1
|
Lee SY, Jang DH, Kim H, Yun M. Removal and isolation of radioactive cobalt using DNA aptamers. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Electricity generation using nuclear power has various advantages, such as carbon reduction, but the treatment of nuclear waste is emerging as a big issue in many countries. The development of technology that can selectively remove radionuclides from liquid radioactive waste is one of the ways to reduce nuclear waste. Here, we assessed a new way of removing radioactive cobalt from a liquid using an aptamer. Aptamers specifically binding cobalt ions were selected through systematic evolution of ligands by exponential enrichment (SELEX). Their binding strength and stability of their complexes with cobalt were analyzed through surface plasmon resonance assay and 2D program Mfold, respectively. The optimal aptamer/bead conjugate conditions for binding cobalt were established using an FA-C1 aptamer with the strongest binding to cobalt. Under these conditions, more than 80% of radioactive cobalt was removed, and more than 99.95% of removed cobalt was recovered. These results proved that radioactive cobalt removal using this aptamer can effectively reduce liquid radioactive waste. This means that the aptamer/bead complex can be utilized to remove various radioactive metal ions.
Collapse
Affiliation(s)
- Sun Young Lee
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Dae Hyuk Jang
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Hyuncheol Kim
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| | - Miyong Yun
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| |
Collapse
|
2
|
Wang W, Dong Q, Mao Y, Zhang Y, Gong T, Li H. GO accelerate iron oxides formation and tetrabromobisphenol A removal enhancement in the GO loaded NZVI system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120512. [PMID: 36309300 DOI: 10.1016/j.envpol.2022.120512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an emerging persistent organic pollutant, which is very difficult to remove by common methods. In this study, the GO-load nanoscale zero-valent iron (NZVI/GO) was fabricated and optimized to improve the reaction rate and removal efficiency for TBBPA reliably and efficiently. The results showed that GO-load significantly reduced the self-aggregation of NZVI and the aggregate size decreased by 50.00% (1400-700 nm). Meanwhile, GO significantly improved the reaction rate kobs (1.11 ± 0.11 h-1) of TBBPA in the NZVI/GO system compared to the NZVI (0.40 ± 0.08 h-1) system, and this increment was more pronounced (177.5%) when the mass ratio of NZVI-to-GO reached 1.0 than other mass ratios. Furthermore, X-Ray Diffraction and X-ray photoelectron spectroscopy analysis suggested that the Fe2+ transformation was changed and enriched by the GO. Only magnetite (Fe3O4) was detected on the surface of NZVI, whereas the maghemite (γ-Fe2O3), hematite (α-Fe2O3), and Fe3O4 were detected on the interface of NZVI/GO, which further performed the complexation adsorption through the -OH of TBBPA. This specific complexation adsorption is another potential accelerated removal mechanism for TBBPA and intermediates within the NZVI/GO system. This research has put forward a new perspective for widening the application of TBBPA removal using the synergistic effect between GO and NZVI.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yitao Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Removal of Co(II) from Aqueous Solutions with Amino Acid-Modified Hydrophilic Metal-Organic Frameworks. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Ren L, Zong B, Zhao R, Sun Y, Meng F, Wang R. Insights into the mechanism underlying remediation of Cr(VI) contaminated aquifer using nanoscale zero-valent iron@reduced graphene oxide. ENVIRONMENTAL RESEARCH 2022; 214:113973. [PMID: 36029841 DOI: 10.1016/j.envres.2022.113973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Currently, there is an urgent need to develop functional nanomaterials for highly effective environmental remediation. However, the long-term effect of remedial materials upon their injection into contaminated aquifer has frequently been overlooked. Here, the remediation of Cr(VI) contaminated aquifer by reduced graphene oxide (rGO) supported nanoscale zero-valent iron (nZVI@rGO) was investigated from a long-term perspective. The performances of nZVI@rGO samples with different rGO loadings in the removal of aqueous Cr(VI) were evaluated in batch experiments. The electron transfer properties different nZVI@rGO samples were investigated by measuring their corrosive potentials using the steady-state Tafel polarization curves. The results show that the electron transfer efficiency between Cr(VI) and nZVI@rGO is enhanced owing to the large reactive conjugated structure of rGO. Besides, the surface passivation of nZVI is effectively retarded due to the uniform accommodation of Cr(III) precipitates on rGO. The structure and composition of nZVI@rGO before and after Cr(VI) removal were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results revealed that most Cr(VI) ions (∼90%) will be reduced to Cr(III) precipitates on nZVI@rGO as the passivation product. Accordingly, Cr(VI) ions tend to react more readily at less blocked regions on the surface of rGO, and a layer-by-layer passivation model on nZVI@rGO surface is proposed. Our results provide new insights into the mechanism underlying the long-term remediation of Cr(VI) contaminated aquifer using nZVI@rGO, which helps design new materials and approaches for practical in-situ remediation engineering.
