1
|
Zhang G, Wu Y, Xue W, Wang D, Chang Y, Liu M. Amplification-free detection of Escherichia coli using an acidic deoxyribozyme-based paper device. Chem Commun (Camb) 2024; 60:6741-6744. [PMID: 38809259 DOI: 10.1039/d4cc01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We reported a colorimetric paper-based device by integrating the modified acid RNA-cleaving DNAzymes (MaRCD-EC1) for highly sensitive (detection limit = 102 CFU mL-1), and rapid (within 30 min) detection of E. coli without amplification. This device exhibited a clinical sensitivity of 100% and a specificity of 100% in identifying E. coli-associated urinary tract infections (UTIs) using the clinical urine samples.
Collapse
Affiliation(s)
- Guangxiao Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Dong Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| |
Collapse
|
2
|
Lee HB, Son SE, Ha CH, Kim DH, Seong GH. Dual-mode colorimetric and photothermal aptasensor for detection of kanamycin using flocculent platinum nanoparticles. Biosens Bioelectron 2024; 249:116007. [PMID: 38194812 DOI: 10.1016/j.bios.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Chitosan (CS)-stabilized platinum nanoparticles (CS/PtNPs) were employed to develop a novel aptamer-based dual-mode colorimetric and photothermal biosensor for selective detection of kanamycin (KAN). As a peroxidase-like catalyst, the CS/PtNPs showed outstanding catalytic activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). As a stabilizing agent, CS excelled at fixing the KAN binding aptamer on the surface of the CS/PtNPs, amplifying their catalytic activity and enhancing colloidal dispersion and stability. The oxidized TMB (TMBox) functioned as a signal for the colorimetric, photothermal aptasensor because of its observable absorbance of light in the visible and near-infrared (NIR) regions. When light from a NIR laser was absorbed by the TMBox in the reaction solution, heat was generated in inverse proportion to the KAN concentration. The developed colorimetric and photothermal modes of the aptasensor showed a linear detection range of 0.1-50 and 0.5-50 μM, with a limit of detection (LOD) of 0.04 and 0.41 μM, respectively. Moreover, the aptasensor successfully determined KAN concentrations in spiked milk samples, verifying the reliability and reproducibility in practical applications. The dual-mode aptasensor based on CS/PtNPs for KAN detection, utilizing both color change and heat generation signals through a single probe (TMBox), demonstrates rapid response, simplicity in operation, cost-effectiveness, and high sensitivity. In addition, unlike typical immunoassays, this aptamer-based peroxidase-like nanozyme activation and inhibition strategy required no washing process, which was very effective in terms of reducing the time required for an assay and sustaining a high sensitivity.
Collapse
Affiliation(s)
- Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
3
|
Ha Y. Exploiting the Potential of Magnetic Nanoparticles for Rapid Diagnosis Tests (RDTs): Nanoparticle-Antibody Conjugates and Color Development Strategies. Diagnostics (Basel) 2023; 13:3033. [PMID: 37835776 PMCID: PMC10572869 DOI: 10.3390/diagnostics13193033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have emerged as a promising material in disease diagnostics due to their potential to enhance detection sensitivity, facilitate concentration and purification of target substances in diverse samples, and enable favorable color-based detection. In this study, antibody-conjugated MNPs were successfully synthesized and validated through two appropriate methods: the measurement of MNPs' size and the use of phosphatase methods. Additionally, three methods were suggested and implemented for developing color in MNPs-based immunoassay, including the formation of MNP aggregations, utilization of MNPs' peroxidase-like activity, and synthesis of dually-conjugated MNPs with both enzyme and antibody. In particular, color development utilizing nanoparticle aggregations was demonstrated to result in a more yellowish color as virus concentration increased, while the peroxidase activity of MNPs exhibited a proportional increase in color intensity as the MNP concentration increased. This observation suggests the potential applicability of quantitative analysis using these methods. Furthermore, effective concentration and purification of target substances were demonstrated through the collection of MNPs using an external magnetic field, irrespective of factors such as antibody conjugation, dispersion medium, or virus binding. Finally, based on the key findings of this study, a design proposal for MNPs-based immunoassay is presented. Overall, MNPs-based immunoassays hold significant potential for advancing disease diagnostics.
