold nanoparticles-conjugated bovine serum albumin through formation of catanions between gemini surfactant and sodium dodecyl sulphate. RSC Adv 2022; 12:16014-16028. [PMID: 35733677 PMCID: PMC9136644 DOI: 10.1039/d2ra02618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
The present work elucidates binding interactions of sodium dodecyl sulphate (SDS) with the conjugated gold nanoparticles (AuNPs)-bovine serum albumin (BSA), unfolded by each of two gemini surfactants, 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-butane (12-4-12,2Br-) or 1,8-bis(dodecyl-N,N-dimethylammonium bromide)-octane (12-8-12,2Br-). Initially, at a low concentration of SDS there is a relaxation of bioconjugates from their compressed form due to the formation of catanions between SDS and gemini surfactants. On moving towards higher concentrations of SDS, these relaxed unfolded bioconjugates renature by removal of residual bound gemini surfactants. Mixed assemblies of SDS and gemini surfactants formed during refolding of bioconjugates are characterized by DLS and FESEM measurements. A step-by-step process of refolding observed for these denatured protein bioconjugates is exactly the inverse of their unfolding phenomenon. Parameters concerning nanometal surface energy transfer (NSET) and Förster's resonance energy transfer (FRET) phenomenon were employed to develop a binding isotherm. Moreover, there remains an inverse relationship between α-helix and β-turns of bioconjugates during the refolding process. Significantly, in the presence of 12-8-12,2Br-, SDS induces more refolding as compared to that for 12-4-12,2Br-. Bioconjugation shows an effect on the secondary structures of refolded BSA, which has been explored in detail through various studies such as Fourier transform infrared spectroscopy, fluorescence, and circular dichroism (CD). Therefore, this approach vividly describes the refolding of denatured bioconjugates, exploring structural information regarding various catanions formed during the process that would help in understanding distance-dependent optical biomolecular detection methodologies and physicochemical properties.
Collapse
Affiliation(s)
- Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| |
Collapse
|
11
|
Evaluation of xanthene-appended quinoline hybrids as potential leads against antimalarial drug targets. Mol Divers 2022; 27:709-727. [PMID: 35583686 DOI: 10.1007/s11030-022-10450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
A series of fused heterocycle xanthene-appended quinoline 6a-n was successfully synthesized with regioselectivity and characterized using IR, 1H NMR, 13C NMR, and mass spectral data. Molecular docking was performed to find the binding efficacy of all these newly synthesized compounds towards thirteen antimalarial drug targets. Molecular dynamics simulation was carried out to predict the stability of the ligand-bound complex in a solvent medium. Blind and site-directed docking with compounds 6a-n against 13 drug targets revealed most of the ligands to have a good binding affinity with the targets. Analysis on the basis of binding energy, binding modalities of the ligands, intermolecular interactions, and pharmacophore, we identified only one of the ligand-receptor complexes to provide better results. Molecular dynamic simulation of the selected receptor-ligand complex revealed that the synthesized compound had a better binding affinity with the receptor than the native ligand complex. Further analysis of the synthesized ligand in the laboratory may prove promising results in the search for potential antimalarial drugs.
Collapse
|
12
|
Li X, Guo W, Xu R, Song Z, Ni T. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120983. [PMID: 35149482 DOI: 10.1016/j.saa.2022.120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the interaction between gold nanoparticles (AuNPs) and proteins (including lysozyme, trypsin, pepsin, γ-globulin and hemoglobin) was investigated by UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and protein activity assay. AuNPs was synthesized using reduction of HAuCl4 with sodium citrate. The formation of AuNPs was confirmed from the characteristic surface plasmon resonance band at 521 nm and transmission electron microscopy revealed the average particle size was about 10 nm. The results reveal that AuNPs can interact with proteins to form a "protein corona (PC)", but the protein concentration required to form a relatively stable PC is not the same. The quenching mechanism of proteins by AuNPs is arisen from static quenching. The binding constants of AuNPs with proteins are in the range from 106 to 1010 L mol-1, and the order is pepsin > γ-globulin > hemoglobin > trypsin > lysozyme at 298 K. Van der Waals forces and hydrogen bonds are the main forces for the lysozyme-AuNPs system. The interaction between trypsin/pepsin/γ-globulin/hemoglobin and AuNPs is mainly by hydrophobic interaction. The addition of AuNPs has an effect on the secondary structure of proteins as confirmed from CD spectra. The change in secondary structure of different proteins is different and seems to have little relation with the binding constant. The activity of lysozyme/trypsin/pepsin decreases with the addition of AuNPs.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Wei Guo
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
13
|
Improving Tirapazamine (TPZ) to Target and Eradicate Hypoxia Tumors by Gold Nanoparticle Carriers. Pharmaceutics 2022; 14:pharmaceutics14040847. [PMID: 35456681 PMCID: PMC9024542 DOI: 10.3390/pharmaceutics14040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/10/2022] Open
Abstract
Tumor hypoxia is a hallmark of solid tumors and emerged as the therapeutic target for cancer treatments, such as a prodrug Tirapazamine (TPZ) activated in hypoxia. To increase tumor accumulation, gold nanoparticles (GNPs) were selected to conjugate with TPZ. In this study, we successfully formulated and assessed the biochemical and therapeutic roles of the conjugated gold nanoparticles–Tirapazamine (GNPs–TPZ) on therapeutic assessments of MKN45-induced xenograft animal model. The results indicated that GNPs–TPZ was a potential nanomedicine for selectively targeting hypoxia tumors coupled with decreased side effects on healthy tissue or organs. TPZ significantly reduced cell viability of hypoxic gastric cancer MKN45 cells, but not in cells incubated in normoxia condition. For improving tumor targeting efficiency, furthermore, the GNPs drug carrier was conjugated to TPZ via biding mediator bovine serum albumin (BSA), and we demonstrated that this conjugated GNPs–TPZ retained the unique characteristics of hypoxic toxin and possessed the adequate feature of systemic bio-distributions in animals. GNPs–TPZ nanoparticles revealed their superior affinity to hypoxia tumors in the MKN45 xenograft. Moreover, GNPs–TPZ treatments did not significantly alter the biochemical parameters of blood samples acquired from animals. Taken together, TPZ, a prodrug activated by hypoxia, was conjugated with GNPs, whereas BSA severed as an excellent binding agent for preparing the conjugated GNPs–TPZ nanomedicines. We demonstrated that GNPs–TPZ enhanced tumor targeting, resulting in higher therapeutic efficacy compared to TPZ. We suggest that it may sever as an adjuvant treatment or combined therapy with other chemotherapeutics for the treatment of cancer patients in the future.
