1
|
Gurgel D, Vieira YA, Henriques RO, Machado R, Oechsler BF, Junior AF, de Oliveira D. A Comprehensive Review on Core‐Shell Polymeric Particles for Enzyme Immobilization. ChemistrySelect 2022. [DOI: 10.1002/slct.202202285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Danyelle Gurgel
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Yago Araujo Vieira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Ricardo Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| |
Collapse
|
2
|
Zhao M, Yao L, Zhang X, Wang L, Tu P, Zeng K. Global identification of the cellular targets for a multi-molecule system by a photochemically-induced coupling reaction. Chem Commun (Camb) 2021; 57:3449-3452. [PMID: 33870345 DOI: 10.1039/d1cc00392e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current target identification strategies mainly focus on single compounds. However, no practical experimental methodologies have been developed for multi-molecule systems. Herein, we established a cellular target identification technology for a multi-molecule system by preparing 4,4'-dihydroxybenzophenone (DHBP)-bound Fe3O4 nanoparticles (NPs) with photochemically induced crosslinking capacity. DHBP-bound NPs reacted with the chemicals from the medicinal plant extract as a multi-molecule system under ultraviolet radiation by forming carbon-carbon bonds, thus generating extract-crosslinked NPs for capturing target proteins from cell lysates. The technology, which is named the Zhao-Yao (ZY) strategy, may promote the comprehensive interpretation of the pharmacological mechanism of multi-molecule systems via the global identification of cellular targets.
Collapse
Affiliation(s)
- Meimei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
3
|
Nischitha R, Shivanna MB. Antimicrobial activity and metabolite profiling of endophytic fungi in Digitaria bicornis (Lam) Roem. and Schult. and Paspalidium flavidum (Retz.) A. Camus. 3 Biotech 2021; 11:53. [PMID: 33489672 DOI: 10.1007/s13205-020-02590-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2020] [Indexed: 11/29/2022] Open
Abstract
Endophytic fungal occurrences were studied in aerial regions of Digitaria bicornis and Paspalidium flavidum by three isolation methods: potato dextrose agar (PDA), malt extract agar (MEA), and moist blotters. Seventy species of 29 genera of endophytic fungi in D. bicornis and 71 species of 30 genera in P. flavidum were documented. Endophytic fungal communities were grouped into 40 and 43 anamorphic ascomycetes (21 and 23 genera) and 20 teleomorphic ascomycetes (6 and 7 genera) in D. bicornis and P. flavidum, respectively. PDA supported the expression of larger number of fungal communities than MEA and MB; and P. flavidum hosted more number of endophytic fungi than D. bicornis. Seasons played an important role in supporting the assemblage of fungal endophytes. Endophytic fungal species richness and assemblages in plant regions were determined for alpha, beta, and gamma diversities. The ethyl acetate followed by methanolic extracts of certain fungal species showed good antagonistic and antibacterial activities. Among fungal endophytes, Curvularia protuberata and Penicillium citrinum exhibited high antagonistic and antibacterial activities. The high-resolution orbitrap liquid chromatography-mass spectrometry of ethyl acetate crude extracts of C. protuberata and P. citrinum revealed the presence of antifungal and antimicrobial, besides a host of compounds in the extracts. The present study indicated that grass endophytes are the sources of compounds with antimicrobial and other pharmacological activities.
