1
|
Inoue KI, Yamamoto T, Hatori Y, Hiraide T, Ye S. Hydrolysis of phospholipid monolayers by phospholipase A2 revealed by heterodyne-detected sum frequency generation (HD-SFG) spectroscopy. J Chem Phys 2024; 161:154704. [PMID: 39404221 DOI: 10.1063/5.0231282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 acyl ester linkage in phospholipid, producing lysophospholipid and fatty acid in the presence of Ca2+. The hydrolysis mediated by PLA2 has attracted much interest in various fields, such as pharmacy and biotechnology. It is recognized that PLA2 cannot hydrolyze phospholipid monolayers at high surface coverage. However, the origin of different PLA2 activities is not fully understood yet. The present study investigated the interaction between DPPC (16:0 PC) monolayer and PLA2 using heterodyne-detected sum frequency generation spectroscopy, which is interface-specific spectroscopy and highly sensitive to molecular symmetry based on a second-order nonlinear optical process. It was revealed that PLA2 adsorbs to the DPPC monolayer on the aqueous solution surface only when the surface coverage is low. The adsorption at the low surface coverage significantly changes the interfacial structures of PLA2 and the hydration, which are stabilized by the presence of Ca2+. Therefore, the restriction of the hydrolysis of phospholipid monolayers at high surface coverage can be rationalized by the inhabitation of the PLA2 adsorption. The present study deepens our molecular-level understanding of the hydrolysis of phospholipids by PLA2.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yosuke Hatori
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takeru Hiraide
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Barai M, Manna E, Sultana H, Mandal MK, Manna T, Patra A, Roy B, Gowda V, Chang CH, Akentiev AV, Bykov AG, Noskov BA, Moitra P, Ghosh C, Yusa SI, Bhattacharya S, Kumar Panda A. Physicochemical Studies on Amino Acid Based Metallosurfactants in Combination with Phospholipid. Chem Asian J 2024; 19:e202400284. [PMID: 38953124 DOI: 10.1002/asia.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, were established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.
Collapse
Affiliation(s)
- Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Biplab Roy
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Vasantha Gowda
- Department of Biomedical Science, Malmö University, SE-20506, Malmö, Sweden
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Parikshit Moitra
- Department of Chemical Sciences, IISER, Berhampur, Odisha, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo, 671-2280, Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Indian Institute of Science Education and Research, Tirupati, -517507, Andhra Pradesh, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| |
Collapse
|
3
|
Zhang H, Liu D, Zhang J, Adams E, Gong J, Li W, Wang B, Liu X, Yang R, Wei F, Allen HC. GMP affected assembly behaviors of phosphatidylethanolamine monolayers elucidated by multi-resolved SFG-VS and BAM. Colloids Surf B Biointerfaces 2024; 241:113995. [PMID: 38870647 DOI: 10.1016/j.colsurfb.2024.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules. However, the Brewster angle microscopy (BAM) technique revealed that the assembly conformations of PE molecules are significantly changed by the adsorption of GMP molecules. By comparing the SFG spectra of PE monolayers after the adsorption of GMP, guanosine and guanine, it is also shown that the hydrogen bonding effect plays an important role in the nucleotide-PE interactions. These results provide fundamental insight into the structure changes during the nucleotide-lipid interaction, which may shed light on the molecular mechanism of viral infection, DNA drug delivery, and cell membrane curvature control in the brain or neurons.
Collapse
Affiliation(s)
- Hongjuan Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Dongqi Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Jiawei Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Ellen Adams
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jingjing Gong
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Wenhui Li
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Bing Wang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Xueqing Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Renqiang Yang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Feng Wei
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Peychev B, Arabadzhieva D, Minkov IL, Dimitrova IM, Mileva E, Smoukov SK, Slavchov RI. Measuring the Equilibrium Spreading Pressure-A Tale of Three Amphiphiles. Molecules 2024; 29:4004. [PMID: 39274851 PMCID: PMC11396376 DOI: 10.3390/molecules29174004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
A surfactant's equilibrium spreading pressure (ESP) is the maximum decrease in surface tension achievable at equilibrium below the Krafft point. Difficulties in measuring the ESP have been noted previously but no well-established experimental protocols to overcome them exist. We present a case study of three solid amphiphiles with different propensities to spread on the air-water interface. Starting with the partially water soluble n-dodecanol (C12H25OH), which spreads instantaneously. The strong Marangoni flows associated with the spreading result in the dislocating of the Wilhelmy plate or crystals attaching to it. A temporary mechanical barrier in front of the spreading crystals mitigates the flows disturbing the plate. Presaturating the subphase with the amphiphile prevents the establishment of dynamic steady states, reduces the standard error by a factor of three and causes faster equilibration. The perfluoroalkylated analog of dodecanol (11:1 fluorotelomer alcohol, C11F23CH2OH) is slow spreading. With surfactant crystals on the interface, the surface pressure reaches a pre-equilibrium plateau within an hour, followed by equilibration on day-long timescales. We show that it is better to estimate the ESP by averaging the values of multiple pre-equilibrium plateaus rather than waiting for equilibrium to be established. Finally, the nonspreading amphiphile DPPC exhibits a large barrier for the mass transfer from the DPPC crystal to the aqueous surface. This was overcome by introducing a volatile, water-immiscible solvent deposited on the surface next to the crystals to facilitate the spreading process and leave behind a monolayer.
Collapse
Affiliation(s)
- Boyan Peychev
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Dimitrinka Arabadzhieva
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Ivan L Minkov
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
- Department of Chemistry, Biochemistry, Physiology, and Pathophysiology, Faculty of Medicine, Sofia University, 1 Koziak Str., 1407 Sofia, Bulgaria
| | - Iglika M Dimitrova
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
- Department of Physical Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Elena Mileva
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Stoyan K Smoukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Radomir I Slavchov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
5
|
Slavchov RI, Peychev B, Minkov I. Electrolytes at Uncharged Liquid Interfaces: Adsorption, Potentials, Surface Tension, and the Role of the Surfactant Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17170-17189. [PMID: 39132874 PMCID: PMC11340029 DOI: 10.1021/acs.langmuir.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
The article summarizes the results of our research on the behavior of ions at uncharged fluid interfaces, with a focus on moderately to highly concentrated aqueous electrolytes. The ion-specific properties of such interfaces have been analyzed. The ion-specificity series are different for water|air and water|oil; different for surface tension σ, surface Δχ potential and electrolyte adsorption, and they change with concentration. A methodology has been developed that allows to disentangle the multiple factors controlling the ion order. The direct ion-surface interactions are not always the most significant factor behind the observed ion sequences: indirect effects stemming from conjugate bulk properties are often more important. For example, the order of the surface tension with the nature of the anion (σKOH > σKCl > σKNO3 for potassium salts) is often the result of bulk nonideality and follows the order of the bulk activity coefficients (γKOH > γKCl > γKNO3) rather than that of a specific ion-surface interaction potential. The surface Δχ potential of aqueous solutions is, in many cases, insensitive to the ion distribution in the electric double layer but reflects the orientation of water at the surface, through the ion-specific dielectric permittivity ε of the solution. Even the sign of Δχ is often the result of the decrement of ε in the presence of electrolyte. A whole new level of complexity appears when the ions interact with an uncharged surfactant monolayer. A method has been developed to measure the electrolyte adsorption isotherms on monolayers of varying area per surfactant molecule via a combination of experiments-compression isotherms and surface pressure of equilibrium spread monolayers. The obtained isotherms demonstrate that the ions exhibit a maximum in their adsorption on monolayers of intermediate density. The maximum is explained with the interplay between ion-surfactant complexation, volume exclusion and osmotic effects.