Collapse
|
14
|
Kucharski DJ, Jaszczak MK, Boratyński PJ. A Review of Modifications of Quinoline Antimalarials: Mefloquine and (hydroxy)Chloroquine. Molecules 2022; 27:1003. [PMID: 35164267 PMCID: PMC8838516 DOI: 10.3390/molecules27031003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.
Collapse
Affiliation(s)
| | | | - Przemysław J. Boratyński
- Department of Organic and Medicinal Chemistry, Wrocław University of Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland; (D.J.K.); (M.K.J.)
| |
Collapse
|
15
|
Abdel-Bakky MS, Amin E, Ewees MG, Mahmoud NI, Mohammed HA, Altowayan WM, Abdellatif AAH. Coagulation System Activation for Targeting of COVID-19: Insights into Anticoagulants, Vaccine-Loaded Nanoparticles, and Hypercoagulability in COVID-19 Vaccines. Viruses 2022; 14:228. [PMID: 35215822 PMCID: PMC8876839 DOI: 10.3390/v14020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is currently developing into a rapidly disseminating and an overwhelming worldwide pandemic. In severe COVID-19 cases, hypercoagulability and inflammation are two crucial complications responsible for poor prognosis and mortality. In addition, coagulation system activation and inflammation overlap and produce life-threatening complications, including coagulopathy and cytokine storm, which are associated with overproduction of cytokines and activation of the immune system; they might be a lead cause of organ damage. However, patients with severe COVID-19 who received anticoagulant therapy had lower mortality, especially with elevated D-dimer or fibrin degradation products (FDP). In this regard, the discovery of natural products with anticoagulant potential may help mitigate the numerous side effects of the available synthetic drugs. This review sheds light on blood coagulation and its impact on the complication associated with COVID-19. Furthermore, the sources of natural anticoagulants, the role of nanoparticle formulation in this outbreak, and the prevalence of thrombosis with thrombocytopenia syndrome (TTS) after COVID-19 vaccines are also reviewed. These combined data provide many research ideas related to the possibility of using these anticoagulant agents as a treatment to relieve acute symptoms of COVID-19 infection.
Collapse
Affiliation(s)
- Mohamed S. Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
| | - Mohamed G. Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt; (M.G.E.); (N.I.M.)
| | - Nesreen I. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt; (M.G.E.); (N.I.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Waleed M. Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qasssim 52471, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
16
|
Li X, Ma X, Zhang C, Xu R. A comparative study on the interaction of gold nanoparticles with trypsin and pepsin: thermodynamic perspectives. NEW J CHEM 2022. [DOI: 10.1039/d2nj04020d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study provides accurate and full basic data for clarifying the interaction mechanism of AuNPs with trypsin and pepsin.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, 601 Jin-sui Road, Hong Qi District, Xinxiang, Henan, 453003, P. R. China
| | - Xiaoyi Ma
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Congxiao Zhang
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, 601 Jin-sui Road, Hong Qi District, Xinxiang, Henan, 453003, P. R. China
| |
Collapse
|
17
|
Rostamnezhad F, Hossein Fatemi M. Exploring the interactions of acenaphthene with bovine serum albumin: Spectroscopic methods, molecular modeling and chemometric approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120164. [PMID: 34274633 DOI: 10.1016/j.saa.2021.120164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The interaction of acenaphthene (ACN), a widespread environmental pollutant, with bovine serum albumin (BSA) was explored using spectroscopic methods, molecular modeling and chemometric approaches. The multivariate curve resolution-alternating least squares (MCR-ALS) analysis decomposed the overlapped excitation-emission matrix (EEM) spectra of mixture of ACN and BSA successfully and extracted spectral profiles of pure BSA, ACN and BSA-ACN complex. Based on fluorescence quenching analysis, ACN quenched the inherent fluorescence of BSA remarkably via a static mechanism. The obtained value of binding constant (Kb = 3.82 × 105 L mol-1) revealed a high binding affinity of ACN to BSA which facilitates its distribution by blood circulation system. Furthermore, the binding parameters values revealed that one binding site in BSA was involved in BSA-ACN complex. FT-IR, UV-Vis and CD spectra showed that the conformation of BSA was altered in presence of ACN slightly. Molecular docking simulation suggested that ACN was located in the IA region of BSA and the main interactions between ACN and BSA, are van der Waals forces. The obtained results provide some insight into interactions between ACN and serum albumins at the molecular level.
