1
|
Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications - A review. Int J Biol Macromol 2023; 233:123418. [PMID: 36731700 DOI: 10.1016/j.ijbiomac.2023.123418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Interest is growing in entrapping natural antimicrobial compounds (NACs) within polyhydroxyalkanoates (PHAs) to produce active food-biopackaging systems. PHAs are versatile polymeric macromolecules that can protect NAC activity by entrapment. This work reviews 75 original papers and 18 patents published in the last 11 years concerning PHAs as matrices for NACs to summarize the physicochemical properties, release, and antimicrobial activities of systems fabricated from PHAs and NACs (PHA/NAC systems). PHA/NAC systems have recently been used as active food biopackaging systems to inactivate foodborne pathogens and prolong food shelf life. PHAs protect NACs by increasing the degradation temperature of some NACs and decreasing their loss of mass when heated. Some NACs also transform the PHA/NAC systems into more thermostable, flexible, and resistant when interacting with PHAs while also improving the barrier properties of the systems. NAC release and activity are also prolonged when NACs are trapped within PHAs. PHA/NAC systems, therefore, represent ecologically friendly materials with promising applications.
Collapse
|
2
|
Fang C, Shao T, Ji X, Wang F, Zhang H, Xu J, Miao W, Wang Z. High mechanical property and antibacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/functional enzymatically-synthesized cellulose biodegradable composite. Int J Biol Macromol 2023; 225:776-785. [PMID: 36403771 DOI: 10.1016/j.ijbiomac.2022.11.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biodegradable materials with antibacterial properties are highly promising. A novel antimicrobial nanocellulose (ECP) was synthesized in one-step by enzyme-catalyzed method to improve the mechanical and antimicrobial properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)]. The biodegradable nanocomposites were prepared by melt blending and the performance analysis results show that the nanocomposites display enhanced mechanical performances and antibacterial activities. Compared with the neat P(HB-co-HV), the P(HB-co-HV) doped with 0.5 wt%-ECP shows the highest mechanical properties with yield strength/elongation at break of 29.3 MPa, 7.63 %, respectively, an increase of 38 %/59 %, and a clear inhibition zone against Staphylococcus aureus (S. aureus) of approximately 3.0 mm. As a heterogeneous nucleation agent, ECP optimizes nucleation, and the interfacial interaction between phenol group and matrix promotes the compatibility and dispersion of ECP, resulting in superior mechanical properties of ECP-based composites. The P(HB-co-HV)/ECP nanocomposites have great potential in biomedical materials especially for the bone defect filling material.
Collapse
Affiliation(s)
- Chenxia Fang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Taoran Shao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangfang Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiayi Xu
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weijun Miao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zongbao Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Oprea M, Panaitescu DM, Nicolae CA, Gabor AR, Frone AN, Raditoiu V, Trusca R, Casarica A. Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, Daei Farshchi A, Soleimanifar F, Mansouri V. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J 2020; 66:966-973. [PMID: 32740360 DOI: 10.1097/mat.0000000000001094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Today, composite scaffolds fabricated by natural and synthetic polymers have attracted a lot of attention among researchers in the field of tissue engineering, and given their combined properties that can play a very useful role in repairing damaged tissues. In the current study, aloe vera-derived gel-blended poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibrous scaffold was fabricated by electrospinning, and then, PHBV and PHBV gel fabricated scaffolds characterized by scanning electron microscope, protein adsorption, cell attachment, tensile and cell's viability tests. After that, osteogenic supportive property of the scaffolds was studied by culturing of human-induced pluripotent stem cells on the scaffolds under osteogenic medium and evaluating of the common bone-related markers. The results showed that biocompatibility of the PHBV nanofibrous scaffold significantly improved when combined with the aloe vera gel. In addition, higher amounts of alkaline phosphatase activity, mineralization, and bone-related gene and protein expression were detected in stem cells when grown on PHBV-gel scaffold in comparison with those stem cells grown on the PHBV and culture plate. Taken together, it can be concluded that aloe vera gel-blended PHBV scaffold has a great promising osteoinductive potential that can be used as a suitable bioimplant for bone tissue engineering applications to accelerate bone regeneration and also degraded completely along with tissue regeneration.