Collapse
Affiliation(s)
- Liming Ren
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| | - Baoning Zong
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China
| | - Rui Zhao
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China
| | - Yulin Sun
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China
| | - Fanbin Meng
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China
| | - Ruoyu Wang
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Tee GT, Gok XY, Yong WF. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113248. [PMID: 35405129 DOI: 10.1016/j.envres.2022.113248] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Adsorption has gained much attention as one of the efficient approaches to remediate the contaminants in wastewater. Herein, this critical review focuses on the preparation, modification, application and regeneration of the biosorbents, nanoparticles and magnetic biosorbents for the wastewater treatment in recent 5 years (2017-2021). Among these materials, the development of magnetic biosorbents is attractive owing to their variable active sites, high specific surface area, easy separation and low cost. To improve the adsorption performance of biosorbents, the chemical activations such as acid, alkali and salt activations of biosorbents are discussed. In general, the oxidation reaction in acid, alkali and salt activations increases the porosity of biosorbents. The surface characteristics, surface chemistry of the biosorbents and magnetic biosorbents such as electrostatic interaction, π-π interaction and hydrogen bonding are highlighted. Ionic compounds are separated through ion exchange, surface charge and electrostatic interactions while the organic pollutants are removed via hydrophobicity, π-π interactions and hydrogen bonding. The effect of solution pH, adsorbent dosage, initial concentration of pollutants, adsorption duration and temperature on the adsorption capacity, and removal efficiency are discussed. Generally, an increase in adsorbent dosage resulted in a decrease in adsorption capacity due to the excessive active sites. On the other hand, a higher initial concentration or an increase in contact time of adsorbent increased the driving force, subsequently enhancing the adsorption capacity. Finally, this review will be concluded with a summary, challenges and future outlook of magnetic biosorbents. It is anticipated that this review will provide insights into engineering advanced and suitable materials to achieve cost-effective and scalable adsorbents for practical and sustainable environmental remediation.
Collapse
Affiliation(s)
- Guat Teng Tee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
6
|
Adsorption performance of sulfonamide-modified metal–organic frameworks (MOFs) for Co(II) in aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
In Situ Synthesis of Zero-Valent Iron-Decorated Lignite Carbon for Aqueous Heavy Metal Remediation. Processes (Basel) 2022. [DOI: 10.3390/pr10081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignite’s large abundance, physicochemical properties and low cost are attractive for industrial wastewater remediation. However, directly applying lignite for wastewater treatment suffers low efficiency. Here, we synthesize highly efficient zero-valent iron (ZVI)-decorated lignite carbon through the in-situ carbonization of a lignite and FeCl2 mixture for heavy metal removal. The effect of carbonization temperature on the morphology, structure and crystallite phases of ZVI-decorated lignite carbons (ZVI-LXs) was investigated. At an optimized temperature (i.e., 1000 °C), ZVI particles were found evenly distributed on the lignite matrix with the particles between 20 to 190 nm. Moreover, ZVI particles were protected by a graphene shell that was formed in situ during the carbonization. The synthesized ZVI-L1000 exhibited higher Cu2+, Pb2+ and Cd2+ stripping capacities than pristine lignite in a wide pH range of 2.2–6.3 due to the surface-deposited ZVI particles. The maximum Langmuir adsorption capacities of ZVI-L1000 for Cd2+, Pb2+ and Cu2+ were 38.3, 55.2 and 42.5 mg/g at 25 °C, respectively, which were 7.8, 4.5 and 10.6 times greater than that of pristine lignite, respectively. ZVI-L1000 also exhibited a fast metal removal speed (~15 min), which is ideal for industrial wastewater treatment. The pseudo-second-order model fits well with all three adsorptions, indicating that chemical forces control their rate-limiting adsorption steps. The reduction mechanisms of ZVI-L1000 for heavy metals include reduction, precipitation and complexation.
Collapse
|
8
|
Sio JEL, Escobar EC, Kim H, Chung WJ, Nisola GM. Hydroxypicolinic acid tethered on magnetite core-silica shell (HPCA@SiO 2@Fe 3O 4) as an effective and reusable adsorbent for practical Co(II) recovery. CHEMOSPHERE 2022; 298:134301. [PMID: 35288181 DOI: 10.1016/j.chemosphere.2022.134301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The soaring demand and future supply risk for cobalt (Co) necessitate more efficient adsorbents for its recycling from electronic wastes, as a cheaper and less hazardous option for its production. Herein, a magnetic adsorbent covalently tethered with 5-hydroxypicolinic acid (HPCA) as Co(II) ligand was developed. The magnetic component (Fe3O4) was protected with silica (SiO2), then silanized with chloroalkyl linker and subsequently functionalized with HPCA via SN2 nucleophilic substitution (HPCA@SiO2@Fe3O4). Results from FTIR, TGA, EA, and XPS confirm the successful adsorbent preparation with high HPCA loading of 2.62 mmol g-1. TEM-EDS reveal its imperfect spherical morphology with ligands well-distributed on its surface. HPCA@SiO2@Fe3O4 is hydrophilic, water-dispersible and magnetically retrievable, which is highly convenient for its recovery. The Co(II) capture on HPCA@SiO2@Fe3O4 involves monodentate coordination with carboxylate (COO-) and lone pair acceptance from pyridine (aromatic -N = ) moiety of HPCA, with minor interaction from acidic silanols (Si-O-). The binding occurs at 2 HPCA: 1 Co(II) ratio, that follows the Sips isotherm model with competitive Qmax = 92.35 mg g-1 and pseudo-second order kinetics (k2 = 0.0042 g mg-1 min-1). In a simulated LIB liquid waste, HPCA@SiO2@Fe3O4 preferentially captures Co(II) over Li(I) with αLi(I)Co(II)=166 and Mn(II) with αMn(II)Co(II)=55, which highlights the importance of HPCA for Co(II) recovery. Silica protection of Fe3O4 rendered the adsorbent chemically stable in acidic thiourea solution for its regeneration by preventing the deterioration of the magnetic component. Covalent functionalization averted ligand loss, which allowed HPCA@SiO2@Fe3O4 to deliver consistent and reversible adsorption/desorption performance. Overall results demonstrate the potential of HPCA@SiO2@Fe3O4 as a competitive and practical adsorbent for Co(II) recovery in liquid waste sources.