Collapse
Affiliation(s)
- Fatemeh Rostamnezhad
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
18
|
Halder S, Aggrawal R, Jana S, Saha SK. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112351. [PMID: 34763228 DOI: 10.1016/j.jphotobiol.2021.112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Srabanti Jana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior 474005, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
19
|
Zhao Z, Li G, Liu QS, Liu W, Qu G, Hu L, Long Y, Cai Z, Zhao X, Jiang G. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125582. [PMID: 34030421 DOI: 10.1016/j.jhazmat.2021.125582] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
With the potential biomedical applications of nanomaterials such as silver nanoparticles (SNPs), nanotoxicity concerns are growing, and the importance of NP and protein interactions is far from being addressed enough. Here, we identified the major binding protein on SNPs in blood as human serum albumin (HSA) using polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. By comparing with the previous methods, we emphasized surface area concentration as a new dose metric to address the importance of NP curvature. SNPs interacted with cysteine and cystine, disrupting the secondary structure and conformation of HSA, and this tendency became stronger on small SNPs than large ones. The protein corona significantly alleviated the toxicity and decreased SNPs' internalization in a particle size-dependent manner, where more significant inhibition effects occurred on larger particles at the same area concentration. These findings may shed light on nanotoxicity and also the design of safe nanomaterials by a comprehensive preconsideration of the metrological method.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei Liu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine, Beijing 100124, PR China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanmin Long
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
20
|
Xu X, Man L. Papain Mediated Synthesized Gold Nanoparticles Encore the Potency of Bioconjugated Flutamide. Curr Pharm Biotechnol 2021; 22:557-568. [PMID: 32106799 DOI: 10.2174/1389201021666200227121144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer is the second most common cause of male cancer death after lung cancer in the US. Therefore, there is an urgent need for a highly effective therapeutic drug at substantially low doses. OBJECTIVE Anti-androgen drug flutamide was delivered to the prostate cancer cells using Papain Mediated Synthesized Gold Nanoparticles (PGNPs) as the drug delivery system. PGNPs and flutamide worked synergistically against cancer cells. METHODS Flutamide was used to bioconjugate with PGNPs to improve its efficacy against prostate cancer. The synthesis and bioconjugation of flutamide with PGNPs (F-PGNPs) were characterized by various characterization techniques such as UV-vis spectroscopy, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and zeta potential to ensure the synthesis, size, shape, size distribution, and stability. The drug loading efficiency of flutamide in F-PGNPs was confirmed and validated by UV-vis spectroscopy. Eventually, in vitro studies were performed to determine the potency of F-PGNPs, changes in nuclear morphology, and generation of Reactive Oxygen Species (ROS). RESULTS The efficacy of F-PGNPs (IC50 is 46.54 μg/mL) was found to be improved significantly over pure flutamide (IC50 is 64.63 μg/mL) against human prostate cancer PC-3 cell line whereas F-PGNPs did not show any significant toxicity up to a fairly high concentration toward normal mouse macrophage J774A.1 cells. The apoptotic effects and ROS generation of F-PGNPs were analyzed by increased permeability of the cell membrane and condensed chromatin with deep blue and green fluorescent nucleus, respectively. DISCUSSION The results clearly showed that F-PGNPs significantly improved the potency of flutamide by delivering it directly into the nucleus of cancer cells through caveolae-dependent endocytosis. CONCLUSION Thus, the greater inhibitory effect of F-PGNPs over the pure drug would be of great advantage during prostate cancer treatment.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Urology, Beijing Jishuitan Beijing, 100096, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Beijing, 100096, China
| |
Collapse
|
21
|
Recent updates in COVID-19 with emphasis on inhalation therapeutics: Nanostructured and targeting systems. J Drug Deliv Sci Technol 2021; 63:102435. [PMID: 33643448 PMCID: PMC7894098 DOI: 10.1016/j.jddst.2021.102435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
The current world health threat posed by the novel coronavirus disease of 2019 (COVID-19) calls for the urgent development of effective therapeutic options. COVID-19 needs daunting routes such as nano-antivirals. Hence, the role of nanotechnology is very critical in combating this nano-enemy "virus." Although substantial resources are under ongoing attention for prevention and care, we would like to start sharing with readers our vision of the role of inhaled nanomaterials and targeting systems that can play an important role in the fight against the COVID-19. In this review, we underline the genomic structure of COVID-19, recent modes of virus transmission with measures to control the infection, pathogenesis, clinical presentation of SARS-CoV-2, and how much the virus affects the lung. Additionally, the recent therapeutic approaches for managing COVID-19 with emphasis on the value of nanomaterial-based technical approaches are discussed in this review. This review also focuses on the safe and efficient delivery of useable targeted therapies using designed nanocarriers. Moreover, the effectiveness and availability of active targeting of certain specific receptors expressed on the coronavirus surfaces via tailored ligand nanoparticles are manipulated. It was also highlighted in this review the role of inhaled medicines including antivirals and repurposed drugs for fighting the associated lung disorders and efficiency of developed vaccines. Moreover, the inhalation delivery safety techniques were also highlighted.