Collapse
Affiliation(s)
- Yeonjeong Ha
- ICT Environment Convergence, Department of ICT Convergence, College of IT Engineering, Pyeongtaek University, 3825 Seodong-daero, Pyeongtaek-si 17869, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Lee HB, Son SE, Seong GH. Apta-sensor for selective determination of dopamine using chitosan-stabilized Prussian blue nanoparticles. J Mater Chem B 2023. [PMID: 37427764 DOI: 10.1039/d3tb00799e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chitosan-stabilized Prussian blue nanoparticles (CS/PBNPs) were fabricated by a simple synthetic method and used to develop a novel aptamer-based colorimetric assay for selective determination of dopamine (DA). Scanning electron microscopy (SEM) images exhibited a uniform shape of the CS/PBNPs with an average diameter of 37.0 ± 3.2 nm. The CS/PBNPs exhibited strong peroxidase-like activity that catalyzed the reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2). Chitosan was used for stabilization of the PBNPs and fixation of the DA aptamer on the surface of the CS/PBNPs. The catalytic mechanism of the CS/PBNPs was confirmed to involve first the decomposition of H2O2 into a hydroxyl radical (˙OH) and then oxidation of TMB by the ˙OH to produce a blue color. An aptamer-based colorimetric assay was made with the CS/PBNPs to detect DA at concentrations of 0.25-100 μM with a limit of detection (LOD) of 0.16 μM. For comparison, a gold nanoparticle (AuNP)-based apta-sensor detected DA in concentrations of 1-25 μM with a LOD of 0.55 μM. The recovery results of DA concentrations (0.25, 0.5, and 1 μM) from spiked human serum were 92.6%, 102.1%, and 103.9%, verifying the reliability and reproducibility of the CS/PBNP-based apta-sensor for determination of DA level in clinical applications. Moreover, compared to traditional immunoassay, this aptamer-based nanozyme activation/inhibition system needs no washing step, which is very useful to shorten the assay time and maintain high sensitivity.
Collapse
Affiliation(s)
- Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
5
|
Mesoporous platinum nanoparticles as a peroxidase mimic for the highly sensitive determination of C-reactive protein. Anal Bioanal Chem 2022; 414:7191-7201. [PMID: 35969280 DOI: 10.1007/s00216-022-04271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
The generation of a mesoporous structure in platinum nanoparticles can effectively enhance physical and chemical properties. In this study, mesoporous platinum nanoparticles (MPNs) were synthesized by a soft template-mediated one-pot chemical method. To develop a mesoporous structure, Pluronic F-127 was employed. The Pluronic F-127 surfactant forms self-assembled micelles, and the micelles act as the pore-directing agents in the synthesis of nanoparticles. Scanning electron microscopy results revealed that the MPN had a uniform size of 70 nm on average and a distinct mesoporous structure. The development of a concave mesoporous structure on the surface of the MPNs can increase the surface area and facilitate the efficient transport of reactants. The synthesized MPNs exhibited peroxidase-like activity. Furthermore, the MPNs showed excellent catalytic efficiency compared to HRP, due to the high surface area derived from the presence of the mesoporous structure. The peroxidase-like MPNs were applied to the enzyme-linked immunosorbent assay (ELISA) of C-reactive protein (CRP). The MPN-based ELISA exhibited sensitive CRP detection in the range from 0.24 to 7.8 ng/mL with a detection limit of 0.13 ng/mL. Moreover, the recoveries of the CRP concentrations in spiked human serum were 98.6% and 102%. These results demonstrate that as a peroxidase mimic, the MPNs can replace the natural enzymes in conventional ELISA for sensitive CRP detection.