Collapse
Affiliation(s)
- John Edward L Sio
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea
| | - Erwin C Escobar
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea; Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College Laguna, 4031, Philippines
| | - Hern Kim
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea
| | - Wook-Jin Chung
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea.
| | - Grace M Nisola
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea.
| |
Collapse
|
9
|
Zhuang S, Zhu K, Xu L, Hu J, Wang J. Adsorption of Co 2+ and Sr 2+ in aqueous solution by a novel fibrous chitosan biosorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153998. [PMID: 35192812 DOI: 10.1016/j.scitotenv.2022.153998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel fibrous chitosan biosorbent was prepared using LiOH/KOH/urea/H2O (4.5:7:8:80.5 by weight) as spinning solvent. The fibrous chitosan exhibited a higher adsorption capacity and a faster adsorption rate for Co2+ and Sr2+, compared with spherical chitosan due to its high specific surface area (16.9 m2 g-1), uniform fineness (24.1 μm), and good mechanical strength. The adsorption capacity of fibrous chitosan for Co2+ and Sr2+ was 31.3 mg g-1 and 20.0 mg g-1, respectively, which was higher than that of spherical chitosan (22.5 mg g-1for Co2+ and 8.9 mg g-1 for Sr2+). The coordination between -NH2/-OH of chitosan and the nuclide ions was the rate-limiting step. The improvement of adsorption performance was due to the higher specific surface area which increased the exposure degree of functional groups (adsorptive sites). This new wet-spun fibrous chitosan biosorbent showed great potential in the adsorptive removal of nuclides ions from aqueous solution.
Collapse
Affiliation(s)
- Shuting Zhuang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
Altunkaynak Y, Canpolat M, Yavuz Ö. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02458-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. ENERGIES 2022. [DOI: 10.3390/en15062023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adsorptive removal of dyes from industrial wastewater using commercially available adsorbents is not significantly efficient. Metal–organic frameworks (MOFs) offer outstanding properties which can boost the separation performance over current commercial adsorbents and hence, these materials represent a milestone in improving treatment methods for dye removal from water. Accordingly, in this paper, the recent studies in the modification of MOF structures in dye removal from the aquatic environment have been discussed. This study aims to elaborate on the synthetic strategies applied to improve the adsorption efficiency and to discuss the major adsorption mechanisms as well as the most influential parameters in the adsorptive removal of dyes using MOFs. More particularly, the advanced separation performance of MOF-based adsorbents will be comprehensively explained. The introduction of various functional groups and nanomaterials, such as amine functional groups, magnetic nanoparticles, and carbon-based materials such as graphene oxide and CNT, onto the MOFs can alter the removal efficiency of MOF-based adsorbents through enhancing the water stability, dispersion in water, interactions between the MOF structure and the contaminant, and the adsorption capacity. Finally, we summarize the challenges experienced by MOF-based materials for dye removal from water and propose future research outlooks to be considered.
Collapse
|
12
|
Erim B, Ciğeroğlu Z, Şahin S, Vasseghian Y. Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe 3O 4 under UV-A irradiation. CHEMOSPHERE 2022; 291:132929. [PMID: 34800511 DOI: 10.1016/j.chemosphere.2021.132929] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
In this study, SWCNT/ZnO/Fe3O4 heterojunction composite was prepared for enhancing the degradation of β-lactam drugs such as cefixime (CFX) from an aqueous solution. The effects of several factors such as pH, initial concentration of CFX, and photocatalyst dose were investigated. Among them, pH was the most effective parameter for the degradation of CFX. Pareto graph revealed that the degradation process was accelerated at acidic conditions. The surface morphology test such as scanning electron microscopy (SEM) was applied to enlighten the surface of the functionalized SWCNT/ZnO/Fe3O4 photocatalyst. Highly advanced analyzes such as X-ray Photoelectron Spectroscopy (XPS), Energy Dispersive Spectrometry (EDX), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and point of zero charge were included to explain the structure of the photocatalyst. The response surface methodology's results show that the optimum CFX efficiency was fully achieved at 94.19%. The optimal conditions with lower standard error (2.08) were given as pH of 5.93, 22.76 ppm of CFX, and 0.46 g L-1 of the amount of photocatalyst. Besides, the obtained photocatalyst can be easily used many times owing to its high reusability. SWCNT/ZnO/Fe3O4 photocatalyst might be recommended to be used for the mineralizing of drug compounds such as antibiotics in water. Moreover, thiazol-2-ol, N-(dihydroxymethyl)-2-(2-hydroxythiazol-4-yl)acetamide,(S)-N-(2-amino-1-hydroxy-2-oxoethyl)-2-(2 hydroxythiazol-4-yl), and 2-(2-hydroxythiazol-4-yl)-N-((2R,3R)-2-mercapto-4-oxoazetidin-3-yl)acetamide were among the detected intermediates products from the cefixime degradation in the process.