Collapse
|
22
|
Zhang C, Guan J, Zhang J, Yang J, Wang X, Peng X. Protective effects of three structurally similar polyphenolic compounds against oxidative damage and their binding properties to human serum albumin. Food Chem 2021; 349:129118. [PMID: 33556725 DOI: 10.1016/j.foodchem.2021.129118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Brazilin (Bra), hematoxylin (Hto) and hematein (Hte) are structurally similar polyphenols having rich biological activities, but their antioxidant ability has not been well studied. Here, their protective ability against human serum albumin (HSA) oxidative degradation were investigated using 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH), NaClO and Fenton like reactions methods. The results indicated that polyphenols inhibited the oxidative injuries of HSA in the order: Hto > Bra > Hte. Additionally, the biological effects of polyphenols were mostly influenced by their binding to protein. Therefore, the structure-affinity relationships of polyphenols binding to HSA were also explored. Fluorescence experiments indicated that polyphenols bound to HSA through static quenching mechanism. Furthermore, some conformational changes of HSA could be observed in the presence of polyphenols. Altogether, molecular structure of polyphenols played a significant role in their protective effect against HSA oxidative damage and binding ability, which provided fundamental insights into their application as health care foods.
Collapse
Affiliation(s)
- Chuanying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jiao Guan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Xiaoli Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
23
|
Simon J, Udayan S, Bindiya ES, Bhat SG, Nampoori VPN, Kailasnath M. Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins. Anal Biochem 2020; 612:113975. [PMID: 32966803 DOI: 10.1016/j.ab.2020.113975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
The interaction of three proteins, viz. Bovine Serum Albumin (BSA), Human Serum Albumin (HSA) and Hen Egg White Lysozyme (HEWL) with gold nanoparticles (GNPs) is investigated using surface plasmon resonance (SPR) spectroscopy, fluorescence spectroscopy and circular dichroism (CD). Size and morphology of the samples was established using Transmission Electron Microscopy (TEM) and stability studies was established using zeta potential analysis. The stability of protein-GNP complex was found to be greater than that of individual protein as well as individual GNPs. Also HEWL-GNP complex was more stable compared to the other protein complexes. Absorbance of proteins increases with increase in gold nanoparticle concentration due to the extension of peptide strands of protein and decrease in hydrophobicity of gold nanoparticles. A ground state complex is also formed which is evident from the moderate shift observed in the absorbance peaks. Apparent association constant was also determined from the absorption spectra and was found to be maximum for HEWL and minimum for HSA. Gold nanoparticles were found to act as quenchers and reduced the protein fluorescence intensity. Binding constant and number of binding sites were found to be maximum for HEWL and minimum for HSA. The temperature dependent fluorescence studies were also performed to calculate the thermodynamic parameters and to determine the nature of interaction between the proteins and gold nanoparticles. The circular dichroism studies elucidate the reason behind the maximum binding for HEWL and minimum binding for HSA. TGA analysis determined the thermal stability of the samples. Fluorescence lifetime studies indicate static quenching of proteins. Antibacterial activity of protein-gold nanoparticles was studied against four pathogens, viz. Bacillus pumilus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. HEWL exhibits a tunable antimicrobial activity against Pseudomonas aeruginosa due to the maximum binding of HEWL with gold nanoparticles. The study proposes a novel method for adjusting the antibacterial activity of HEWL against Pseudomonas aeruginosa when the resistance of this pathogen is a major issue in the chemotherapy of many infectious diseases. Thus the combination therapy of protein-gold nanoparticles could prove to be a new approach in medical field in the near future.
Collapse
Affiliation(s)
- Jessy Simon
- International School of Photonics, Cochin University of Science and Technology, Cochin, India.