Collapse
|
6
|
Bilalis P, Karagouni E, Toubanaki DK. Peroxidase‐like activity of Fe
3
O
4
nanoparticles and Fe
3
O
4
‐graphene oxide nanohybrids: Effect of the amino‐ and carboxyl‐surface modifications on H
2
O
2
sensing. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| | - Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| |
Collapse
|
7
|
Zhao C, Shi GM, Shi FN, Wang XL, Li ST. The synthesis and excellent peroxidase-like activity for the colorimetric detection of H2O2 of core-shell Fe/FeS2@C nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
9
|
Ha Y, Kim I. Recent Developments in Innovative Magnetic Nanoparticles-Based Immunoassays: From Improvement of Conventional Immunoassays to Diagnosis of COVID-19. BIOCHIP JOURNAL 2022; 16:351-365. [PMID: 35822174 PMCID: PMC9263806 DOI: 10.1007/s13206-022-00064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
During the ongoing COVID-19 pandemic, the development of point-of-care (POC) detection with high sensitivity and rapid detection time is urgently needed to prevent transmission of infectious diseases. Magnetic nanoparticles (MNPs) have been considered attractive materials for enhancing sensitivity and reducing the detection time of conventional immunoassays due to their unique properties including magnetic behavior, high surface area, excellent stability, and easy biocompatibility. In addition, detecting target analytes through color development is necessary for user-friendly POC detection. In this review, recent advances in different types of MNPs-based immunoassays such as improvement of the conventional enzyme-linked immunosorbent assay (ELISA), immunoassays based on the peroxidase-like activity of MNPs and based on the dually labeled MNPs, filtration method, and lateral-flow immunoassay are described and we analyze the advantages and strategies of each method. Furthermore, immunoassays incorporating MNPs for COVID-19 diagnosis through color development are also introduced, demonstrating that MNPs can become common tools for on-site diagnosis.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066 Republic of Korea
| |
Collapse
|
10
|
Chouhan RS, Horvat M, Ahmed J, Alhokbany N, Alshehri SM, Gandhi S. Magnetic Nanoparticles-A Multifunctional Potential Agent for Diagnosis and Therapy. Cancers (Basel) 2021; 13:2213. [PMID: 34062991 PMCID: PMC8124749 DOI: 10.3390/cancers13092213] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Magnetic nanoparticles gained considerable attention in last few years due to their remarkable properties. Superparamaganetism, non-toxicity, biocompatibility, chemical inertness, and environmental friendliness are some of the properties that make iron oxide nanoparticles (IONPs) an ideal choice for biomedical applications. Along with being easily tuneable and a tailored surface for conjugation of IONPs, their physio-chemical and biological properties can also be varied by modifying the basic parameters for synthesis that enhances the additional possibilities for designing novel magnetic nanomaterial for theranostic applications. This review highlights the synthesis, surface modification, and different applications of IONPs for diagnosis, imaging, and therapy. Furthermore, it also represents the recent report on the application of IONPs as enzyme mimetic compounds and a contrasting agent, and its significance in the field as an anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| |
Collapse
|
11
|
Kateshiya MR, Malek NI, Kailasa SK. Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
One-pot synthesized citric acid-modified bimetallic PtNi hollow nanospheres as peroxidase mimics for colorimetric detection of human serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111231. [DOI: 10.1016/j.msec.2020.111231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
|
13
|
Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron 2020; 168:112537. [PMID: 32882473 DOI: 10.1016/j.bios.2020.112537] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Nanozymes are engineered nanomaterials with enzyme-like activities. Over the past decade, impressive progresses on nanozymes in biosensing have been made due to their unique advantages of high stability, low cost, and easy modification compared to natural enzymes. For many biosensors, it is critical to conjugate nanozymes to affinity ligands such as antibodies and aptamers. Since different nanomaterials have different surface properties, conjugation methods need to be compatible with these properties. In addition, the effect of biomolecules on nanozyme activity needs to be considered. In this review, we first categorized nanozyme-based biosensors into four parts, respectively describing noncovalent and covalent modifications with antibodies and aptamers. Meanwhile, recent advances in antibody and aptamer labeled nanozyme biosensors are summarized, and the methods of their conjugation are further illustrated. Finally, conclusions and future perspectives for the development and application of nanozyme bioconjugates are discussed.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing, 400715, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Xin Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
|
15
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
16
|
Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm 2018; 555:356-367. [PMID: 30453018 DOI: 10.1016/j.ijpharm.2018.11.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
In the last years, the antimicrobial resistance against antibiotics has become a serious health issue, arise as global threat. This has generated a search for new strategies in the progress of new antimicrobial therapies. In this context, different nanosystems with antimicrobial properties have been studied. Specifically, magnetic nanoparticles seem to be very attractive due to their relatively simple synthesis, intrinsic antimicrobial activity, low toxicity and high versatility. Iron oxide NPs (IONPs) was authorized by the World Health Organization for human used in biomedical applications such as in vivo drug delivery systems, magnetic guided therapy and contrast agent for magnetic resonance imaging have been widely documented. Furthermore, the antimicrobial activity of different magnetic nanoparticles has recently been demonstrated. This review elucidates the recent progress of IONPs in drug delivery systems and focuses on the treatment of infectious diseases and target the possible detrimental biological effects and associated safety issues.