Collapse
Affiliation(s)
- Berna Erim
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey.
| | - Selin Şahin
- Department of Chemical Engineering, Faculty of Engineering, Istanbul-Cerrahpaşa University, 34320, İstanbul, Turkey
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
13
|
Zhou Y, Wang X, Men J, Jia M, Liang C. Study on the adsorption performance of zeolitic imidazolate framework-8 (ZIF-8) for Co2+ and Mn2+. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Xiong Y, Yang X, Liu Y, Chen X, Wang G, Lu B, Lin G, Huang B. Fabrication of phosphorus doping porous carbon derived from bagasse for highly-efficient removal of La3+ ions via capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Xiao Y, Raheem A, Ding L, Chen WH, Chen X, Wang F, Lin SL. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery- A review. CHEMOSPHERE 2022; 287:131969. [PMID: 34450364 DOI: 10.1016/j.chemosphere.2021.131969] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
With the quick increase in industrialization and urbanization, a mass of sludge has been produced on the account of increased wastewater treatment facilities. Sewage sludge (SS) management has become one of the most crucial environmental problems because of the existence of various pollutants. However, SS is a carbon-rich material, which has favored novel technologies for biochar production, which can be utilized for dissimilar applications. This review systematically analyzes and summarizes the pretreatment, modification, and especially application of sewage sludge-derived biochar (SSBC), based on published literature. The comparative assessment of pretreatment technology such as pyrolysis, hydrothermal carbonization, combustion, deashing, and co-feeding is presented to appraise their appropriateness for SS resource availability and the production of SSBC. In addition, the authors summarize and analyze the current modification methods and divide them into two categories: physical properties and surface chemical modifications. The applications of SSBC as absorbent, catalyst and catalyst support, electrode materials, gas storage, soil amendment, and sold biofuel are reviewed in detail. Furthermore, the discussion about the existing problems and the direction of future efforts are presented at the end of each section to envisage SS as a promising opportunity for resources rather than a nuisance.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Abdul Raheem
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Xueli Chen
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Fuchen Wang
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
16
|
Efficient Removal of 2,4-DCP by Nano Zero-Valent Iron-Reduced Graphene Oxide: Statistical Modeling and Process Optimization Using RSM-BBD Approach. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/7130581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, nano zero-valent iron-reduced graphene oxide (NZVI-rGO) composites were synthesized to remove 2,4-dichlorophenol (2,4-DCP) as an efficient adsorbent. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicated that NZVI particles were successfully loaded and dispersed uniformly on rGO nanosheets. Fourier transform infrared spectroscopy (FTIR) analysis showed that the interaction between NZVI-rGO and 2,4-DCP promoted the adsorption process. A three-level, four-factor Box-Behnken design (BBD) of the response surface methodology (RSM) was used to optimize the influencing factors including NZVI-rGO dosage, 2,4-DCP initial concentration, reaction time and initial pH. A statistically significant, well-fitting quadratic regression model was successfully constructed to predict 2,4-DCP removal rate. The high
value (15.95), very low
value (<0.0001), nonsignificant lack of fit, and appropriate coefficient of determination (
) demonstrate a good correlation between the experimental and predicted values of the proposed model. The analyses of variance reveal that NZVI-rGO dosage and reaction time have a positive effect on 2,4-DCP removal, whereas the increase of contaminant concentration and initial pH inhibit the removal, whereas the effect of contaminant concentration and initial pH is in reverse, where the change of NZVI-rGO dosage has the greatest effect. The optimum condition is1.215 g/L of NZVI-rGO dosage, 20.856 mg/L of 2,4-DCP concentration, 4.115 of pH, and 8.157 min of reaction time. It is verified by parallel experiments under the optimum condition, achieving the removal efficiency of100%.
Collapse
|
17
|
Li J, Chen L, Wang J. Solidification of radioactive wastes by cement-based materials. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Gendy EA, Oyekunle DT, Ali J, Ifthikar J, El-Motaleb Mosad Ramadan A, Chen Z. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 238-239:106710. [PMID: 34481100 DOI: 10.1016/j.jenvrad.2021.106710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Dealing with unwanted nuclear waste is still a serious issue from the point of view of humans and the environment because of its harmful and dangerous effects. Recently, porous organic frameworks (POFs) have gained an increasing concern as effective materials in the removal of various types of hazardous metal ions, especially radioactive metal ions. POFs are a unique class that included covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) with strong covalent bonds, large surface area, high adsorption capacity, tunable porosity, and a porous structure with more efficient than conventional adsorbents. This review highlights the recent developments of POFs for the rapid elimination of radionuclide. The unique characteristics, adsorption properties, and interaction mechanisms between radioactive metal ions and the POF-based materials are summarized. Also, prospects for enhancing the performance of POFs to capture radioactive metal ions are discussed.
