1
|
Pashaei-Asl R, Motaali S, Ebrahimie E, Mohammadi-Dehcheshmeh M, Ebrahimi M, Pashaiasl M. Delivery of doxorubicin by Fe 3O 4 nanoparticles, reduces multidrug resistance gene expression in ovarian cancer cells. Pathol Res Pract 2024; 263:155667. [PMID: 39471527 DOI: 10.1016/j.prp.2024.155667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Ovarian cancer is one of the most common malignancy in women with significant mortality rate due to the resistance to chemotherapy drugs. Doxorubicin (DOX) is a chemotropic agent in ovarian cancer treatment. Overexpression of multidrug resistance (MDR) genes, such as ABCB1, in cancer cells after chemotherapy is one of main problems in clinical applications. Here we have compared the efficiency of doxorubicin-loaded (NIPAAM-DMAEMA) Fe3O4 nanocomposite (DOX-NANO) against DOX on ABCB1(MDR1) gene expression in the ovarian cancer cell line. MATERIALS AND METHODS The cell viability of SKOV-3 cells were evaluated by MTT assay. Real Time PCR was used to measure the expression level of MDR1. MTT data were normalized in 10 different attribute weighting models, also to reveal the interaction between DOX, ABCB1, and ovarian cancer genes, Pathway Studio Database (Elsevier) was used. RESULTS Cell viability of SKOV-3cells was significantly decreased after 24, 48 and 72 hours (P < 0.0001) of either DOX with IC50 22.38, 0.61 and 0.072 µg/ml or DOX-NANO treatment with IC50 11.54, 1.01, 0.0126 µg/ ml respectively. TREATMENT Notable decrease in the expression of MDR gene, ABCB1, was observed 48 hours after treatment with DOX-NANO (P < 0.0001) with 26 % in the assessed with control group. Meta-analysis showed the concentration of 10 μg/ml variables was the second most significant feature, whereas the concentration of 0.01 μg/ml recognized the lowest weights. Also, LGALS3 is an extra cellular receptor with upregulation in ovarian cancer that interacts with ABCB1. CONCLUSION Our findings highlight the beneficial effects of DOX delivery in ovarian cancer cells by nanocomposite as efficient drug delivery method. DOX-NANO is a promising therapeutic reagent to overcome chemotherapy resistance in ovarian cancer.
Collapse
Affiliation(s)
- Roghiyeh Pashaei-Asl
- Interdisciplinary Research Development Center, Iran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soheila Motaali
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Medical University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mansour Ebrahimi
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Maryam Pashaiasl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
2
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
3
|
Kakavand K, Koosha N, Fathi K, Aminian S. Numerical investigation of capture efficiency of carrier particles in a Y-shaped vessel considering particle-particle interaction and Non-Newtonian behavior. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Queiros Campos J, Boulares M, Raboisson-Michel M, Verger-Dubois G, García Fernández JM, Godeau G, Kuzhir P. Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin-Curcumin Inclusion Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14345-14359. [PMID: 34855402 DOI: 10.1021/acs.langmuir.1c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m2/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Collapse
Affiliation(s)
- J Queiros Campos
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - M Boulares
- University of Carthage, Faculty of Sciences of Bizerte, Centre des Recherches et des Technologies des Eaux (CERTE) Technopole de Borj-Cédria, Route touristique de Soliman BPn° 273, Soliman 8020, Tunisia
| | - M Raboisson-Michel
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - J M García Fernández
- Instituto de Investigaciones Qumicas, CSIC and Universidad de Sevilla, Av. Amrico Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - G Godeau
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - P Kuzhir
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| |
Collapse
|
5
|
Effect of dispersants on cytotoxic properties of magnetic nanoparticles: a review. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Poon K, Lu Z, De Deene Y, Ramaswamy Y, Zreiqat H, Singh G. Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. NANOSCALE ADVANCES 2021; 3:4052-4061. [PMID: 36132835 PMCID: PMC9419237 DOI: 10.1039/d0na00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/16/2023]
Abstract