Collapse
Affiliation(s)
- Radomir Iliev Slavchov
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United
Kingdom
| | - Boyan Peychev
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United
Kingdom
- Rostislaw
Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivan Minkov
- Rostislaw
Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department
of Chemistry, Biochemistry, Physiology, and Pathophysiology, Faculty of Medicine, Sofia University, 1407 Sofia, Bulgaria
| |
Collapse
|
6
|
Cejas JDP, Rosa AS, González Paz AN, Disalvo EA, Frías MDLA. Impact of chlorogenic acid on surface and phase properties of cholesterol-enriched phosphatidylcholine membranes. Arch Biochem Biophys 2024; 753:109913. [PMID: 38286353 DOI: 10.1016/j.abb.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA. The presence of CGA also compensates the increase of dipole potential produced by Chol which can be explain as a consequence of the orientation of CGA molecule at the interphase opposing the cholesterol dipole moieties and water dipoles. This compensatory effect is less effective when lipids lack carbonyl groups (CO). When monolayers are composed by unsaturated PCs the Chol compensation is found at higher concentrations of CGA due to the direct interaction between CGA and Chol. These results suggest that cholesterol modulates the interaction and distribution of CGA in the lipid membrane, which may have implications for its biological activity.
Collapse
Affiliation(s)
- Jimena Del P Cejas
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), Laboratory of Biointerphases and Biomimetic Systems, RN 9 - Km 1125, 4206, Santiago del Estero, Argentina
| | - Antonio S Rosa
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), Laboratory of Biointerphases and Biomimetic Systems, RN 9 - Km 1125, 4206, Santiago del Estero, Argentina
| | - Agustín N González Paz
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), Laboratory of Biointerphases and Biomimetic Systems, RN 9 - Km 1125, 4206, Santiago del Estero, Argentina
| | - Edgardo A Disalvo
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), Laboratory of Biointerphases and Biomimetic Systems, RN 9 - Km 1125, 4206, Santiago del Estero, Argentina
| | - María de Los A Frías
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), Laboratory of Biointerphases and Biomimetic Systems, RN 9 - Km 1125, 4206, Santiago del Estero, Argentina.
| |
Collapse
|
7
|
Sudjarwo WAA, Toca-Herrera JL. Unraveling Complex Hysteresis Phenomenon in 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine Monolayer: Insight into Factors Influencing Surface Dynamics. Int J Mol Sci 2023; 24:16252. [PMID: 38003442 PMCID: PMC10671618 DOI: 10.3390/ijms242216252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study explores the hysteresis phenomenon in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers, considering several variables, including temperature, compression and expansion rates, residence time, and subphase content. The investigation focuses on analyzing the influence of these variables on key indicators such as the π-A isotherm curve, loop area, and compression modulus. By employing the Langmuir-Blodgett technique, the findings reveal that all the examined factors significantly affect the aforementioned parameters. Notably, the hysteresis loop, representing dissipated energy, provides valuable insights into the monolayer's viscoelasticity, molecular packing, phase transition changes, and resistance during the isocycle process. These findings contribute to a comprehensive understanding of the structural and dynamic properties of DPPC monolayers, offering insights into their behavior under varying conditions. Moreover, the knowledge gained from this study can aid in the development of precise models and strategies for controlling and manipulating monolayer properties, with potential applications in drug delivery systems, surface coatings, as well as further investigation into air penetration into alveoli and the blinking mechanism.
Collapse
Affiliation(s)
- Wisnu Arfian A. Sudjarwo
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| |
Collapse
|
8
|
Zaborowska M, Broniatowski M, Fontaine P, Bilewicz R, Matyszewska D. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers. J Phys Chem B 2023; 127:7135-7147. [PMID: 37551973 PMCID: PMC10440791 DOI: 10.1021/acs.jpcb.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Indexed: 08/09/2023]
Abstract
Lipid rafts are condensed regions of cell membranes rich in cholesterol and sphingomyelin, which constitute the target for anticholesterolemic drugs - statins. In this work, we use for the first time a combined grazing-incidence X-ray diffraction (GIXD)/polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS)/Brewster angle microscopy (BAM) approach to show the statin effect on model lipid rafts and its components assembled in Langmuir monolayers at the air-water interface. Two representatives of these drugs, fluvastatin (FLU) and cerivastatin (CER), of different hydrophobicity were chosen, while cholesterol (Chol) and sphingomyelin (SM), and their 1:1 mixture were selected to form condensed monolayers of lipid rafts. The effect of statins on the single components of lipid rafts indicated that both the hydrophobicity of the drugs and the organization of the layer determined the drug-lipid interaction. For cholesterol monolayers, only the most hydrophobic CER was effectively changing the film structure, while for the less organized sphingomyelin, the biggest effect was observed for FLU. This drug affected both the polar headgroup region as shown by PM-IRRAS results and the 2D crystalline structure of the SM monolayer as evidenced by GIXD. Measurements performed for Chol/SM 1:1 models proved also that the statin effect depends on the presence of Chol-SM complexes. In this case, the less hydrophobic FLU was not able to penetrate the binary layer at all, while exposure to the hydrophobic CER resulted in the phase separation and formation of ordered assemblies. The changes in the membrane properties were visualized by BAM images and GIXD patterns and confirmed by thermodynamic parameters of hysteresis in the Langmuir monolayer compression-decompression experiments.