Collapse
Affiliation(s)
- Aylin Tahmasebi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Shapouri Moghadam
- Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohamad Kaabi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Daei Farshchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
6
|
Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int J Biol Macromol 2020; 146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
7
|
Sabharwal PK, Chattopadhyay S, Singh H. Preparation and characterization of antimicrobial, biodegradable, triclosan-incorporated polyhydroxybutyrate-co-valerate films for packaging applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prabhjot Kaur Sabharwal
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| | - Sruti Chattopadhyay
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| | - Harpal Singh
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| |
Collapse
|
8
|
Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microb Pathog 2018; 115:31-40. [DOI: 10.1016/j.micpath.2017.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
|
9
|
Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 2018; 178:1006-1010. [DOI: 10.1016/j.talanta.2017.08.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
|
10
|
Lyu Y, Ren H, Yu M, Li X, Li D, Mu C. Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydr Polym 2017; 174:1095-1105. [PMID: 28821032 DOI: 10.1016/j.carbpol.2017.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
This study aimed to prepare antibacterial wound dressings based on collagen and linalool/oxidized amylose inclusion complex. Encapsulation with oxidized amylose was used as an effective way to introduce linalool into collagen matrix. Our results showed that the content of linalool in the composite dressings was efficiently increased thanks to the solubilization effect of oxidized amyloses. The developed composite dressings possessed porous structure. They had abilities to keep the wound in moist environment and meanwhile prevent the excess exudates accumulation. The incorporation of linalool conferred the composite dressings with excellent antibacterial activities as expected. Moreover, the composite dressing with the highest content of linalool presented enhanced blood compatibility and good cell biocompatibility. This composite dressing effectively promoted granulation tissue formation and accelerated wound healing. It effectively prevented inflammation in regenerated skin tissue and scar formation too. Overall, the developed antibacterial wound dressings hold great potential for use in wound healing applications.
Collapse
Affiliation(s)
- Yongbo Lyu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - He Ren
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China
| | - Defu Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Changdao Mu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
11
|
Growth inhibition and antibiofilm potential of Ag nanoparticles coated with lectin, an arthropod immune molecule. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:208-216. [DOI: 10.1016/j.jphotobiol.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/15/2023]
|
12
|
Bakare R, Wells L, McLennon N, Singh M, Gugssa A, Stubbs J, Zewde B, Raghavan D. Formulation of silver chloride/poly(3‐hydroxybutyrate‐
co
‐3‐hydroxyvalerate) (AgCl/PHBV) films for potential use in bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rotimi Bakare
- Department of ChemistryHoward UniversityWashington DC20059
| | - Lauren Wells
- Department of ChemistryHoward UniversityWashington DC20059
| | | | - Manisha Singh
- Department of ChemistryHoward UniversityWashington DC20059
| | - Ayele Gugssa
- Department of BiologyHoward UniversityWashington DC20059
| | - John Stubbs
- Department of MicrobiologyCollege of Medicine, Howard UniversityWashington DC20059
| | - Berhanu Zewde
- Department of ChemistryHoward UniversityWashington DC20059
| | | |
Collapse
|
13
|
Tripathi A, Melo JS. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. ADVANCES IN BIOMATERIALS FOR BIOMEDICAL APPLICATIONS 2017; 66. [PMCID: PMC7122509 DOI: 10.1007/978-981-10-3328-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.
Collapse
Affiliation(s)
- Anuj Tripathi
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| | - Jose Savio Melo
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| |
Collapse
|
14
|
Aflori M. Chitosan-based Silver Nanoparticles Incorporated at the Surface of Plasma-treated PHB Films. CHEM LETT 2017. [DOI: 10.1246/cl.160820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda 41A, Iasi-700487, Romania
| |
Collapse
|
15
|
Wang Q, Zhou Q, Zhang S, Shao W, Yin Y, Li Y, Hou J, Zhang X, Guo Y, Wang X, Gu X, Zhou J. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease. Front Aging Neurosci 2016; 8:197. [PMID: 27601993 PMCID: PMC4993759 DOI: 10.3389/fnagi.2016.00197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-associated progressive neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SN). The pathogenesis of PD and the mechanisms underlying the degeneration of DA neurons are still not fully understood. Our previous quantitative proteomics study revealed that hyaluronan and proteoglycan binding link protein 2 (Hapln2) is one of differentially expressed proteins in the substantia nigra tissues from PD patients and healthy control subjects. However, the potential role of Hapln2 in PD pathogenesis remains elusive. In the present study, we characterized the expression pattern of Hapln2. In situ hybridization revealed that Hapln2 mRNA was widely expressed in adult rat brain with high abundance in the substantia nigra. Immunoblotting showed that expression levels of Hapln2 were markedly upregulated in the substantia nigra of either human subjects with Parkinson's disease compared with healthy control. Likewise, there were profound increases in Hapln2 expression in neurotoxin 6-hydroxydopamine-treated rat. Overexpression of Hapln2 in vitro increased vulnerability of MES23.5 cells, a dopaminergic cell line, to 6-hydroxydopamine. Moreover, Hapln2 overexpression led to the formation of cytoplasmic aggregates which were co-localized with ubiquitin and E3 ligases including Parkin, Gp78, and Hrd1 in vitro. Endogenous α-synuclein was also localized in Hapln2-containing aggregates and ablation of Hapln2 led to a marked decrease of α-synuclein in insoluble fraction compared with control. Thus, Hapln2 is identified as a novel factor contributing to neurodegeneration in PD. Our data provides new insights into the cellular mechanism underlying the pathogenesis in PD.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; University of Chinese Academy of SciencesShanghai, China
| | - Qinbo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Shao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yanqing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yandong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jincan Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xinhua Zhang
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Yongshun Guo
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaomin Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|