Among various magnetic nanoparticles, manganese oxide nanoparticles are considered as established T 1 magnetic resonance imaging (MRI) contrast agents for preclinical research. The implications of their degradation properties and use as therapeutic carriers in drug delivery systems have not been explored. In addition, how the chemical composition and size of manganese oxide nanoparticles, as well as the surrounding environment, influence their degradation and MRI contrast properties (T 1 vs. T 2) have not been studied in great detail. A fundamental understanding of their characteristic properties, such as degradation, is highly desirable for developing simultaneous diagnosis and therapeutic solutions. Here, we demonstrate how the precursor type and reaction environment affect the size and chemical composition of manganese oxide nanoparticles and evaluate their influence on the nanoparticle degradability and release of the drug l-3,4-dihydroxyphenylalanine (l-dopa). The results show that the degradation rate (and the associated release of drug l-dopa molecules) of manganese oxide nanoparticles depends on their size, composition and the surrounding environment (aqueous or biometric fluid). The dependence of MRI relaxivities of manganese oxide nanoparticles on the size, chemical composition and nanoparticle degradation in water is also established. A preliminary cell viability study reveals the cytocompatible properties of l-dopa functionalized manganese oxide nanoparticles. Overall, this work provides new insights into smartly designed manganese oxide nanoparticles with multitasking capabilities to target bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Kingsley Poon
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Zufu Lu
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Yves De Deene
- Department of Engineering, The Biomedical Engineering Laboratory, Macquarie University Sydney 2109 Australia
| | - Yogambha Ramaswamy
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Hala Zreiqat
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Gurvinder Singh
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| |
Collapse
|
7
|
Sharma A, Foppen JW, Banerjee A, Sawssen S, Bachhar N, Peddis D, Bandyopadhyay S. Magnetic Nanoparticles to Unique DNA Tracers: Effect of Functionalization on Physico-chemical Properties. NANOSCALE RESEARCH LETTERS 2021; 16:24. [PMID: 33547989 PMCID: PMC7867676 DOI: 10.1186/s11671-021-03483-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
To monitor and manage hydrological systems such as brooks, streams, rivers, the use of tracers is a well-established process. Limited number of potential tracers such as salts, isotopes and dyes, make study of hydrological processes a challenge. Traditional tracers find limited use due to lack of multiplexed, multipoint tracing and background noise, among others. In this regard, DNA based tracers possess remarkable advantages including, environmentally friendly, stability, and high sensitivity in addition to showing great potential in the synthesis of ideally unlimited number of unique tracers capable of multipoint tracing. To prevent unintentional losses in the environment during application and easy recovery for analysis, we hereby report DNA encapsulation in silica containing magnetic cores (iron oxide) of two different shapes-spheres and cubes. The iron oxide nanoparticles having size range 10-20 nm, have been synthesized using co-precipitation of iron salts or thermal decomposition of iron oleate precursor in the presence of oleic acid or sodium oleate. Physico-chemical properties such as size, zeta potential, magnetism etc. of the iron oxide nanoparticles have been optimized using different ligands for effective binding of dsDNA, followed by silanization. We report for the first time the effect of surface coating on the magnetic properties of the iron oxide nanoparticles at each stage of functionalization, culminating in silica shells. Efficiency of encapsulation of three different dsDNA molecules has been studied using quantitative polymerase chain reaction (qPCR). Our results show that our DNA based magnetic tracers are excellent candidates for hydrological monitoring with easy recoverability and high signal amplification.
Collapse
Affiliation(s)
- Anuvansh Sharma
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Jan Willem Foppen
- Department of Water Science and Engineering, IHE Delft Institute for Water Education, PO Box 3015, Delft, The Netherlands
| | - Abhishek Banerjee
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Slimani Sawssen
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genoa, Italy
- Istituto di Struttura della Materia - CNR, Area della Ricerca di Roma1, 00015, Monterotondo Scalo, RM, Italy
| | - Nirmalya Bachhar
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Davide Peddis
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genoa, Italy
- Istituto di Struttura della Materia - CNR, Area della Ricerca di Roma1, 00015, Monterotondo Scalo, RM, Italy
| | - Sulalit Bandyopadhyay
- Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA, Delft, The Netherlands.