Collapse
Affiliation(s)
- Eman Abdelnasser Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Daniel Temitayo Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jawad Ali
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Abd El-Motaleb Mosad Ramadan
- Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
19
|
Huo JB, Yu G, Wang J. Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. CHEMOSPHERE 2021; 278:130492. [PMID: 33838415 DOI: 10.1016/j.chemosphere.2021.130492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, a new adsorbent, polyvinyl alcohol (PVA) and graphene oxide (GO), was prepared, characterized and used for the removal of Sr2+ from aqueous solution. In PVA/GO composite, the inter-lamellar spacing of adjacent GO layers was dramatically enlarged due to the intercalation of PVA molecules, such a unique architecture significantly mitigated the aggregation of GO layers, which facilitated the accessible exposure of active sites and the mass transfer of strontium ions (Sr2+), thus enhancing the adsorption capacity toward Sr2+. The adsorption of Sr2+ by PVA/GO composite conformed to the pseudo second-order kinetic model (R2 = 0.9994), the Langmuir model (R2 = 0.9042), and the Freundlich model (R2 = 0.9598). The complexation interaction between Sr2+ and oxygen atoms/π-electron domain of PVA/GO composite was primarily responsible for the adsorption mechanism, based on the characterization results of X-ray photoelectron spectroscopy (XPS), scanning electron microscope equipped with energy dispersion spectroscopy (SEM-EDS) and powder X-ray diffraction (PXRD).
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Abass MR, El-Masry EH, Ibrahim AB. Preparation, characterization, and applications of polyacrylonitrile/ball clay nanocomposite synthesized by gamma radiation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3169-3188. [PMID: 33528682 DOI: 10.1007/s10653-021-00813-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Elimination of hazardous metals is of extreme worry for their toxicity at trace levels and accumulation in the biosystem. Polyacrylonitrile ball clay nanocomposite was prepared by gamma irradiation at 20 kGy. Different analytical tools were applied to prove morphology, functional groups, and chemical structure for prepared composite; SEM, TEM, IR, XRD, and XRF. From TEM and XRD data expose the studied composite has nanoscale and crystalline. The adsorption of Cs+, Co2+ and Fe3+ onto studied material took place after 24 h. Second order was preceded by the kinetic system. The capacity and effect of pH on kd reflect selectivity sequence; Co2+ > Fe3+ > > Cs+. Both Freundlich and Langmuir are applicable for investigated material. Finally, PAN/BC nanocomposite is suitable for the column technique.
Collapse
Affiliation(s)
- M R Abass
- Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - E H El-Masry
- Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - A B Ibrahim
- Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
21
|
Li X, Li Z, Du C, Tian Z, Zhu Q, Li G, Shen Q, Li C, Li J, Li W, Zhao C, Zhang L. Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34200-34210. [PMID: 33982253 DOI: 10.1007/s11356-021-13847-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Zerovalent iron (ZVI) has been a major focus of research and has attracted great attention during the last 2 decades by international researchers because of its excellent pollutant removal performance and several other merits in environmental remediation. Based on Web of Science Core Collection data, we present a comprehensive bibliometric analysis of ZVI research from 2000 to 2019. We analyze 4472 publications assuming three stages of growth trend of annual publication totals. We find that "The Chemical Engineering Journal" has been the most productive journal; Noubactep C is identified as the most productive author; China has been the most active country in this field and the Chinese Academy of Science the most productive institution. The timeline of keywords shows seven distinct co-citation clusters. In addition, the top 38 keywords with strong citation bursts are also detected, suggesting that the innovation of green composite synthesis of ZVI and nanoscale ZVI and its efficient removal capacity might be the prevailing research directions in the future.
Collapse
Affiliation(s)
- Xiaoguang Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhonghong Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenjun Tian
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiuheng Zhu
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qian Shen
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caole Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaxi Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Yang Y, Tao Y, Wen W, An Q, Song S, Xu L. The key role of reduction process in enhancing the properties and catalytic performance of nanoscale copper particles anchored on three-dimensional macroporous graphene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. CHEMOSPHERE 2020; 258:127279. [PMID: 32947678 DOI: 10.1016/j.chemosphere.2020.127279] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 05/28/2023]
Abstract
Adsorption is widely applied separation process, especially in environmental remediation, due to its low cost and high efficiency. Adsorption isotherm models can provide mechanism information of the adsorption process, which is important for the design of adsorption system. However, the classification, physical meaning, application and solving method of the isotherms have not been systematical analyzed and summarized. In this paper, the adsorption isotherms were classified into adsorption empirical isotherms, isotherms based on Polanyi's theory, chemical adsorption isotherms, physical adsorption isotherms, and the ion exchange model. The derivation and physical meaning of the isotherm models were discussed in detail. In addition, the application of the isotherm models were analyzed and summarized based on over 200 adsorption equilibrium data in literature. The statistical parameters for evaluating the fitness of the models were also discussed. Finally, a user interface (UI) was developed based on Excel software for solving the isotherm models, which was provided in supplemental material and can be easily used to model the adsorption equilibrium data. This paper will provide theoretical basis and guiding methodology for the selection and use of the adsorption isotherms.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
24
|
Amiri S, Reza Sohrabi M, Motiee F. Optimization Removal of the Ceftriaxone Drug from Aqueous Media with Novel Zero‐Valent Iron Supported on Doped Strontium Hexaferrite Nanoparticles by Response Surface Methodology. ChemistrySelect 2020. [DOI: 10.1002/slct.202000285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Amiri
- Department of ChemistryIslamic Azad University, North Tehran Branch Tehran Iran
| | | | - Fereshteh Motiee
- Department of ChemistryIslamic Azad University, North Tehran Branch Tehran Iran
| |
Collapse
|
25
|
Bin Q, Lin B, Zhu K, Shen Y, Man Y, Wang B, Lai C, Chen W. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite. J Environ Sci (China) 2020; 88:90-102. [PMID: 31862083 DOI: 10.1016/j.jes.2019.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Sulfide-modified nanoscale zero-valent iron (S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles (NPs) easily agglomerate and have poor contact with organic contaminants. Herein, we propose a new S-nZVI/graphene aerogel (S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene (TCE) from water. Three-dimensional porous graphene aerogel (GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs. The TCE removal rates of FeS, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively. Furthermore, TCE was completely removed within 50 min by S-nZVI/GA. The TCE removal rate increased with increasing pH and temperature, and TCE removal followed the pseudo-first-order kinetic model. The results demonstrate the great potential of S-nZVI/GA composite as a low-cost, easily separated and superior monolithic adsorbent for removal of organic pollutants.