Collapse
Affiliation(s)
| | - Marcin Broniatowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Kraków, Poland
| | - Philippe Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Dorota Matyszewska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
9
|
Peychev B, Arabadzhieva D, Minkov I, Mileva E, Smoukov SK, Slavchov RI. Measuring the Adsorption of Electrolytes on Lipid Monolayers. J Phys Chem Lett 2023; 14:4652-4656. [PMID: 37167099 DOI: 10.1021/acs.jpclett.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The interactions between ions and lipid monolayers have captivated the attention of biologists and chemists alike for almost a century. In the absence of experimentally accessible concentration profiles, the electrolyte adsorption remains the most informative quantitative characteristic of the ion-lipid interactions. However, there is no established procedure to obtain the electrolyte adsorption on spread lipid monolayers. As a result, in the literature, the ion-lipid monolayer interactions are discussed qualitatively, based on the electrolyte effect on more easily accessible variables, e.g., surface tension. In this letter, we demonstrate how the electrolyte adsorption on lipid monolayers can be obtained experimentally. The procedure requires combining surface pressure versus molecular area compression isotherms with spreading pressure data. For the first time, we report an adsorption isotherm of NaCl on a lipid monolayer as a function of the density of the monolayer. The leading interactions seem to be the osmotic effect from the lipid head groups in the surface layer and ion-lipid association.
Collapse
Affiliation(s)
- Boyan Peychev
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| | - Dimitrinka Arabadzhieva
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Ivan Minkov
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
- Department of Chemistry, Biochemistry, Physiology, and Pathophysiology, Faculty of Medicine, Sofia University, 1 Koziak Str., 1407 Sofia, Bulgaria
| | - Elena Mileva
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Stoyan K Smoukov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| | - Radomir I Slavchov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
10
|
Peychev B, Slavchov RI. Interactions between Small Inorganic Ions and Uncharged Monolayers on the Water/Air Interface. J Phys Chem B 2023; 127:2801-2817. [PMID: 36930736 PMCID: PMC10068745 DOI: 10.1021/acs.jpcb.2c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction of several simple electrolytes with uncharged insoluble monolayers is studied on the basis of tensiometric and potentiometric data for the surface electrolyte solution|air. The induced adsorption of electrolyte on the monolayer is determined via a combination of data for equilibrium spreading pressure and surface pressure versus area isotherms. We show that the monolayer-induced adsorption of electrolyte is not only strongly ion-specific but also surfactant-specific. The comparison between the ion-specific effects on a carboxylic acid monolayer at low pH and an ester monolayer shows that the anion series follows the same order while the cation series reverses. The effect of the electrolyte on the chemical potential of the monolayer shows attraction between the surfactant and the ions at low monolayer densities, but at high surface densities, repulsion seems to come into play. In nearly all investigated cases, a maximum of monolayer-induced electrolyte adsorption is observed at intermediate monolayer densities. This suggests specific interactions between the surfactant headgroup and the ions. The Volta potential data for the monolayers are analyzed on the basis of the equations of quadrupolar electrostatics. The analysis suggests that the ion-specific effect on the Volta potential is due to the ion-specific decrement of the bulk dielectric constant of the electrolyte solution. Moreover, we present evidence that in most cases the effect of the electrolyte on the orientation of the adsorbed dipoles cannot be neglected. Instead, the change in the ion distribution in the electric double layer seems to have a small effect on the Volta potential.
Collapse
Affiliation(s)
- Boyan Peychev
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| | - Radomir I Slavchov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
11
|
Zaborowska M, Dobrowolski MA, Matyszewska D. Revealing the structure and mechanisms of action of a synthetic opioid with model biological membranes at the air-water interface. Colloids Surf B Biointerfaces 2023; 226:113289. [PMID: 37028230 DOI: 10.1016/j.colsurfb.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Synthetic opioids such as piperazine derivative called MT-45 interact with opioid receptors in a manner similar to morphine leading to euphoria, a sense of relaxation and pain relief and are commonly used as substituents of natural opioids. In this study we show the changes in the surface properties of nasal mucosa and intestinal epithelial model cell membranes formed at the air - water interface using Langmuir technique upon the exposure to MT-45. Both membranes constitute the first barrier to absorb this substance into the human body. The presence of the piperazine derivative affects the organization of both DPPC and ternary DMPC:DMPE:DMPS monolayers treated as simple models of nasal mucosa and intestinal cell membranes, respectively. This novel psychoactive substance (NPS) leads to the fluidization of the model layers, which may indicate their increased permeability. MT-45 has a greater influence on the ternary monolayers characteristic of the intestinal epithelial cells than nasal mucosa. It might be attributed to the increased attractive interactions between the components of the ternary layer, which in turn increase the interactions with a synthetic opioid. Additionally, the crystal structures of MT-45 determined by single-crystal and powder X-ray diffraction methods allowed us to both provide useful data for facilitating the identification of synthetic opioids as well as to attribute the effect of MT-45 to the ionic interactions between protonated nitrogen atoms and negatively charged parts of the polar heads of the lipids.
Collapse
|
12
|
Santamaria A, Carrascosa-Tejedor J, Guzmán E, Zaccai NR, Maestro A. Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. J Colloid Interface Sci 2023; 629:785-795. [PMID: 36195018 DOI: 10.1016/j.jcis.2022.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.
Collapse
Affiliation(s)
- Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom.