Collapse
Affiliation(s)
- Gisele Regina Rodrigues
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Inés de la Serna Gómez
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | - Simoni Campos Dias
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Octavio Luiz Franco
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Post-Graduate in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
17
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
18
|
Ha Y, Ko S, Kim I, Huang Y, Mohanty K, Huh C, Maynard JA. Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS APPLIED NANO MATERIALS 2018; 1:512-521. [PMID: 29911680 PMCID: PMC5999228 DOI: 10.1021/acsanm.7b00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/31/2018] [Indexed: 05/09/2023]
Abstract
Superparamagnetic nanoparticles (SPMNPs) have attracted interest for various biomedical applications due to their unique magnetic behavior, excellent biocompatibility, easy surface modification, and low cost. Their unique magnetic properties, superparamagnetism, and magnetophoretic mobility have led to their inclusion in immunoassays to enhance biosensor sensitivity and allow for rapid detection of various analytes. In this review, we describe SPMNP characteristics valuable for incorporation into biosensors, including the use of SPMNPs to increase detection capabilities of surface plasmon resonance and giant magneto-resistive biosensors. The current status of SPMNP-based immunoassays to improve the sensitivity of rapid diagnostic tests is reviewed, and suggested strategies for the successful adoption of SPMNPs for immunoassays are presented.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (J.A.M.)
| | - Saebom Ko
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ijung Kim
- Department
of Civil and Environmental Engineering, Western New England University, Springfield, Massachusetts 01119, United States
| | - Yimin Huang
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishore Mohanty
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chun Huh
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer A. Maynard
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (Y.-J.H.)
| |
Collapse
|
19
|
Kono Y, Nakai T, Taguchi H, Fujita T. Development of magnetic anionic liposome/atelocollagen complexes for efficient magnetic drug targeting. Drug Deliv 2018; 24:1740-1749. [PMID: 29141461 PMCID: PMC8241088 DOI: 10.1080/10717544.2017.1402219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Magnetic nanoparticle-incorporated liposomes (magnetic liposomes) are considered a promising site-specific drug delivery carrier vehicle. With regard to their surface charge, magnetic anionic liposomes (Mag-AL) demonstrate little toxicity in comparison with magnetic cationic liposomes (Mag-CL), whereas their cellular association and uptake efficiency are low. In the current study, we constructed complexes of Mag-AL and atelocollagen (ATCOL), which is a biocompatible and minimally immunogenic biomaterial, to improve the cellular uptake properties of Mag-AL in vitro and in vivo. The cellular association and/or uptake of Mag-AL in RAW264 cells, a murine macrophage-like cell line, under a magnetic field was significantly increased when Mag-AL was complexed with ATCOL, and the highest cellular association was observed with complexes constructed using 5 µg/mL of ATCOL. The complexes showed liposome concentration-dependent and time-dependent cellular association under a magnetic field, and their cellular uptake efficiency was comparable with that of Mag-CL. In addition, Mag-CL showed significant cytotoxicity in a liposome concentration-dependent manner, whereas Mag-AL/ATCOL complexes produced no cytotoxic effect against RAW264 cells. Furthermore, the efficient cellular association of Mag-AL/ATCOL complexes in RAW264 cells was observed even in the presence of serum, and their liver accumulation was significantly increased at a magnetic field-exposed region after intravenous injection in rats. These results indicate that Mag-AL/ATCOL complexes could be a safe and efficient magnetic responsive drug carrier.