Collapse
Affiliation(s)
- R Nischitha
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| | - M B Shivanna
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| |
Collapse
|
4
|
Ren L, Chen J, Lu Q, Han J, Wu H. Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Zhang X, Cao Y, Jiang Q, Zhang Y, Yang W. Preparation of cross-linked poly(methyl methacrylate) microspheres using an asymmetric cross-linker via dispersion polymerization and its application in light diffusers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
7
|
Tan J, Peng Y, Liu D, Huang C, Yu M, Jiang D, Zhang L. Facile Preparation of Monodisperse Poly(2-hydroxyethyl acrylate)-Grafted Poly(methyl methacrylate) Microspheres via Photoinitiated RAFT Dispersion Polymerization. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Yicheng Peng
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Mingguang Yu
- School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 China
| | - Dan Jiang
- Research Resources Center; South China Normal University; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
8
|
Liu Y, Ma Y, Liu L, Yang W. Facile synthesis of core–shell/hollow anisotropic particles via control of cross-linking during one-pot dispersion polymerization. J Colloid Interface Sci 2015; 445:268-276. [DOI: 10.1016/j.jcis.2014.12.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023]
|
9
|
Liu J, Yin D, Zhang S, Liu H, Zhang Q. Synthesis of polymeric core/shell microspheres with spherical virus-like surface morphology by Pickering emulsion. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Liu Y, Liu W, Ma Y, Liu L, Yang W. Direct one-pot synthesis of chemically anisotropic particles with tunable morphology, dimensions, and surface roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:925-936. [PMID: 25551684 DOI: 10.1021/la504317m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previously, synthesis of anisotropic particles by seeded polymerizations has involved multiple process steps. In conventional one-pot dispersion polymerization (Dis.P) with a cross-linker added, only spherical particles are produced due to rapid and high cross-linking. In this Article, a straightforward one-pot preparation of monodisperse anisotropic particles with tunable morphology, dimensions, surface roughness, and asymmetrically distributed functional groups is described. With a cross-linker of divinylbenzene (DVB, 8%), ethylene glycol dimethacrylate (EGDMA, 6%), or dimethacryloyloxybenzophenone (DMABP, 5%) added at 40 min, shortly after the end of nucleation stage in Dis.P of styrene (St) in methanol and water (6/4, vol), the swollen growing particles are inhomogeneously cross-linked at first. Then, at low gel contents of 59%, 49%, and 69%, corresponding to the cases using DVB, EGDMA, and DMABP, respectively, the growing particle phase separates and snowman- or dumbbell-like particles are generated. Thermodynamic and kinetic analyses reveal that moderate cross-linking and sufficient swelling of growing particles determine the formation and growth of anisotropic particles during polymerization. Morphology, surface roughness, sizes, and cross-linking degrees of each domain of final particles are tuned continuously by varying start addition time and contents of cross-linkers. The snowman-like particles fabricated with DVB have a gradient cross-linking and asymmetrical distribution of pendant vinyl groups from their body to head. The dumbbell-like particles prepared using DMABP have only one domain cross-linked; i.e., only one domain contains photosensitive benzophenone (BP) groups. With addition of glycidyl methacrylate (GMA) or propargyl methacrylate (PMA) together with DVB or EGDMA, epoxy or alkynyl groups are asymmetrically incorporated. With the aid of these functional groups, carboxyl, amino, or thiol groups and PEG (200) are attached by thiol-ene (yne) click and photocoupling reactions.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | | | | | |
Collapse
|
11
|
Tan J, Rao X, Yang J, Zeng Z. Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Adv 2015. [DOI: 10.1039/c4ra15224g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monodisperse highly Cross-linked “Living” microspheres were synthesized via photoinitiated RAFT dispersion polymerization of MMA using a bifunctional monomer or a trifunctional monomer as the cross-linker.
Collapse
Affiliation(s)
- Jianbo Tan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Key Laboratory of Designed Synthesis and Application of Polymer Material
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
| | - Xin Rao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Key Laboratory of Designed Synthesis and Application of Polymer Material
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
| | - Jianwen Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Key Laboratory of Designed Synthesis and Application of Polymer Material
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
| | - Zhaohua Zeng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Key Laboratory of Designed Synthesis and Application of Polymer Material
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
| |
Collapse
|
12
|
Facile synthesis of core-shell, multiple compartment anisotropic particles via control of cross-linking and continuous phase separations in one-pot dispersion polymerization. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3444-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Bai L, Gu J, Huan S, Li Z. Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Adv 2014. [DOI: 10.1039/c4ra03695f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Tan J, Rao X, Yang J, Zeng Z. Synthesis of Highly Monodisperse Surface-Functional Microspheres by Photoinitiated RAFT Dispersion Polymerization Using Macro-RAFT Agents. Macromolecules 2013. [DOI: 10.1021/ma401909a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianbo Tan
- Key Laboratory for Polymeric Composite
and Functional Materials of Ministry of Education, and Key Laboratory
of Designed Synthesis and Application of Polymer Material, School
of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Rao
- Key Laboratory for Polymeric Composite
and Functional Materials of Ministry of Education, and Key Laboratory
of Designed Synthesis and Application of Polymer Material, School
of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianwen Yang
- Key Laboratory for Polymeric Composite
and Functional Materials of Ministry of Education, and Key Laboratory
of Designed Synthesis and Application of Polymer Material, School
of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhaohua Zeng
- Key Laboratory for Polymeric Composite
and Functional Materials of Ministry of Education, and Key Laboratory
of Designed Synthesis and Application of Polymer Material, School
of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|