| | - Sony Udayan
- International School of Photonics, Cochin University of Science and Technology, Cochin, India
| | - E S Bindiya
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | - V P N Nampoori
- International School of Photonics, Cochin University of Science and Technology, Cochin, India
| | - M Kailasnath
- International School of Photonics, Cochin University of Science and Technology, Cochin, India
| |
Collapse
|
24
|
Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Kou SB, Lin ZY, Wang BL, Shi JH, Liu YX. Evaluation of the interaction of novel tyrosine kinase inhibitor apatinib mesylate with bovine serum albumin using spectroscopies and theoretical calculation approaches. J Biomol Struct Dyn 2020; 39:4795-4806. [PMID: 32568635 DOI: 10.1080/07391102.2020.1782767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Apatinib mesylate (APM), a novel tyrosine kinase inhibitor, has been applied in treating various cancers. In the present study, the binding mechanism of APM with bovine serum albumin (BSA) was studied by making use of various spectroscopic and theoretical calculation approaches to provide theoretical support for further studying its pharmacokinetics and metabolism. The results from fluorescence experiments showed that the quenching mechanism of BSA induced by APM was static quenching and the APM-BSA complex with the stoichiometry of 1:1 was formed during binding reaction. Moreover, the findings also showed that the binding process of APM to BSA was spontaneous and enthalpy-driven, and the mainly driving forces were hydrogen bonding, van der Waals as well as hydrophobic interactions. From the outcomes of the competitive experiments, it can be found that the binding site was primarily nestled in sub-domain IIIA of BSA (site II) which was in line with the results of molecular docking. An appreciable decline in α-helix content of BSA can be observed from the FT-IR data, meaning that the conformational change of BSA occurred after binding with APM, this phenomenon can be corroborated by the results of UV-vis, synchronous fluorescence and 3D fluorescence studies. Furthermore, the effect of some metal ions (e.g. K+, Co2+, Ni2+, Fe3+) on the binding constant of APM to BSA was explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ying-Xin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Synthesis, crystal structure, bovine serum albumin binding studies of 1,2,4-triazine based copper(I) complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Singh N, Kumar N, Rathee G, Sood D, Singh A, Tomar V, Dass SK, Chandra R. Privileged Scaffold Chalcone: Synthesis, Characterization and Its Mechanistic Interaction Studies with BSA Employing Spectroscopic and Chemoinformatics Approaches. ACS OMEGA 2020; 5:2267-2279. [PMID: 32064388 PMCID: PMC7016911 DOI: 10.1021/acsomega.9b03479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 05/28/2023]
Abstract
Chalcone, a privileged structure, is considered as an effective template in the field of medicinal chemistry for potent drug discovery. In the present study, a privileged template chalcone was designed, synthesized, and characterized by various spectroscopic techniques (NMR, high-resolution mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV spectroscopy, and single-crystal X-ray diffraction). The mechanism of binding of chalcone with bovine serum albumin (BSA) was determined by multispectroscopic techniques and computational methods. Steady-state fluorescence spectroscopy suggests that the intrinsic fluorescence of BSA was quenched upon the addition of chalcone by the combined dynamic and static quenching mechanism. Time-resolved spectroscopy confirms complex formation. FT-IR and circular dichroism spectroscopy suggested the presence of chalcone in the BSA molecule microenvironment and also the possibility of rearrangement of the native structure of BSA. Moreover, molecular docking studies confirm the moderate binding of chalcone with BSA and the molecular dynamics simulation analysis shows the stability of the BSA-drug complex system with minimal deformability fluctuations and potential interaction by the covariance matrix. Moreover, pharmacodynamics and pharmacological analysis show good results through Lipinski rules, with no toxicity profile and high gastrointestinal absorptions by boiled egg permeation assays. This study elucidates the mechanistic profile of the privileged chalcone scaffold to be used in therapeutic applications.
Collapse
Affiliation(s)
- Nidhi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Neeraj Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Garima Rathee
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Vartika Tomar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Sujata K. Dass
- BLK
Super Speciality Hospital, Pusa Road, Delhi, New Delhi 110005, India
| | - Ramesh Chandra
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
28
|
Yallur BC, Katrahalli U, Krishna PM, Hadagali MD. BSA binding and antibacterial studies of newly synthesized 5,6-Dihydroimidazo[2,1-b]thiazole-2-carbaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117192. [PMID: 31174150 DOI: 10.1016/j.saa.2019.117192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A new heterocyclic compound, 5,6-Dihydroimidazo[2,1-b]thiazole-2-carbaldehyde (ITC) was synthesized and its antibacterial activity and also its interaction with bovine serum albumin (BSA) were studied. The structure of the synthesized compound was confirmed by 1H NMR, 13C NMR and IR spectroscopic techniques. The antibacterial activity was carried out by minimum inhibitory concentration (MIC) method. The compound showed a good antibacterial activity. The mechanism of interaction between the BSA and ITC under physiological conditions was investigated by various molecular spectroscopic techniques like, fluorescence, circular dichroism (CD), UV absorption and FT-IR. The interaction between ITC and BSA was followed by studying the quenching of intrinsic fluorescence of BSA upon the addition of ITC at three different temperatures. The binding constant (K), Stern-Volmer quenching constant (Ksv) and number of binding sites were determined. The separation distance between BSA and ITC was evaluated based on the fluorescence resonance energy transfer theory. The conformational changes in BSA upon binding of ITC were also confirmed. The interference of some metal ions on interaction was studies. The displacement studies with site specific markers confirm that the site III was the binding site for ITC on BSA.
Collapse
Affiliation(s)
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bangalore 560 004, India
| | | | | |
Collapse
|
29
|
Katrahalli U, Chanabasappa Yallur B, Manjunatha DH, Krishna PM. BSA interaction and DNA cleavage studies of anti-bacterial benzothiazol-2-yl-malonaldehyde. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 2019; 9:13826. [PMID: 31554850 PMCID: PMC6761153 DOI: 10.1038/s41598-019-50215-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Iram Wahid
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Raish
- Department Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saheem Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
31
|
Singh N, Nayak J, Sahoo SK, Kumar R. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:453-465. [DOI: 10.1016/j.msec.2019.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
32
|
Wang BL, Pan DQ, Zhou KL, Lou YY, Shi JH. Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:15-24. [PMID: 30594849 DOI: 10.1016/j.saa.2018.12.040] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Benazepril, a common ACE inhibitor, widely used in the treatment of arterial hypertension and congestive heart failure. In this study, We evaluated the characteristics of the interaction between benazepril and BSA under the simulated physiological condition (pH7.4) through various spectroscopic and molecular docking methods. Fluorescence and absorption spectroscopy results showed benazepril quenched the intrinsic fluorescence of BSA through a combined dynamic and static quenching mechanism. The number of binding sites (n) and the binding constant (Kb) of benazepril-BSA complex were circa 1 and 6.81×103M-1 at 298K, respectively, indicating that the binding affinity between benazepril and BSA was moderate. The displacement experiments confirmed that benazepril binding to the site I of BSA, which was quite in accordance with molecular docking. The values of the Gibbs free energy (ΔG0), enthalpic change (ΔH0) and entropic change (ΔS0) were negative, verifying that van der Waals force and hydrogen bonding interaction played a predominant roles in the process of spontaneous bonding. Furthermore, a slight change of the conformation in BSA upon benazepril interaction was proved through SF, 3-DF and FTIR spectroscopy results.