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
13
|
Colmano N, Sánchez-Borzone ME, Turina AV. Effects of Fipronil and surface behavior of neuronal insect and mammalian membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183979. [PMID: 35654149 DOI: 10.1016/j.bbamem.2022.183979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nicolás Colmano
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela E Sánchez-Borzone
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Anahí V Turina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
14
|
Cheng V, Conboy JC. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. J Phys Chem B 2022; 126:7651-7663. [PMID: 36129784 DOI: 10.1021/acs.jpcb.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of ytterbium ions (Yb3+), a commonly used paramagnetic NMR chemical shift reagent, on the physical properties and flip-flop kinetics of dipalmitoylphosphatidylcholine (DPPC) planar supported lipid bilayers (PSLBs) was investigated. Langmuir isotherm studies revealed that Yb3+ interacts strongly with the phosphate headgroup of DPPC, evidenced by the increases in shear and compression moduli. Using sum-frequency vibrational spectroscopy, changes in the acyl chain ordering and phase transition temperature were also observed, consistent with Yb3+ interacting with the phosphate headgroup of DPPC. The changes in the physical properties of the membrane were also observed to be concentration dependent, with more pronounced modification observed at low (50 μM) Yb3+ concentrations compared to 6.5 mM Tb3+, suggesting a cross-linking mechanism between adjacent DPPC lipids. Additionally, the changes in membrane packing and phase transition temperatures in the presence of Tris buffer suggested that a putative Yb(Tris)3+ complex forms that coordinates to the PC headgroup. The kinetics of DPPC flip-flop in the gel and liquid crystalline (lc) phases were substantially inhibited in the presence of Yb3+, regardless of the Yb3+ concentration. Analysis of the flip-flop kinetics under the framework of transition state theory revealed that the free energy barrier to flip-flop in both the gel and lc phases was substantial increased over a pure DPPC membrane. In the gel phase, the trend in the free energy barrier appeared to follow the trend in the shear moduli, suggesting that the Yb3+-DPPC headgroup interaction was driving the increase in the activation free energy barrier. In the lc phase, activation free energies of DPPC flip-flop in the presence of 50 μM or 6.5 mM Yb3+ were found to mirror the free energies of TEMPO-DPPC flip-flop, leading to the conclusion that the strong interaction between Yb3+ and the PC headgroup was essentially manifested as a headgroup charge modification. These studies illustrate that the presence of the lanthanide Yb3+ results in significant modification to the lipid membrane physical properties and, more importantly, results in a pronounced inhibition of native lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Li Y, Feng R, Liu M, Guo Y, Zhang Z. Mechanism by Which Cholesterol Induces Sphingomyelin Conformational Changes at an Air/Water Interface. J Phys Chem B 2022; 126:5481-5489. [PMID: 35839485 DOI: 10.1021/acs.jpcb.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigates the interactions in cholesterol and sphingomyelin monolayers at the molecular level by high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of natural egg sphingomyelin (ESM) as a function of cholesterol concentration are obtained at an air/water interface under different polarization combinations. The analysis of the spectra shows that cholesterol can induce sphingomyelin conformational changes at an air/water interface. The mechanism is proposed. When cholesterol is inserted into the ESM monolayer, the inherent intramolecular hydrogen bonds between the phosphate moiety and 3OH in the sphingosine backbones are destroyed. During this process, the sphingosine backbones become more ordered, while the conformation of the N-linked long acid chain remains unaltered. The OH of the cholesterol head group can bind to the -PO-2 of the ESM molecule, and the orientation of the -PO-2 in the head groups changes to be more parallel to the interface.
Collapse
Affiliation(s)
- Yiyi Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
The lung surfactant activity probed with molecular dynamics simulations. Adv Colloid Interface Sci 2022; 304:102659. [PMID: 35421637 DOI: 10.1016/j.cis.2022.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/17/2023]
Abstract
The surface of pulmonary alveolar subphase is covered with a mixture of lipids and proteins. This lung surfactant plays a crucial role in lung functioning. It shows a complex phase behavior which can be altered by the interaction with third molecules such as drugs or pollutants. For studying multicomponent biological systems, it is of interest to couple experimental approach with computational modelling yielding atomic-scale information. Simple two, three, or four-component model systems showed to be useful for getting more insight in the interaction between lipids, lipids and proteins or lipids and proteins with drugs and impurities. These systems were studied theoretically using molecular dynamic simulations and experimentally by means of the Langmuir technique. A better understanding of the structure and behavior of lung surfactants obtained from this research is relevant for developing new synthetic surfactants for efficient therapies, and may contribute to public health protection.
Collapse
|
17
|
Bačinić A, Frka S, Mlakar M. A study of cobalt (II) complexes involved in marine biogeochemical processes: Co(II)-1,10-Phenanthroline and Co(II)-1,10-Phenanthroline-L-α-Phosphatidylcholine. Bioelectrochemistry 2022; 144:108009. [PMID: 34902665 DOI: 10.1016/j.bioelechem.2021.108009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
The cell membrane is structured so that the surface layer is composed of lipid molecules with selective permeability for micronutrients and organic ligands. Binding of Co (II) to natural lipid phosphatidylcholine (PC) has been studied to identify a possible mechanism of Co (II) entry through the cell membrane of the biota in detail, by voltammetry followed by checking the system at the air-water boundary, by Langmuir method. Binding of cobalt (II) ions to the PC molecules was enabled by the Co(II)-1,10-Phenanthroline (Phen) complex formation as an intermediate. Co(II)-Phen-PC complex reduction was recorded in the pH range from 5 to 9.5. The reduction was identified as a two-electron irreversible reaction at about -1.5 V, with the reactant adsorption followed dissociation (EC mechanism). The Co(II)-Phen-PC complex electrode surface concentration (Γ) was calculated to be (1.45 ± 0.12) × 10-10 mol.cm-2. Conditional stability constants log KCo(II)Phen2PC = 23.02 ± 0.26 and log KCo(II)Phen2PC2 = 29.31 ± 0.17 (Ic = 0.55) were calculated by CLE/ACSV method. Pressure-area (π-A) isotherms obtained at water-air interface by Langmuir monolayer technique indicated penetration of Co(II)-Phen into the PC monolayer, supporting electrochemical results. The equilibrium constants of the Co (II)-PC system (1:1) at the air-water interface was calculated to be K1 = 2.4 × 10-2 m3 mol-1, while for Co(II)-Phen-PC K2 = 4.86 × 1010 m2 mol-1.
Collapse
Affiliation(s)
- Anđela Bačinić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia
| | - Sanja Frka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia
| | - Marina Mlakar
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Sthoer A, Adams EM, Sengupta S, Corkery RW, Allen HC, Tyrode EC. La 3+ and Y 3+ interactions with the carboxylic acid moiety at the liquid/vapor interface: Identification of binding complexes, charge reversal, and detection limits. J Colloid Interface Sci 2022; 608:2169-2180. [PMID: 34798383 DOI: 10.1016/j.jcis.2021.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Specific interactions of yttrium and lanthanum ions with a fatty acid Langmuir monolayer were investigated using vibrational sum frequency spectroscopy. The trivalent ions were shown to interact with the charged form of the carboxylic acid group from nanomolar concentrations (<300 nM). Analysis of the spectral features from both the symmetric and the asymmetric carboxylate modes reveals the presence of at least three distinct coordination structures linked to specific binding configurations. Although the same species were identified for both La3+ and Y3+, they display a different concentration dependence, highlighting the ion-specificity of the interaction. From the analysis of the response of interfacial water molecules, the reversal of the surface charge, as well as the formation of yttrium hydroxide complexes, were detected upon increasing the amount of salt in solution. The binding interaction and kinetics of absorption are sensitive to the solution pH, showing a distinct ion speciation in the interfacial region when compared to the bulk. Changing the subphase pH or adding a monovalent background electrolyte that promotes deprotonation of the carboxylic acid headgroup could further improve the detection limit of La3+ and Y3+ to concentrations < 100 nM. These findings demonstrate that nM concentrations of trace metals contaminants, typically found on monovalent salts, can significantly influence the binding structure and kinetics in Langmuir monolayers.