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
8
|
Amgoth C, Chen S, Malavath T, Tang G. Block copolymer [(L-GluA-5-BE)- b-(L-AspA-4-BE)]-based nanoflower capsules with thermosensitive morphology and pH-responsive drug release for cancer therapy. J Mater Chem B 2020; 8:9258-9268. [PMID: 32969459 DOI: 10.1039/d0tb01647k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, the synthesis of an amino-acid-based di-block copolymer (di-BCP) in-between an l-glutamic acid-5-benzyl ester and l-aspartic acid-4-benzyl ester [(l-GluA-5-BE)-b-(l-AspA-4-BE)] has been reported. However, the synthesis of di-BCP of [(l-GluA-5-BE)-b-(l-AspA-4-BE)] was carried out through the facile modified ring-opening polymerization (ROP) without using any surfactants and harmful chemicals. Interestingly, the synthesized [(l-GluA-5-BE)-b-(l-AspA-4-BE)] has been used to design nanoflower capsules (NFCs) with surface-functionalized nanoflakes and petals. Notably, the simple solvent propanol has been used as a dispersing medium for the di-BCP-based powder to observe morphology of NFCs. Moreover, these amino-acid-based NFCs are biocompatible, biodegradable, and bio-safe for mankind usage. Consequently, di-BCP-based NFCs show changes in morphology with different temperature conditions, i.e., at ∼10 °C, ∼25 °C (RT), and ∼37 °C (body temperature). Furthermore, the average thickness of the surface-functionalized nanopetals has been calculated as ∼324 nm (in diameter). Similarly, the average distance between petals is calculated as 3.6 μm and the pore depth is ∼21 nm. Additionally, the porosity throughout the surface of capsules in-between nanopetals is an advantageous characteristic feature to improve the drug/paclitaxel (PTX) loading capacity. It is a unique and novel approach to design NFCs, which are a potential payload for nanomedicine and cancer therapy. Furthermore, NFCs were used to evaluate the loading efficacy of drugs and showed ∼78% (wt/wt%) of the PTX loading. Moreover, NFCs showed ∼74% drug release at physiological body temperature. Thus, NFCs showed remarkable release at acidic pH medium. However, PTX released from NFCs showed greater cell inhibition (i.e., ∼79%) with an increase of the PTX concentration after 24 h incubation over HeLa (human epithelial cervical cancer) cells. Besides, PTX released from NFC showed significant (∼34%) cell killing capacity. Such promising NFCs are recommended for breast, liver, and lung cancer therapeutics.
Collapse
Affiliation(s)
- Chander Amgoth
- Department of Chemistry, Zhejiang University, Hangzhou-310028, China.
| | - Shuai Chen
- Department of Chemistry, Zhejiang University, Hangzhou-310028, China.
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Israel
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou-310028, China.
| |
Collapse
|
9
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
10
|
Easy and low-cost preparation method of magnetic montmorillonite/FexOy composite: initial study for future applications. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02536-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Cohen G, Burks SR, Frank JA. Chlorotoxin-A Multimodal Imaging Platform for Targeting Glioma Tumors. Toxins (Basel) 2018; 10:E496. [PMID: 30486274 PMCID: PMC6316809 DOI: 10.3390/toxins10120496] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022] Open
Abstract
Chlorotoxin (CTX) is a 36-amino-acid disulfide-containing peptide derived from the venom of the scorpion Leiurus quinquestriatus. CTX alters physiology in numerous ways. It interacts with voltage gated chloride channels, Annexin-2, and matrix metalloproteinase-2 (MMP-2). CTX-based bioconjugates have been widely subjected to phase I/II clinical trials and have shown substantial promise. Many studies have demonstrated that CTX preferentially binds to neuroectodermal tumors, such as glioblastoma, without cross-reactivity to normal brain cells. With its ability to penetrate the blood-brain-barrier (BBB) and its tyrosine residue allows covalent conjugation with functional moieties, CTX is an attractive platform to explore development of diagnostic and therapeutic agents for gliomas. In this review, we outline CTX structure and its molecular targets, summarize molecular variations of CTX developed for glioma imaging, and discuss future trends and perspectives for CTX conjugates as a theranostic agent.
Collapse
Affiliation(s)
- Gadi Cohen
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Vijayakumar SC, Venkatakrishnan K, Tan B. Selective drug-free cancer apoptosis by three-dimensional self-targeting magnetic nickel oxide nanomatrix. Nanomedicine (Lond) 2018; 13:2469-2490. [PMID: 30328379 DOI: 10.2217/nnm-2018-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop a drug-free strategy addressing limitations of current cancer therapy. MATERIALS & METHODS A 3D self-assembled magnetic nickel oxide (NiO) nanomatrix is synthesized using femtosecond pulsed laser to mimic extracellular matrix. RESULTS The tunable laser pulse-interaction time and repetition rate aided in generating programmable NiO nanomatrix chemistry. The nanomatrix mimicked extracellular matrix in physical configuration and properties presenting favorable cues to cancerous HeLa cell and fibroblast cell adhesion and proliferation without cytotoxicity. The 3D nanomatrix structure altered HeLa cell behavior and induced apoptosis cancer apoptosis with an evidence of increased endocytosis when compared with fibroblast cells. CONCLUSION The results demonstrate the availability of new potential avenues for magnetic drug-free cancer therapeutics.