Collapse
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
33
|
Carnovale C, Bryant G, Shukla R, Bansal V. Impact of nanogold morphology on interactions with human serum. Phys Chem Chem Phys 2018; 20:29558-29565. [PMID: 30457613 DOI: 10.1039/c8cp05938a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gold nanoparticles (AuNPs) of differing shapes are of great interest to researchers due to their unique optical properties, making them potentially powerful theranostic tools. The synthesis of AuNPs is performed frequently, however the assessment of biological activity for each nanoparticle is not always commonplace. While it is thought that physicochemical parameters such as shape may play an important role in dictating the outcomes of interactions which take place at the nano-bio interface, a systematic approach to the assessment of nanomaterials has not been widely adopted. In this study, the interaction between human serum albumin (HSA) and four similar sized but different shaped AuNPs (spherical, rod shaped, prismatic and cubic) synthesised using a common chemical surfactant (CTAB), is presented. Using fluorescence spectroscopy it is shown that all AuNPs exhibit static binding with HSA, however the shape affects both the affinity and strength of the binding. Rod shaped nanoparticles were found to have the highest binding strength and affinity. Conversely, shapes with large flat planar surfaces such as prisms and cubes were shown to have reduced accessibility to the site of the fluorophore within the structure of HSA. The differences observed help to provide a better understanding of the effect of shape on AuNP-protein interactions - knowledge which may be applied to the development of AuNPs for future biological applications.
Collapse
Affiliation(s)
- C Carnovale
- Ian Potter NanoBioSensing Facility, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| | | | | | | |
Collapse
|
34
|
Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. Int J Biol Macromol 2018; 118:1773-1780. [PMID: 29997045 DOI: 10.1016/j.ijbiomac.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
Functionalization of gold nanoparticles by different chemical groups is an important issue regarding the biomedical applications of such particles. Therefore we have analyzed the interaction between gold nanoparticles functionalized by carbosilane dendrons with human serum albumin at different pHs, and in the presence of the protein unfolding agent, guanidine hydrochloride, using circular dichroism, zeta-potential and fluorescence quenching. The effect of a nanoparticle dendronization and pure dendrons on the immunoreactivity of albumin was estimated using ELISA. In addition, the tool to estimate the binding capacity of dendronized gold nanoparticles using a hydrophobic fluorescent probe 1,8-ANS (1-anilinonaphthalene-8-sulfonic acid) was chosen. We concluded that the effect of a nanoparticle on the structure, immunochemical properties and unfolding of albumin significantly decreased with second and third generations dendrons attached. Differences in pH dependence of the interaction between nanoparticles, their dendrons and albumin showed several effects of the "dendritic corona" and the metallic part of nanoparticle on the protein. These interactions indicate changes in the immunoreactivity of the protein, whereas dendron coating per se had no effect. Thus, dendronization of gold nanoparticles helps to shield them from interactions with plasma proteins.
Collapse
|
35
|
Paul P, Chatterjee S, Pramanik A, Karmakar P, Chandra Bhattacharyya S, Kumar GS. Thionine Conjugated Gold Nanoparticles Trigger Apoptotic Activity Toward HepG2 Cancer Cell Line. ACS Biomater Sci Eng 2018; 4:635-646. [DOI: 10.1021/acsbiomaterials.7b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Puja Paul
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
- Department
of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sabyasachi Chatterjee
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Arindam Pramanik
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | - Parimal Karmakar
- Department
of Life Science and Bio-technology, Jadavpur University, Kolkata 700 032, India
| | | | - Gopinatha Suresh Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
36
|
Tsai W, Tsai H, Wong Y, Hong J, Chang S, Lee M. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:317-322. [DOI: 10.1016/j.msec.2017.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 01/10/2023]
|
37
|
Sun R, Yin L, Zhang S, He L, Cheng X, Wang A, Xia H, Shi H. Simple Light-Triggered Fluorescent Labeling of Silica Nanoparticles for Cellular Imaging Applications. Chemistry 2017; 23:13893-13896. [DOI: 10.1002/chem.201703653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rui Sun
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Ling Yin
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
- Department of Chemistry and Chemical Engineering; Jining University; Qufu 273155 P.R. China
| | - Shaohua Zhang
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Lei He
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Xiaju Cheng
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Anna Wang
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Huawei Xia
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| | - Haibin Shi
- Centre for Molecular Imaging and Nuclear Medicine; School for Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 199 Renai Road Suzhou 215123 P.R. China
| |
Collapse
|
38
|
Iram S, Zahera M, Khan S, Khan I, Syed A, Ansary AA, Ameen F, Shair OHM, Khan MS. Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surf B Biointerfaces 2017; 160:254-264. [PMID: 28942160 DOI: 10.1016/j.colsurfb.2017.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