Collapse
Affiliation(s)
- Adrien Sthoer
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Ellen M Adams
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Physical Chemistry II, Ruhr-Universität Bochum, 44801 Bochum, Germany(1)
| | - Sanghamitra Sengupta
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Ultrafast Spectroscopy, AMOLF, 1098 XG Science Park, Amsterdam, The Netherlands(1)
| | - Robert W Corkery
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT0200, Australia
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric C Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
19
|
Singh PC, Ahmed M, Nihonyanagi S, Yamaguchi S, Tahara T. DNA-Induced Reorganization of Water at Model Membrane Interfaces Investigated by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem B 2022; 126:840-846. [DOI: 10.1021/acs.jpcb.1c08581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Prashant Chandra Singh
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shoichi Yamaguchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Van Acker E, De Rijcke M, Liu Z, Asselman J, De Schamphelaere KAC, Vanhaecke L, Janssen CR. Sea Spray Aerosols Contain the Major Component of Human Lung Surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15989-16000. [PMID: 34793130 DOI: 10.1021/acs.est.1c04075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine phytoplankton influence the composition of sea spray aerosols (SSAs) by releasing various compounds. The biogenic surfactant dipalmitoylphosphatidylcholine (DPPC) is known to accumulate in the sea surface microlayer, but its aerosolization has never been confirmed. We conducted a 1 year SSA sampling campaign at the Belgian coast and analyzed the SSA composition. We quantified DPPC at a median and maximum air concentration of 7.1 and 33 pg m-3, respectively. This discovery may be of great importance for the field linking ocean processes to human health as DPPC is the major component of human lung surfactant and is used as excipient in medical aerosol therapy. The natural airborne exposure to DPPC seems too low to induce direct human health effects but may facilitate the effects of other marine bioactive compounds. By analyzing various environmental variables in relation to the DPPC air concentration, using a generalized linear model, we established that wave height is a key environmental predictor and that it has an inverse relationship. We also demonstrated that DPPC content in SSAs is positively correlated with enriched aerosolization of Mg2+ and Ca2+. In conclusion, our findings are not only important from a human health perspective but they also advance our understanding of the production and composition of SSAs.
Collapse
Affiliation(s)
- Emmanuel Van Acker
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, Ghent 9000, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, Ostend 8400, Belgium
| | - Zixia Liu
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, Ghent 9000, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, Ghent 9000, Belgium
- Blue Growth Research Lab, Ghent University, Campus Oostende, Wetenschapspark 1, Ostend 8400, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, Ghent 9000, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, Merelbeke 9820, Belgium
- Queen's University Belfast, School of Biological Sciences, Lisburn Road 97, Belfast BT7 1NN, United Kingdom
| | - Colin R Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, Ghent 9000, Belgium
- Blue Growth Research Lab, Ghent University, Campus Oostende, Wetenschapspark 1, Ostend 8400, Belgium
| |
Collapse
|
21
|
Vazquez de Vasquez MG, Carter-Fenk KA, McCaslin LM, Beasley EE, Clark JB, Allen HC. Hydration and Hydrogen Bond Order of Octadecanoic Acid and Octadecanol Films on Water at 21 and 1 °C. J Phys Chem A 2021; 125:10065-10078. [PMID: 34761931 DOI: 10.1021/acs.jpca.1c06101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-dependent hydration structure of long-chain fatty acids and alcohols at air-water interfaces has great significance in the fundamental interactions underlying ice nucleation in the atmosphere. We present an integrated theoretical and experimental study of the temperature-dependent vibrational structure and electric field character of the immediate hydration shells of fatty alcohol and acid headgroups. We use a combination of surface-sensitive infrared reflection-absorption spectroscopy (IRRAS), surface potentiometry, and ab initio molecular dynamics simulations to elucidate detailed molecular structures of the octadecanoic acid and octadecanol (stearic acid and stearyl alcohol) headgroup hydration shells at room temperature and near freezing. In experiments, the alcohol at high surface concentration exhibits the largest surface potential; yet we observe a strengthening of the hydrogen-bonding for the solvating water molecules near freezing for both the alcohol and the fatty acid IRRAS experiments. Results reveal that the hydration shells for both compounds screen their polar headgroup dipole moments reducing the surface potential at low surface coverages; at higher surface coverage, the polar headgroups become dehydrated, which reduces the screening, correlating to higher observed surface potential values. Lowering the temperature promotes tighter chain packing and an increase in surface potential. IRRAS reveals that the intra- and intermolecular vibrational coupling mechanisms are highly sensitive to changes in temperature. We find that intramolecular coupling dominates the vibrational relaxation pathways for interfacial water determined by comparing the H2O and the HOD spectra. Using ab initio molecular dynamics (AIMD) calculations on cluster systems of propanol + 6H2O and propionic acid + 10H2O, a spectral decomposition scheme was used to correlate the OH stretching motion with the IRRAS spectral features, revealing the effects of intra- and intermolecular coupling on the spectra. Spectra calculated with AIMD reproduce the red shift and increase in intensity observed in experimental spectra corresponding to the OH stretching region of the first solvation shell. These findings suggest that intra- and intermolecular vibrational couplings strongly impact the OH stretching region at fatty acid and fatty alcohol water interfaces. Overall, results are consistent with ice templating behavior for both the fatty acid and the alcohol, yet the surface potential signature is strongest for the fatty alcohol. These findings develop a better understanding of the complex surface potential and spectral signatures involved in ice templating.