Collapse
Affiliation(s)
- Qiong Bin
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bin Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yaqian Shen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanyuan Man
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Boyang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Changfei Lai
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
26
|
Xing M, Zhuang S, Wang J. Efficient removal of Cs(I) from aqueous solution using graphene oxide. PROGRESS IN NUCLEAR ENERGY 2020. [DOI: 10.1016/j.pnucene.2019.103167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Performance and deterioration of forward osmosis membrane exposed to various dose of gamma-ray irradiation. ANN NUCL ENERGY 2020. [DOI: 10.1016/j.anucene.2019.106950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Liu X, Wu J, Wang J. Electro-enhanced removal of cobalt ions from aqueous solution by capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134144. [PMID: 32380616 DOI: 10.1016/j.scitotenv.2019.134144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Electro-enhanced removal of cobalt (Co) ions from aqueous solution by capacitive deionization (CDI) was investigated in this study. The effect of applied voltage and initial Co ions concentration, as well as coexisted ions on removal efficiency of Co ions was determined. Co ions adsorption performance was also evaluated by kinetic models, isotherm models and three mass transfer models. The results indicated that the removal efficiency of Co ions had positive correlation with applied voltage (R2 = 0.9991), which increased from 15.11% to 36.54% when the applied voltage increased from 0 V to 1.2 V. However, the removal efficiency of Co ions decreased gradually from 36.54% to 9.51% with the increasing initial Co ions concentration from 5 to 30 mg L-1. The coexisted ions (Sr and Cs) also largely inhibited the removal efficiency of Co ions and make it reduce to 8.37%. After fitting the adsorption data, pseudo-second order (PSO) model was better than pseudo-first order (PFO) for each applied voltage and initial concentration. A monolayer adsorption is the main adsorption mechanism of Co ions adsorption on the activated carbon cloth (ACC) because of the higher regression coefficient (0.964) by Langmuir isotherm. Based on kinetics together with the equilibrium isotherm, three mass transfer models were established and adsorption of the ions onto the active sites (AAS) model is the rate-limiting step due to the best fitting for the kinetic adsorption data of Co ions on ACC electrode. In addition, the Co ions were uniformly distributed on ACC electrode after adsorption.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jinling Wu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
29
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Xing M, Zhuang S, Wang J. Adsorptive removal of strontium ions from aqueous solution by graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29669-29678. [PMID: 31401804 DOI: 10.1007/s11356-019-06149-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) was prepared, characterized, and applied for adsorption of Sr(II) in aqueous solution. The adsorption capacity was calculated to be 137.80 mg/g according to the Langmuir model. The observation by scanning electron microscope with energy dispersive X-ray detector (SEM-EDX), high-resolution transmission electron microscope (HRTEM), and X-ray diffraction (XRD) revealed the crystal structure of Sr compound on the surface of graphene sheets. The analyses by the Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the involvement of O-C=O, C-O, and C-O-C groups during the adsorption. The X-ray absorption fine structure (XAFS) analysis provided the detail information of GO-Sr composites, and the fitting results were given by Sr(HCOO)2 and SrCO3 model, and the coordination numbers (CN) and interatomic distances (R) of Sr-O shell and Sr-C shell were calculated. The adsorption mechanism of Sr(II) was attributed to complexation between Sr and the acidic oxygen-containing groups, which lead to the agglomeration of graphene oxide. Two types of crystals were proposed. Type 1 was formed by coordination between Sr(II) and O-C=O groups, and type 2 was formed by coordination between Sr(II) and C-O/C-O-C groups.