Osteosarcoma or osteogenic sarcoma is the most common and prevalent cancerous tumor of bone and occurs especially in children and teens. Recent treatment strategy includes a combination of both chemotherapy and surgeries. Although, the use of single drug-based chemotherapy treatment remains unsatisfactory. Therefore, combinatorial therapy has emerged as a potential strategy for treatment with limited side- effects. Here, we evaluated the combinatorial anticancerous effect of cisplatin (CIS) and doxorubicin (DOX) bioconjugated bromelain encapsulated gold nanoparticles (B-AuNPs conjugated CIS and DOX) in the treatment of osteosarcoma. The synthesized B-AuNPs conjugated CIS and DOX were characterized by various characterization techniques like UV-vis spectroscopy, TEM, DLS and zeta potential to ensure the synthesis, size, shape, size distribution and stability. Drug loading efficiency bioconjugation of CIS and DOX was ensured by UV-vis spectroscopy. Bioconjugation of CIS and DOX was further confirmed using UV-vis spectroscopy, TEM, DLS, Zeta potential and FT-IR analysis. The combinatorial effect of CIS and DOX in B-AuNPs conjugated CIS and DOX showed highly improved potency against MG-63 and Saos-2 cells at a very low concentration where primary osteoblasts didn't show any cytotoxic effect. The apoptotic effect of B-AuNPs conjugated CIS and DOX on osteosarcoma and primary osteoblasts cells were analyzed by increased permeability of the cell membrane, condensed chromatin and deep blue fluorescent condensed nucleus. The results clearly showed that B-AuNPs conjugated CIS and DOX significantly improved the potency of both the chemotherapeutic drugs by delivering them specifically into the nucleus of cancer cells through caveolae-dependent endocytosis. Thus, the greater inhibitory effect of combinatorial drugs (B-AuNPs conjugated CIS and DOX) over single drug based chemotherapy would be of great advantage during osteosarcoma treatment.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Salman Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Imran Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abu Ayoobul Ansary
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
39
|
Wang J, Sun H, Meng P, Wang M, Tian M, Xiong Y, Zhang X, Huang P. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Int J Nanomedicine 2017; 12:6425-6435. [PMID: 28919745 PMCID: PMC5590760 DOI: 10.2147/ijn.s142008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although quantum dot (QD)-induced toxicity occurs due to free radicals, generation of oxidative stress mediated by reactive oxygen species (ROS) formation is considered an important mechanism. However, free radical mechanisms are essentially difficult to elucidate at the molecular level because most biologically relevant free radicals are highly reactive and short-lived, making them difficult to directly detect, especially in vivo. Antioxidants play an important role in preventing or, in most cases, limiting the damage caused by ROS. Healthy people and animals possess many endogenous antioxidative substances that scavenge free radicals in vivo to maintain the redox balance and genome integrity. The antioxidant capacity of an organism is highly important but seldom studied. In this study, the dose and time effects of CdTe QDs on the antioxidant capacities of the liver and kidneys were investigated in mice using the electron paramagnetic resonance (EPR) spin-trapping technique. We found that the liver and kidneys of healthy mice contain specific antioxidant capacities that scavenge ·OH and ·O2−. Furthermore, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione [GSH] and malondialdehyde [MDA]) were examined. In dose course studies, the free radical scavenging efficiencies of the liver and kidneys were found to gradually decrease with increasing concentration of CdTe QD exposure. The activities and levels of SOD, CAT, GPx and MDA were observed to increase in treated groups, whereas those of GSH were reduced. The time course studies revealed that the QD-induced antioxidant efficiency reduction was time dependent with GSH decrease and could recover after a period of time. These experimental results offer new information on QD toxicity in vivo. Specifically, CdTe QDs can deplete GSH to reduce the elimination ability of the liver and kidneys for ·OH and ·O2−, thus inducing oxidative damage to tissues.
Collapse
Affiliation(s)
- Jilong Wang
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Hubo Sun
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Peijun Meng
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Mengmeng Wang
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Mi Tian
- Medical Experiment and Test Center, Capital Medical University, Beijing, People's Republic of China
| | - Yamin Xiong
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Xueying Zhang
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| | - Peili Huang
- School of Public Health, Capital Medical University.,Beijing Key Laboratory of Environmental Toxicology
| |
Collapse
|
40
|
Structure and function of Vibrio cholerae accessory cholera enterotoxin in presence of gold nanoparticles: Dependence on morphology. Biochim Biophys Acta Gen Subj 2017; 1861:977-986. [DOI: 10.1016/j.bbagen.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
|
41
|
Cui T, Liang JJ, Chen H, Geng DD, Jiao L, Yang JY, Qian H, Zhang C, Ding Y. Performance of Doxorubicin-Conjugated Gold Nanoparticles: Regulation of Drug Location. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8569-8580. [PMID: 28218512 DOI: 10.1021/acsami.6b16669] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Drug-conjugated gold nanoparticles (GNPs), which are generally constructed with many molecules of thiol-terminated polyethylene glycol (PEG)-drug decorated on their surfaces via a thiol-Au covalent bond, are promising and efficient nanoprodrugs. However, because of the exposure of the hydrophobic drug molecules on the surface of the conjugate, in vivo stability, opsonization, and subsequent inefficient therapy become the main issues of this system. To solve these problems without complicating the structures of gold conjugates, herein we propose a method to change the relative position of PEG and the drug. A novel gold conjugate (GNP-NHN═Dox-mPEG) with doxorubicin (Dox) shielded by PEGylation on the surface of GNPs is designed. It demonstrates improved solubility, stability, and dispersion and achieves a two-step stimulus-responsive drug release in response to an acidic environment in lysosomes and then esterase in the cytoplasm. This unique manner of release enables the cytoplasm to act as a reservoir for sustained drug delivery into the nucleus to improve antitumor efficacy in vivo. The intratumoral drug concentrations of the conjugate reach 14.4 ± 1.4 μg/g at 8 h, a two-fold increase in the drug concentration compared with that of the doxorubicin hydrochloride group. This molecular design and regulation approach is facile but important in modulating the in vivo performance of nanovehicles and demonstrates its vital potential in developing effective nanoparticle-based drug delivery agents.