Collapse
Affiliation(s)
- Maria G Vazquez de Vasquez
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Kimberly A Carter-Fenk
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Emma E Beasley
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jessica B Clark
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Vazquez de Vasquez MG, Wellen Rudd BA, Baer MD, Beasley EE, Allen HC. Role of Hydration in Magnesium versus Calcium Ion Pairing with Carboxylate: Solution and the Aqueous Interface. J Phys Chem B 2021; 125:11308-11319. [PMID: 34601874 DOI: 10.1021/acs.jpcb.1c06108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of group II metal cations such as Ca2+ and Mg2+ has been largely categorized as electrostatic or ionic using carboxylate symmetric and asymmetric stretching frequency assignments that have been historically used with little regard for the solvation environment of aqueous solutions. However, given the importance of these cations and their binding mechanisms related to biological function and in revealing surface enrichment factors for ocean to marine aerosol transfer, it is imperative that a deeper understanding be sought to include hydration effects. Here, infrared reflection-absorption and Raman spectra for surface and solution phase carboxylate binding information, respectively, are compared against bare (unbound) carboxylate and bidentate Zn2+:carboxylate spectral signatures. Spectral non-coincidence effect analysis, temperature studies, and spectral and potential of mean force calculations result in a concise interpretation of binding motifs that include the role of mediating water molecules, that is, contact and solvent-shared ion pairs. Calcium directly binds to the carboxylate group in contact ion pairs where magnesium rarely does. Moreover, we reveal the dominance of the solvent-shared ion pair of magnesium with carboxylate at the air-water interface and in solution.
Collapse
Affiliation(s)
| | - Bethany A Wellen Rudd
- Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio 43015, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emma E Beasley
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Argudo PG, Zhang N, Chen H, de Miguel G, Martín-Romero MT, Camacho L, Li MH, Giner-Casares JJ. Amphiphilic polymers for aggregation-induced emission at air/liquid interfaces. J Colloid Interface Sci 2021; 596:324-331. [PMID: 33839357 DOI: 10.1016/j.jcis.2021.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Polymersomes and related self-assembled nanostructures displaying Aggregation-Induced Emission (AIE) are highly relevant for plenty of applications in imaging, biology and functional devices. Experimentally simple, scalable and universal strategies for on-demand self-assembly of polymers rendering well-defined nanostructures are highly desirable. A purposefully designed combination of amphiphilic block copolymers including tunable lengths of hydrophilic polyethylene glycol (PEGm) and hydrophobic AIE polymer poly(tetraphenylethylene-trimethylenecarbonate) (P(TPE-TMC)n) has been studied at the air/liquid interface. The unique 2D assembly properties have been analyzed by thermodynamic measurements, UV-vis reflection spectroscopy and photoluminescence in combination with molecular dynamics simulations. The (PEG)m-b-P(TPE-TMC)n monolayers formed tunable 2D nanostructures self-assembled on demand by adjusting the available surface area. Tuning of the PEG length allows to modification of the area per polymer molecule at the air/liquid interface. Molecular detail on the arrangement of the polymer molecules and relevant molecular interactions has been convincingly described. AIE fluorescence at the air/liquid interface has been successfully achieved by the (PEG)m-b-P(TPE-TMC)n nanostructures. An experimentally simple 2D to 3D transition allowed to obtain 3D polymersomes in solution. This work suggests that engineered amphiphilic polymers for AIE may be suitable for selective 2D and 3D self-assembly for imaging and technological applications.
Collapse
Affiliation(s)
- Pablo G Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Nian Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Gustavo de Miguel
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - María T Martín-Romero
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Camacho
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Min-Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France.
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
24
|
Xu M, Tsona NT, Cheng S, Li J, Du L. Unraveling interfacial properties of organic-coated marine aerosol with lipase incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146893. [PMID: 33848860 DOI: 10.1016/j.scitotenv.2021.146893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Marine aerosols are believed to have an organic surface coating on which fatty acids act as an important component due to their high surface activity. In addition, various kinds of enzyme species are abundantly found in seawater, some of which have been identified to exist in marine aerosols. Herein, from the perspective of marine aerosol interface simulation, we investigate the effect of Burkholderia cepacia lipase on the surface properties of stearic acid (SA) monolayer at the air-water interface by using surface-sensitive techniques of Langmuir trough and Infrared reflection-absorption spectroscopy (IRRAS). Our findings indicate that the stearic acid film undergoes a significant expansion, especially when the lipase concentration is 500 nM, because of the incorporation of lipase as observed from the surface pressure-area (π-A) isotherms. IRRAS spectra also show reduced intensities and ordering in the methylene stretching vibration region of stearic acid as a result of low surface density and disordered packing as the enzyme concentration increases. In particular, when the concentration of lipase is 500 nM, the lowest Ias/Is values are shown on both pure water subphase and artificial seawater subphase, indicating more gauche conformations for SA. Furthermore, SA films with lipase incorporation were also studied at three different pH of subphase environment, considering the decrease of pH caused by the reaction with acidic gases during the aerosol aging process. The results reflect a more pronounced expansion of SA monolayer in acidic environment at pH 2.5, suggesting that hydrophobic interaction plays an important role in the disorder of the SA monolayer. In view of the coexistence of fatty acids and enzymes in the marine environment, this study provides a further understanding of the surface organization and behavior of organic-coated marine aerosols and deepen the knowledge of lipid-enzyme interfacial interactions occurring in the atmosphere.
Collapse
Affiliation(s)
- Minglan Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
25
|
Szekeres GP, Krekic S, Miller RL, Mero M, Pagel K, Heiner Z. The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy. Phys Chem Chem Phys 2021; 23:13389-13395. [PMID: 34105546 PMCID: PMC8207512 DOI: 10.1039/d1cp01975a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air–liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050–1450 cm−1, 2750–3180 cm−1, and 3200–3825 cm−1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O–H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure. Chondroitin sulfate interacts with the headgroups of a lipid monolayer at the air–liquid interface and shows a chiral secondary structure.![]()
Collapse
Affiliation(s)
- Gergo Peter Szekeres
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany. and Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Szilvia Krekic
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-11, 12489 Berlin, Germany. and Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary and Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dugonics tér 13, 6720, Szeged, Hungary
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Mark Mero
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany. and Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Zsuzsanna Heiner
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-11, 12489 Berlin, Germany.