Collapse
Affiliation(s)
- Yusuke Kono
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan.,b Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University , Kusatsu , Japan
| | - Taketo Nakai
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Hitomi Taguchi
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Takuya Fujita
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan.,b Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University , Kusatsu , Japan.,c Research Center for Drug Discovery and Development, Ritsumeikan University , Kusatsu , Japan
| |
Collapse
|
20
|
Yuan L, Niu Y, Li R, Zheng L, Wang Y, Liu M, Xu G, Huang L, Xu Y. Molybdenum oxide quantum dots prepared via a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J Mater Chem B 2018; 6:3240-3245. [DOI: 10.1039/c8tb00475g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MoOx QDs were prepared using a one-step stirring treatment of MoO3 powder in DMSO. They can be used as efficient fluorescent probes and antibacterial materials.
Collapse
Affiliation(s)
- Lili Yuan
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yusheng Niu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Ronggui Li
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Lanhong Zheng
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Qingdao 266071
- China
| | - Yao Wang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Mengli Liu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Gengfang Xu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Lei Huang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yuanhong Xu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
21
|
Gao L, Fan K, Yan X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017; 7:3207-3227. [PMID: 28900505 PMCID: PMC5595127 DOI: 10.7150/thno.19738] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Iron oxide nanoparticles have been widely used in many important fields due to their excellent nanoscale physical properties, such as magnetism/superparamagnetism. They are usually assumed to be biologically inert in biomedical applications. However, iron oxide nanoparticles were recently found to also possess intrinsic enzyme-like activities, and are now regarded as novel enzyme mimetics. A special term, "Nanozyme", has thus been coined to highlight the intrinsic enzymatic properties of such nanomaterials. Since then, iron oxide nanoparticles have been used as nanozymes to facilitate biomedical applications. In this review, we will introduce the enzymatic features of iron oxide nanozyme (IONzyme), and summarize its novel applications in biomedicine.
Collapse
Affiliation(s)
- Lizeng Gao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Zhang Z, Guan Y, Xia T, Du J, Li T, Sun Z, Guo C. Influence of exposed magnetic nanoparticles and their application in chemiluminescence immunoassay. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Zhang J, He T, Tang L, Zhang ZQ. Boronic acid functionalized Fe3
O4
magnetic microspheres for the specific enrichment of glycoproteins. J Sep Sci 2016; 39:1691-9. [DOI: 10.1002/jssc.201500921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Tian He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| | - Liang Tang
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| |
Collapse
|
24
|
Zhao X, Guan Y, Xia C, Xia T, Qiu X, Wang C, Guo C. Preparation and characterization of magnetic poly(styrene-glycidyl methacrylate) microspheres for highly efficient protein adsorption by two-stage dispersion polymerization. J Appl Polym Sci 2016. [DOI: 10.1002/app.43005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinwei Zhao
- School of Materials Science and Engineering; University of Science and Technology of Beijing; Beijing 100083 China
| | - Yueping Guan
- School of Materials Science and Engineering; University of Science and Technology of Beijing; Beijing 100083 China
| | - Changfu Xia
- School of Materials Science and Engineering; University of Science and Technology of Beijing; Beijing 100083 China
| | - Tingting Xia
- Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences; Beijing 100190 China
| | - Xiaolin Qiu
- School of Materials Science and Engineering; University of Science and Technology of Beijing; Beijing 100083 China
| | - Chuhang Wang
- School of Materials Science and Engineering; University of Science and Technology of Beijing; Beijing 100083 China
| | - Chen Guo
- Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
25
|
Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 2016; 912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
|
26
|
NIE DX, SHI GY, YU YY. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics Used in Colorimetric Determination of 2,4-Dinitrotoluene. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60902-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 2015; 77:1183-91. [PMID: 26583358 DOI: 10.1016/j.bios.2015.11.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/16/2023]
Abstract
Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingwang Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoya Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
28
|
|
29
|
Wei S, Li J, Liu Y. Colourimetric assay for β-estradiol based on the peroxidase-like activity of Fe3O4@mSiO2@HP-β-CD nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra20695b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the colourimetric detection of β-E2 by using a Fe3O4@mSiO2@HP-β-CD nanoparticle catalyzed color reaction.
Collapse
Affiliation(s)
- Shoulian Wei
- Faculty of Chemistry and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Jianwen Li
- Department of Chinese Medicine and Biology
- Guangdong Food and Drug Vocational College
- Guangzhou 510520
- China
| | - Yong Liu
- Faculty of Chemistry and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| |
Collapse
|
30
|
Immunological detection of hepatocellular carcinoma biomarker GP73 based on dissolved magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|