Collapse
Affiliation(s)
- Sivaprasad C Vijayakumar
- Ultrashort Laser Nanomanufacturing Facility, Department of Mechanical & Industrial Engineering, Ryerson University, 350 Victoria street, Toronto, Ontario, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science & Technology (iBEST), Partnership between Ryerson University & St Michael's Hospital, Toronto, Ontario M5B 1W8, Canada.,Nano Biointerface Facility, Department of Mechanical & Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Facility, Department of Mechanical & Industrial Engineering, Ryerson University, 350 Victoria street, Toronto, Ontario, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science & Technology (iBEST), Partnership between Ryerson University & St Michael's Hospital, Toronto, Ontario M5B 1W8, Canada.,Nano Biointerface Facility, Department of Mechanical & Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3.,Affiliate Scientist, Keenan Research Center, St Michael's Hospital, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada
| | - Bo Tan
- Nano Biointerface Facility, Department of Mechanical & Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3.,Nano characterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
13
|
Azizi M, Ghourchian H, Yazdian F, Alizadehzeinabad H. Albumin coated cadmium nanoparticles as chemotherapeutic agent against MDA-MB 231 human breast cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:787-797. [PMID: 29426245 DOI: 10.1080/21691401.2018.1436064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the aim of dedicating toxicity of cadmium nanoparticles (CdNPs) against invasive breast cancer, with minimum damage to surrounding healthy cells, CdNPs were coated with albumin nanocarrier by nanoprecipitation method and named CdNPs@BSA. The characterization was done by TEM image, DLS and UV-Vis, fluorescence, circular dichroism spectroscopy. The cytotoxic efficacy of the CdNPs@BSA against human breast cancer cells (MDA-MB 231 cells) was examined by MTT assay. Apoptosis, as the mechanism of cell death, was verified by inverted microscopy, fluorescent microscopy, gel electrophoresis and flow cytometry. The role of ROS generation in apoptosis was also studied. It was found that the resulted CdNPs@BSA (diameter of 88 nm and zeta potential of about -18.85 mV) was suitable for penetration in tumour micro vessels. In the form of CdNPs@BSA, the 77% of the secondary structure and almost all of the tertiary structure remain intact. Comparing to CdNPs, CdNPs@BSA could significantly suppress the MDA-MB 231 while they were less toxic on WBCs. Therefore, they could be a brilliant candidate to be used as a chemotherapeutic agent against invasive breast cancer cells.
Collapse
Affiliation(s)
- Marzieh Azizi
- a Institute of Biochemistry and Biophysics (IBB) , University of Tehran , Tehran , Iran
| | - Hedayatollah Ghourchian
- a Institute of Biochemistry and Biophysics (IBB) , University of Tehran , Tehran , Iran.,b Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center , University of Tehran , Tehran , Iran
| | - Fatemeh Yazdian
- c Biological Sciences, Faculty of New Science and Technology , University of Tehran , Tehran , Iran
| | | |
Collapse
|
14
|
Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep 2017; 7:5178. [PMID: 28701707 PMCID: PMC5508052 DOI: 10.1038/s41598-017-05461-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/10/2017] [Indexed: 01/23/2023] Open
Abstract
With the aim of making specific targeting of silver nanoparticles as a drug for tumor cells and developing new anticancer agents, a novel nano-composite was developed. Albumin coated silver nanoparticles (ASNPs) were synthesized, and their anti-cancerous effects were evaluated against MDA-MB 231, a human breast cancer cell line. The synthesized ASNPs were characterized by spectroscopic methods. The morphological changes of the cells were observed by inverted, florescent microscopy and also by DNA ladder pattern on gel electrophoresis; the results revealed that the cell death process occurred through the apoptosis mechanism. It was found that ASNPs with a size of 90 nm and negatively charged with a zeta-potential of about −20 mV could be specifically taken up by tumor cells. The LD50 of ASNPs against MDA-MB 231 (5 μM), was found to be 30 times higher than that for white normal blood cells (152 μM). The characteristics of the synthesized ASNPs included; intact structure of coated albumin, higher cytotoxicity against cancer cells than over normal cells, and cell death based on apoptosis and reduction of gland tumor sizes in mice. This work indicates that ASNPs could be a good candidate for chemotherapeutic drug.