| |
Collapse
|
26
|
Carter-Fenk KA, Carter-Fenk K, Fiamingo ME, Allen HC, Herbert JM. Vibrational exciton delocalization precludes the use of infrared intensities as proxies for surfactant accumulation on aqueous surfaces. Chem Sci 2021; 12:8320-8332. [PMID: 34221313 PMCID: PMC8221057 DOI: 10.1039/d1sc01276b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational exciton delocalization in infrared reflection–absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling causes a significant decrease in peak intensities corresponding to C–F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C–H stretching modes. Ionic composition of the aqueous phase impacts surfactant intermolecular distance, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities as proxies for concentration, although such analysis is ubiquitous in interface science. Coupling between surfactant molecules at the air/water interface bleeds intensity into a diffuse background, such that single-wavelength vibrational intensity is effectively depleted at high surface coverage.![]()
Collapse
Affiliation(s)
| | - Kevin Carter-Fenk
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - Michelle E Fiamingo
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| |
Collapse
|
27
|
Interactions of l-arginine with Langmuir monolayers of common phospholipids at the air-water interface. Chem Phys Lipids 2021; 235:105054. [PMID: 33508301 DOI: 10.1016/j.chemphyslip.2021.105054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
The interactions of l-arginine (l-arg) with Langmuir monolayers of three most common phospholipids, which are sodium salt of dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE), have been investigated at the air-water interface. The surface pressure-area (π-A) isotherms of these monolayers have been measured with a film balance and monolayer morphology has been observed by a Brewster angle microscopy (BAM). The DPPG monolayers on pure water do not show any phase transition but show irregular shaped condensed phases formed just after evaporation of the solvent at 20 °C. However, this monolayer on l-arg solution subphase indicates a first-order phase transition from liquid expanded to liquid condensed (LE-LC) phases and forms LC domains at the same temperature. With an increase in the l-arg concentration in the subphase up to 5.0 × 10-4 M, the π-A shows an overall increasingly greater expansion in the molecular area. All of the π-A isotherms recorded on ≥5.0 × 10-4 M l-arg solution subphases almost coincide with each other. These changes in the phase behavior have been explained by the fact that l-arg having guanidinium cationic group undergoes strong hydrogen bonding interaction with the anionic phosphatidylglycerol (PG-) head group. The bonding between two molecules is further strengthened by electrostatic attraction between cationic l-arg and anionic PG- ions. The BAM observation of the monolayer morphology supports this explanation. On the other hand, a very negligible interaction has been observed between l-arg and DPPC or DPPE monolayers. The π-A isotherms in the presence of l-arg for both the amphiphiles show a very little expansion only in the LE phase region, but coincide in the so called solid phase region. The monolayer morphology of both the monolayers also supports these results. This little effect of expansion in the LE region may be explained by the ion-pair formation between cationic l-arg and anionic head groups in the monolayers at lower pressures. However, due to compression at high pressure, the l-arg molecules are squeezed out from the amphiphile head groups.
Collapse
|
28
|
Javanainen M, Hua W, Tichacek O, Delcroix P, Cwiklik L, Allen HC. Structural Effects of Cation Binding to DPPC Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15258-15269. [PMID: 33296215 DOI: 10.1021/acs.langmuir.0c02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na+, Ca2+, and Cl- ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine. We used lipid monolayers as a proxy for membranes, as this approach enabled a direct comparison between simulation and experiment. We find that the effects of Na+ are minor. Ca2+, on the other hand, strongly affects the lipid headgroup conformations and induces a tighter packing of lipids, thus promoting the liquid condensed phase. It does so by binding to both the phosphate and carbonyl oxygens via direct and water-mediated binding modes, the ratios of which depend on the monolayer packing. Clustering analysis performed on simulation data revealed that changes in area per lipid or CaCl2 concentration both affect the headgroup conformations, yet their effects are anticorrelated. Cations at the monolayer surface also attract Cl-, which at large CaCl2 concentrations penetrates deep to the monolayer. This phenomenon coincides with a radical change in the VSFG spectra of the phosphate group, thus indicating the emergence of a new binding mode.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Wei Hua
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Pauline Delcroix
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Luo M, Wauer NA, Angle KJ, Dommer AC, Song M, Nowak CM, Amaro RE, Grassian VH. Insights into the behavior of nonanoic acid and its conjugate base at the air/water interface through a combined experimental and theoretical approach. Chem Sci 2020; 11:10647-10656. [PMID: 33144932 PMCID: PMC7583472 DOI: 10.1039/d0sc02354j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which can be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a pK a shift of 1.1 ± 0.6, yielding a predicted surface pK a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk pK a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface pK a can be predicted from MD simulations.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Nicholas A Wauer
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Kyle J Angle
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Meishi Song
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Christopher M Nowak
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA . ;
- Department of Nanoengineering , Scripps Institution of Oceanography , University of California , La Jolla , San Diego , CA 92093 , USA
| |
Collapse
|
30
|
Ruiz GCM, Pazin WM, do Carmo Morato LF, Oliveira ON, Constantino CJL. Correlating mono- and bilayers of lipids to investigate the pronounced effects of steroid hormone 17α-ethynylestradiol on membrane models of DPPC/cholesterol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Structure of DPPC Monolayers at the Air/Buffer Interface: A Neutron Reflectometry and Ellipsometry Study. COATINGS 2020. [DOI: 10.3390/coatings10060507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine, known as DPPC, at the air/water interface are extensively used as model systems of biomembranes and pulmonary surfactant. The properties of these monolayers have been mainly investigated by surface pressure–area isotherms coupled with different complementary techniques such as Brewster angle microscopy, for example. Several attempts using neutron reflectometry (NR) or ellipsometry have also appeared in the literature. Here, we report structural information obtained by using NR and ellipsometry on DPPC monolayers in the liquid condensed phase. On one side, NR can resolve the thickness of the aliphatic tails and the degree of hydration of the polar headgroups. On the other side, ellipsometry gives information on the refractive index and, therefore, on the physical state of the monolayer. The thickness and surface excess obtained by multiple-angle-of-incidence ellipsometry (MAIE) is compared with the results from NR measurements yielding a good agreement. Besides, a novel approach is reported to calculate the optical anisotropy of the DPPC monolayer that depends on the orientation of the aliphatic chains. The results from both NR and ellipsometry are also discussed in the context of the existing results for DPPC monolayers at the air/water interface. The differences observed are rationalized by the presence of buffer molecules interacting with phospholipids.