Collapse
MESH Headings
- Adsorption
- Cations, Divalent/chemistry
- Cations, Divalent/isolation & purification
- Graphite/chemistry
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Photoelectron Spectroscopy
- Spectrometry, X-Ray Emission
- Spectroscopy, Fourier Transform Infrared
- Strontium/chemistry
- Strontium/isolation & purification
- Water Pollutants, Chemical/chemistry
- Water Pollutants, Chemical/isolation & purification
- X-Ray Diffraction
Collapse
Affiliation(s)
- Min Xing
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100084, People's Republic of China
| | - Shuting Zhuang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Energy Science Building, Beijing, 100084, People's Republic of China.
| |
Collapse
|
31
|
Liu X, Wu J, Hou LA, Wang J. Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis. CHEMOSPHERE 2019; 232:87-95. [PMID: 31152907 DOI: 10.1016/j.chemosphere.2019.05.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 05/21/2023]
Abstract
The removal of Co, Sr and Cs ions form simulated radioactive wastewater using forward osmosis (FO) process was investigated. The effect of various factors on nuclide transport was examined, including membrane orientation, NaCl concentration, flow velocity, and the main factors were identified by correlation analysis. The mechanisms of nuclides transfer through membrane were explored. The results indicated that the active layer facing draw solution (AL-DS) had higher nuclide flux than AL-FS. At AL-FS mode, the highest flux of Co, Sr and Cs were only 1.54, 10.22 and 15.63 mg m-2 h-1 respectively by cellulose triacetate with embedded polyester screen support (CTA-ES) membrane. At AL-DS mode, the flux of Co and Cs increased when NaCl concentration and flow velocity increased. Convection, diffusion and electrostatic interactions were found to influence the nuclide transport all together. The Pearson correlation and partial correlation analysis identified that the diffusion coefficient of nuclides and reverse NaCl flux were the most important factors affecting nuclide flux through cellulose triacetate membrane. The water flux, NaCl concentration, flow velocity and partition coefficient were not the main affecting factors for nuclide flux.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jinling Wu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Li-An Hou
- Xi'an High Tech Inst, Xi'an, 710025, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
32
|
Removal of Co(II) from aqueous solution with functionalized metal–organic frameworks (MOFs) composite. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06764-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Bagheri M, Jafari SM, Eikani MH. Development of ternary nanoadsorbent composites of graphene oxide, activated carbon, and zero-valent iron nanoparticles for food applications. Food Sci Nutr 2019; 7:2827-2835. [PMID: 31572575 PMCID: PMC6766544 DOI: 10.1002/fsn3.1080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 01/28/2023] Open
Abstract
In this study, a ternary nanocomposite comprising graphene oxide and carbon loaded with zero-valent iron nanoparticles was developed as a promising nanoadsorbent, especially for polyphenols available in food industry by-products. The fabricated nanoadsorbents were characterized in terms of structural, morphological, and chemical attributes. Zero-valent iron nanoparticles (nZVI) were produced by a modified method leading to the formation of nanoparticles below 50 nm. Also, active carbon was transformed to a needle-like shape instead of its native shape so that the active surface area was drastically increased which favors the higher adsorption process. Moreover, the space between graphene oxide sheets was enhanced by ultrasonication so that more active carbon and nZVIs could be oriented between these sheets. Finally, the FTIR and Raman data demonstrated the formation of O-H stretching groups and a D/G value of 0.85 corresponding to the maintenance of a desired structure of the graphene oxide sheets, respectively. To summarize, the developed nanocomposites can be employed as a promising tool for the adsorbance of food and beverage industry by-products, especially polyphenols.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Department of Food Science and Technology, Sari BranchIslamic Azad UniversitySariIran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Mohammad H. Eikani
- Department of Chemical IndustriesIranian Research Organization for Science and TechnologyTehranIran
| |
Collapse
|
34
|
Kujur S, Pathak DD. Reduced graphene oxide-immobilized iron nanoparticles Fe(0)@rGO as heterogeneous catalyst for one-pot synthesis of series of propargylamines. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03955-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Metwally S, Hassan H, Samy N. Impact of environmental conditions on the sorption behavior of 60Co and 152+154Eu radionuclides onto polyaniline/zirconium aluminate composite. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110941] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019; 62:933-967. [DOI: https:/doi.org/10.1007/s11426-019-9492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 06/25/2023]
|
37
|
Removal of nuclides and boric acid from simulated radioactive wastewater by forward osmosis. PROGRESS IN NUCLEAR ENERGY 2019. [DOI: 10.1016/j.pnucene.2019.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9492-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Wang X, Lu M, Ma J, Ning P. Preparation of air-stable magnetic g-C3N4@Fe0-graphene composite by new reduction method for simultaneous and synergistic conversion of organic dyes and heavy metal ions in aqueous solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2019; 366:608-621. [PMID: 34522159 PMCID: PMC8437042 DOI: 10.1016/j.cej.2019.02.119] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon-based adsorbents such as graphene and its derivatives, carbon nanotubes, activated carbon, and biochar are often used to remove heavy metals from aqueous solutions. One of the important aspects of effective carbon adsorbents for heavy metals is their tunable surface functional groups. To promote the applications of functionalized carbon adsorbents in heavy metal removal, a systematic documentation of their syntheses and interactions with metals in aqueous solution is crucial. This work provides a comprehensive review of recent research on various carbon adsorbents in terms of their surface functional groups and the associated removal behaviors and performances to heavy metals in aqueous solutions. The governing removal mechanisms of carbon adsorbents to aqueous heavy metals are first outlined with a special focus on the roles of surface functional groups. It then summarizes and categorizes various synthesis methods that are commonly used to introduce heteroatoms, primarily oxygen, nitrogen, and sulfur, onto carbon surfaces for enhanced surface functionalities and sorptive properties to heavy metals in aqueous solutions. After that, the effects of various functional groups on adsorption behaviors of heavy metals onto the functionalized carbon adsorbents are elucidated. A perspective of future work on functional carbon adsorbents for heavy metal removal as well as other potential applications is also presented at the end.