Collapse
Affiliation(s)
- Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Fatemeh Yazdian
- Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Shahla Bagherifam
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.,Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Yang Y, Yu Y, Wang J, Li Y, Li Y, Wei J, Zheng T, Jin M, Sun Z. Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:161-169. [PMID: 28426994 DOI: 10.1016/j.etap.2017.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/11/2016] [Accepted: 01/18/2017] [Indexed: 06/07/2023]
Abstract
The present study was to investigate effects of Silica nanoparticles (SiNPs) on nervous system and explore potential mechanisms in human neuroblastoma cells (SH-SY5Y). Cytotoxicity was detected by cell viability and Lactate dehydrogenase (LDH) release. Flow cytometry analysis was applied to assess mitochondrial membrane potential (MMP) loss, intracellular Ca2+ and apoptosis. To clarify the mechanism of SiNPs-induced apoptosis, intrinsic apoptosis-related proteins were detected. Our results showed that SiNPs caused cytotoxicity, cell membrane damage and Ca2+ increase in a dose-dependent manner in SH-SY5Y cells. Both the mitochondrial membrane potential (MMP) loss and potential mitochondria damage resulted in Cyt C release to the cytoplasm. The elevated Cyt C and Apaf1 further triggered intrinsic apoptosis via executive molecular caspase-9 and caspase-3. The present study confirmed that SiNPs induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway and provided a better understanding of the potential toxicity induced by SiNPs on human neurocyte.
Collapse
Affiliation(s)
- Yanyan Yang
- School of Public Health, Jilin University, Changchun, PR China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, PR China; School of Public Health, Capital Medical University, Beijing, PR China
| | - Jiahui Wang
- School of Public Health, Jilin University, Changchun, PR China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Jia Wei
- College of Clinical Medicine, Norman Bethune Health Science Center, Jilin University, Changchun, PR China
| | - Tong Zheng
- School of Public Health, Jilin University, Changchun, PR China
| | - Minghua Jin
- School of Public Health, Jilin University, Changchun, PR China.
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
16
|
Méndez PA, Ortiz BL, Vásquez GM, López BL. Mucoadhesive chitosan/OA nanoparticles charged with celecoxib inhibit prostaglandin E2 LPS-induced in U937 cell line. J Appl Polym Sci 2017. [DOI: 10.1002/app.45288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Paula A. Méndez
- Grupo de Investigación Ciencia de los Materiales; Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Medellín Colombia
| | - Blanca L. Ortiz
- Grupo de Inmunología Celular e Inmunogenética; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia; Medellín Colombia
| | - Gloria M. Vásquez
- Grupo de Inmunología Celular e Inmunogenética; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia; Medellín Colombia
| | - Betty L. López
- Grupo de Investigación Ciencia de los Materiales; Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Medellín Colombia
| |
Collapse
|
17
|
Kuruvilla J, Farinha AP, Bayat N, Cristobal S. Surface proteomics on nanoparticles: a step to simplify the rapid prototyping of nanoparticles. NANOSCALE HORIZONS 2017; 2:55-64. [PMID: 32260678 DOI: 10.1039/c6nh00162a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineered nanoparticles for biomedical applications require increasing effectiveness in targeting specific cells while preserving non-target cells' safety. We developed a surface proteomics method for a rapid and systematic analysis of the interphase between the nanoparticle protein corona and the targeted cells that could implement the rapid prototyping of nanomedicines. Native nanoparticles entering in a protein-rich liquid medium quickly form a macromolecular structure called protein corona. This protein structure defines the physical interaction between nanoparticles and target cells. The surface proteins compose the first line of interaction between this macromolecular structure and the cell surface of a target cell. We demonstrated that SUSTU (SUrface proteomics, Safety, Targeting, Uptake) provides a qualitative and quantitative analysis from the protein corona surface. With SUSTU, the spatial dynamics of the protein corona surface can be studied. Data from SUSTU would ascertain the nanoparticle functionalized groups exposed at a destiny that could circumvent preliminary in vitro experiments. Therefore, this method could implement in the analysis of nanoparticle targeting and uptake capability and could be integrated into a rapid prototyping strategy which is a major challenge in nanomaterials science. Data are available via ProteomeXchange with the identifier PXD004636.