Collapse
Affiliation(s)
- Teng Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Juan-Juan Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Huan Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Dong-Dong Geng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Lei Jiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Jian-Yong Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Ya Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
42
|
Ghosh P, Patwari J, Dasgupta S. Complexation With Human Serum Albumin Facilitates Sustained Release of Morin From Polylactic-Co-Glycolic Acid Nanoparticles. J Phys Chem B 2017; 121:1758-1770. [PMID: 28201869 DOI: 10.1021/acs.jpcb.6b08559] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the interaction of proteins with nanoparticles has become an important area of research in biomedical and pharmaceutical fields. Morin is a flavonol which shows several properties including antioxidant, anticancer, and anti-inflammatory activities. However, the major limitation is its poor aqueous solubility. Therefore, morin-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (MPNPs) were prepared to improve the solubility of morin. The resulting MPNPs were characterized by spectroscopic and microscopic techniques. The nanoparticles were spherical with an average size of 237 ± 17 nm. UV-visible, fluorescence, and circular dichroism (CD) spectroscopy were employed to study the interaction of the MPNPs with human serum albumin (HSA). Our study revealed that a static fluorescence quenching mechanism was involved in the interaction between HSA and MPNPs. Hydrophobic interactions also play an important role in stabilizing the HSA-MPNP complex. CD results suggest that there is an alteration of the secondary structure of HSA in the presence of MPNPs. MPNPs exhibit antioxidant properties which are supported by the DPPH assay. We have further checked the effect of HSA on the antioxidant property of morin and MPNPs. HSA binding with MPNPs was also found to influence the in vitro release property of morin from MPNPs wherein a delayed release response is observed.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | - Jayita Patwari
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| |
Collapse
|
43
|
Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 2016; 10:11-21. [PMID: 28096662 PMCID: PMC5207451 DOI: 10.2147/nsa.s117018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.
Collapse
Affiliation(s)
- ES Bronze-Uhle
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - BC Costa
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - VF Ximenes
- Department of Chemistry, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - PN Lisboa-Filho
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| |
Collapse
|
44
|
Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials 2016; 90:62-71. [DOI: 10.1016/j.biomaterials.2016.02.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
|
45
|
Wang Q, Huang CR, Jiang M, Zhu YY, Wang J, Chen J, Shi JH. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 156:155-63. [PMID: 26688207 DOI: 10.1016/j.saa.2015.12.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 05/19/2023]
Abstract
The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.41 × 10(5) M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (ΔH(0)), entropic change (ΔS(0)) and Gibbs free energy (ΔG(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.
Collapse
Affiliation(s)
- Qi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chuan-ren Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Min Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying-yao Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-hua Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
46
|
Li Q, Zhang T, Bian L. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1014:90-101. [DOI: 10.1016/j.jchromb.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/30/2023]
|
47
|
Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:380-90. [DOI: 10.1016/j.jphotobiol.2015.10.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022]
|
48
|
Rohiwal S, Tiwari A, Verma G, Pawar S. Preparation and evaluation of bovine serum albumin nanoparticles for ex vivo colloidal stability in biological media. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Jiang M, Huang CR, Wang Q, Zhu YY, Wang J, Chen J, Shi JH. Combined spectroscopies and molecular docking approach to characterizing the binding interaction between lisinopril and bovine serum albumin. LUMINESCENCE 2015; 31:468-477. [DOI: 10.1002/bio.2984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Min Jiang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Chuan-ren Huang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Qi Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Ying-yao Zhu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Jing Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Jun Chen
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
| | - Jie-hua Shi
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310032 China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; Zhejiang University of Technology; Hangzhou 310032 China
| |
Collapse
|
50
|
Chou HC, Chiu SJ, Hu TM. LbL Assembly of Albumin on Nitric Oxide-Releasing Silica Nanoparticles Using Suramin, a Polyanion Drug, as an Interlayer Linker. Biomacromolecules 2015; 16:2288-95. [DOI: 10.1021/acs.biomac.5b00534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hung-Chang Chou
- School
of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan, Republic of China
| | - Shih-Jiuan Chiu
- School
of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Teh-Min Hu
- School
of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan, Republic of China
| |
Collapse
|