Collapse
Affiliation(s)
- Xiaodong Yang
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, FL 32561, USA
| | - Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning 530011, China
- College of Civil Engineering and Architecture Guangxi University, Nanning 530004, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yinshan Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
- Corresponding author: phone: (352) 392-1864 ext. 285;
| |
Collapse
|
41
|
Application of nZVI and its composites into the treatment of toxic/radioactive metal ions. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-08-102727-1.00006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Removal of Co(II) from aqueous solution with Zr-based magnetic metal-organic framework composite. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites. Mikrochim Acta 2018; 185:496. [DOI: 10.1007/s00604-018-3035-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
|
44
|
Wei Z, Hou Y, Zhu X, Guo L, Liu Y, Zhang A. Nitrogen-Doped Graphene-Supported Iron Catalyst for Highly Chemoselective Hydrogenation of Nitroarenes. ChemCatChem 2018. [DOI: 10.1002/cctc.201701949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the, Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 38 Zheda Road, Xihu District Hangzhou 310027 P.R. China
| | - Yaxin Hou
- Key Laboratory of Biomass Chemical Engineering of the, Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 38 Zheda Road, Xihu District Hangzhou 310027 P.R. China
| | - Xinmiao Zhu
- Key Laboratory of Biomass Chemical Engineering of the, Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 38 Zheda Road, Xihu District Hangzhou 310027 P.R. China
| | - Liangyu Guo
- Research and Development Base of Catalytic Hydrogenation; College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road, Xiacheng District Hangzhou 310014 P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation; College of Pharmaceutical Science; Zhejiang University of Technology; 18 Chaowang Road, Xiacheng District Hangzhou 310014 P.R. China
| | - Anyun Zhang
- Key Laboratory of Biomass Chemical Engineering of the, Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 38 Zheda Road, Xihu District Hangzhou 310027 P.R. China
| |
Collapse
|
45
|
Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2017.11.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Chen Q, Liang C, Zhang X, Huang Y. High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 2018; 182:476-483. [PMID: 29501181 DOI: 10.1016/j.talanta.2018.02.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/18/2022]
Abstract
The N-doped porous carbon (NC) has been regarded as one of the promising support materials for nanoparticles (NPs) catalyst due to its inherent virtues such as porosity, large surface areas, and heteroatom incorporation. In this work, Fe/NC-800 hybrid was facilely prepared by uniform dispersion of in situ formed FeNPs onto NC-800 from carbonization of ZIF-8 at 800 °C for the first time. The optimized Fe/NC-800 catalyst was characterized by TEM, XPS and XRD. Compared with sole FeNPs and NC-800, the Fe/NC-800 catalyst exhibited an enhanced oxidase-like activity that could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the heavy blue without extra oxidants such as H2O2. The possible reason for the enhanced oxidase-like activity of the Fe/NC-800 was discussed on the basis of the experiments of radical scavengers, indicating the importance of superoxide (O2•-) and singlet (1O2) in colorimetric reaction between TMB and Fe/NC-800 hybrid. Furthermore, the oxidase-like activity of Fe/NC-800 was significantly inhibited by dopamine (DA), leading to blue color fading. On this basis, a sensitive and selective colorimetric sensor was fabricated for the quantitative analysis of DA with a linear range of 0.01-40 μM and a low detection limit of 10 nM. The proposed colorimetric method was successfully applied to determine DA in human serum and injection samples, suggesting a promising application in biological analysis.
Collapse
Affiliation(s)
- Qiumeng Chen
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunhong Liang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Zhuang S, Yin Y, Wang J. Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. NUCLEAR ENGINEERING AND TECHNOLOGY 2018. [DOI: 10.1016/j.net.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Luo S, Wang J. MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5521-5528. [PMID: 29218576 DOI: 10.1007/s11356-017-0932-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
The metal-organic frameworks (MOFs) MIL-100(Fe) and graphene oxide (GO) composites were prepared by hydrothermal method and characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, thermal-gravimetric (TG) analysis, the Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM). The composites were used for the adsorption of methylene blue (MB) and methyl orange (MO) in aqueous solution. The results indicated that MIL-100(Fe) and GO formed a sandwich-like structure, and the crystal structure of MIL-100(Fe) was reserved in the composites. The attachment of GO layers to the MIL-100(Fe) decreased the surface area from 1690 to 1602 m2/g, and pore volume from 0.996 to 0.770 cm3/g when 5% (w/w) GO was added, due to the coating of MIL-100(Fe) by GO sheets. The addition of 5% (w/w) GO increased the adsorption capacity for MB (from 1019 to 1231 mg/g) and MO (from 667 to 1189 mg/g). The composites showed a better thermal stability than MIL-100(Fe); the decomposition temperature increased from 280 to 350 °C. The addition of GO improved the properties of MIL-100(Fe) as an adsorbent for MO/MB from aqueous solution.
Collapse
Affiliation(s)
- Shuai Luo
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Energy Science Building, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
49
|
Efficient simultaneous removal of U(VI) and Cu(II) from aqueous solution using core–shell nZVI@SA/CMC-Ca beads. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5662-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Lv X, Zhang Y, Fu W, Cao J, Zhang J, Ma H, Jiang G. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal. J Colloid Interface Sci 2017; 506:633-643. [DOI: 10.1016/j.jcis.2017.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|