Collapse
Affiliation(s)
- J Kuruvilla
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
18
|
Yu Y, Duan J, Yu Y, Li Y, Zou Y, Yang Y, Jiang L, Li Q, Sun Z. Autophagy and autophagy dysfunction contribute to apoptosis in HepG2 cells exposed to nanosilica. Toxicol Res (Camb) 2016; 5:871-882. [PMID: 30090396 PMCID: PMC6062368 DOI: 10.1039/c5tx00465a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/28/2016] [Indexed: 12/27/2022] Open
Abstract
Great concerns have led to the evaluation of the potential hazards of nanosilica to human health and the environment. However, there still exists persistent debates on the biological effects and toxic consequences induced by nanosilica. The present study investigated both autophagy and apoptosis in ICR mice and Human hepatocellular carcinoma cells (HepG2), and then explored the interactive mechanism between these two distinct cell death modalities in HepG2 cells. Mice liver injuries seen by hematoxylin and eosin (HE) staining indicated the hepatotoxic effects of nanosilica. The TUNEL assay and immunohistochemistry results confirmed that nanosilica could induce both apoptosis and autophagy in vivo. Flow cytometry analysis demonstrated apoptosis induction in vitro, while autophagic ultrastructures, LC3-II expression and immunofluorescence clarified autophagy activation by nanosilica. Apoptosis suppression by the autophagy inhibitor of 3-methyladenine (3-MA) implied that autophagy was involved in apoptotic cell death. A mechanistic study verified that nanosilica induced autophagy via negative regulation of mammalian target of rapamycin (mTOR) signaling but not the Beclin-1 associated pathway. The enhancement of p62 accumulation and mTOR down-regulation might account for the molecular mechanism in contribution of autophagy to apoptosis. As an emerging new mechanism of nanomaterial toxicity, autophagy might be a more susceptive indicator for toxicological consequence evaluation in nanoparticle toxicity. The present study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of nanosilica in the future.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology , Head and Neck Surgery , Beijing Pediatric Research Institute , Beijing Children's Hospital , Capital Medical University , Beijing , P.R. China
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
| | - Junchao Duan
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Yu
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Li
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Zou
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yumei Yang
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Lizhen Jiang
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Qiuling Li
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Zhiwei Sun
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| |
Collapse
|
19
|
Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, Zhang WG. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. NANOSCALE 2016; 8:7808-7826. [PMID: 27029509 DOI: 10.1039/c6nr00147e] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. and Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
| | - Xiao Chen
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xue-Song Du
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jin-Long Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Wei-Guo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and The State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
20
|
Gupta J, Mohapatra J, Bhargava P, Bahadur D. A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 2016; 45:2454-61. [DOI: 10.1039/c5dt04135j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Schematic representation of chemo and thermal therapy of folate conjugated magnetic nanoparticles (FA-MNPs) against cancer cells.
Collapse
Affiliation(s)
- Jagriti Gupta
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Jeotikanta Mohapatra
- Centre for Research in Nanotechnology and Science (CRNTS)
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Parag Bhargava
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - D. Bahadur
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
21
|
Double Functionalized Nanoporous Magnetic Gadolinium–Silica Composite for Doxorubicin Delivery. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0302-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery. J Control Release 2015; 206:49-57. [DOI: 10.1016/j.jconrel.2015.02.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 01/12/2023]
|
23
|
Das R, Das D, Ghosh P, Dhara S, Panda AB, Pal S. Development and application of a nanocomposite derived from crosslinked HPMC and Au nanoparticles for colon targeted drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra02672e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a novel route for the synthesis of poly(acrylamide) (PAAm) crosslinked hydroxypropyl methyl cellulose/Au nanocomposite where chemically crosslinked HPMC (c-HPMC) works as a reducing agent.
Collapse
Affiliation(s)
- Raghunath Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Paulomi Ghosh
- School of Medical Science & Technology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Santanu Dhara
- School of Medical Science & Technology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Asit Baran Panda
- Discipline of Inorganic Materials and Catalysis
- Central Salt and Marine Chemicals Research Institute (CSIR)
- Bhavnagar-364002
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|