Collapse
|
32
|
Study of mucin interaction with model phospholipid membrane at the air–water interface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Link KA, Spurzem GN, Tuladhar A, Chase Z, Wang Z, Wang H, Walker RA. Cooperative Adsorption of Trehalose to DPPC Monolayers at the Water–Air Interface Studied with Vibrational Sum Frequency Generation. J Phys Chem B 2019; 123:8931-8938. [DOI: 10.1021/acs.jpcb.9b07770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Aashish Tuladhar
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zizwe Chase
- Department of Physics and Astronomy, Howard University, Washington, D.C. 20059, United States
| | - Zheming Wang
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hongfei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
34
|
Real Hernandez L, Jimenez-Flores R. Preparation of Non-Surface-Active Langmuir Trough Subphases from Milk. ACS OMEGA 2019; 4:14920-14927. [PMID: 31552332 PMCID: PMC6751704 DOI: 10.1021/acsomega.9b01659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Milk polar lipid interfacial behavior continues to be analyzed using Langmuir trough experiments, but the reported Langmuir trough subphases commonly used are not fully representative of milk. A method to transform liquids of biological origin, such as milk, into appropriate Langmuir trough subphases does not currently exist, which hinders the applicability of Langmuir trough experiments to nature. Here, a procedure to manufacture milk-derived Langmuir trough subphases with insignificant amounts of surfactants from bovine milk is presented. Ultrafiltration is used to remove the bulk of protein surfactants from milk followed by the creation of solvent-induced emulsions that remove trace proteins and lipids from collected skim milk permeates. Change in surface tension upon compression of resulting washed permeates from the surfactant removal process was ≤0.1 mN/m, terming the permeates non-surface-active (NSA). NSA permeates (72.4 ± 0.2 mN/m) had a surface tension similar to that of ultrapure water (72.6 ± 0.1 mN/m), but their pH, conductivity, percent total solids, Brix percentage, alkalinity, and hardness were not the same, with NSA permeates being more compositionally similar to skim milk than water. The lift-off points of milk ganglioside GM3 monolayer surface pressure-area isotherms spread on NSA permeates and ultrapure water subphases were significantly different when compared for the same sample, indicating that surface tension measurements obtained on ultrapure water are not the same as with NSA milk permeate. Overall, surfactants were removed from bovine milk without the addition of exogenous compounds, allowing for the production of a NSA solution derived from milk that can be used in the Langmuir trough experiment to more realistically resemble the natural environment of milk polar lipids. The procedure described here was able to produce NSA solutions for other dairy beverages aside from milk, indicating that it can be applicable to other biological fluids.
Collapse
|
35
|
Okur HI, Tarun OB, Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J Am Chem Soc 2019; 141:12168-12181. [DOI: 10.1021/jacs.9b02820] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B. Tarun
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Luo M, Dommer AC, Schiffer JM, Rez DJ, Mitchell AR, Amaro RE, Grassian VH. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9050-9060. [PMID: 31188612 DOI: 10.1021/acs.langmuir.9b00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Jamie M Schiffer
- Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States
| | - Donald J Rez
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Andrew R Mitchell
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
- Scripps Institution of Oceanography , University of California , San Diego , California 92037 , United States
| |
Collapse
|
37
|
Link KA, Spurzem GN, Tuladhar A, Chase Z, Wang Z, Wang H, Walker RA. Organic Enrichment at Aqueous Interfaces: Cooperative Adsorption of Glucuronic Acid to DPPC Monolayers Studied with Vibrational Sum Frequency Generation. J Phys Chem A 2019; 123:5621-5632. [DOI: 10.1021/acs.jpca.9b02255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katie A. Link
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Gabrielle N. Spurzem
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Aashish Tuladhar
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zizwe Chase
- Department of Physics and Astronomy, Howard University, Washington, D.C. 20059, United States
| | - Zheming Wang
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hongfei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Robert A. Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
38
|
Pazin WM, Ruiz GCM, Oliveira OND, Constantino CJL. Interaction of Artepillin C with model membranes: Effects of pH and ionic strength. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:410-417. [DOI: 10.1016/j.bbamem.2018.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/24/2023]
|
39
|
Bornemann S, Herzog M, Winter R. Impact of Y3+-ions on the structure and phase behavior of phospholipid model membranes. Phys Chem Chem Phys 2019; 21:5730-5743. [DOI: 10.1039/c8cp07413e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trivalent yttrium-ions reveal a calcium-like membrane interaction by coordinating to the phosphate groups, resulting in a stronger lipid packing and partial dehydration of the headgroup region.
Collapse
Affiliation(s)
- Steffen Bornemann
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| | - Marius Herzog
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- TU Dortmund University
- Faculty of Chemistry and Chemical Biology
- D-44221 Dortmund
- Germany
| |
Collapse
|
40
|
Otto F, Brezesinski G, van Hoogevest P, Neubert R. Physicochemical characterization of natural phospholipid excipients with varying PC content. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
G Argudo P, Muñoz E, Giner-Casares JJ, Martín-Romero MT, Camacho L. Folding of cytosine-based nucleolipid monolayer by guanine recognition at the air-water interface. J Colloid Interface Sci 2018; 537:694-703. [PMID: 30481730 DOI: 10.1016/j.jcis.2018.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 01/05/2023]
Abstract
Monolayers of a cytosine-based nucleolipid (1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (ammonium salt), CDP-DG) at basic subphase have been prepared at the air-water interface both in absence and presence of guanine. The formation of the complementary base pairing is demonstrated by combining surface experimental techniques, i.e., surface pressure (π)-area (A), Brewster angle microscopy (BAM), infrared spectroscopy (PM-IRRAS) and computer simulations. A folding of the cytosine-based nucleolipid molecules forming monolayer at the air-water interface occurs during the guanine recognition as absorbate host and is kept during several compression-expansion processes under set experimental conditions. The specificity between nitrogenous bases has been also registered. Finally, mixed monolayers of CDP-DG and a phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate (sodium salt), DMPA) has been studied and a molecular segregation of the DMPA molecules has been inferred by the additivity rule.
Collapse
Affiliation(s)
- Pablo G Argudo
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Eulogia Muñoz
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Juan José Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - María Teresa Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| | - Luis Camacho
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| |
Collapse
|
42
|
Li S, Du L, Zhang Q, Wang W. Stabilizing mixed fatty acid and phthalate ester monolayer on artificial seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:626-633. [PMID: 30014940 DOI: 10.1016/j.envpol.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Phthalate esters which are widely used as industrial chemicals have become widespread contaminants in the marine environment. However, little information is available on the interfacial behavior of phthalate esters in the seawater, where contaminants generally occur at elevated concentrations and have the potential to transfer into the atmosphere through wave breaking on sea surface. We used artificial seawater coated with fatty acids to simulate sea surface microlayer in a Langmuir trough. The interactions of saturated fatty acids (stearic acid (SA) and palmitic acid (PA)) with one of the most abundant phthalate esters (di-(2-ethylhexyl) phthalate (DEHP)), were investigated under artificial seawater and pure water conditions. Pure DEHP monolayer was not stable, while more stable mixed monolayers were formed by SA and DEHP on the artificial seawater at relatively low surface pressure. Sea salts in the subphase can lower the excess Gibbs free energy to form more stable mixed monolayer. Among the ten components in the sea salts, Ca2+ ions played the major role in condensation of mixed monolayer. The condensed characteristic of the mixed SA (or PA)/DEHP monolayers suggested that the hydrocarbon chains were ordered on artificial seawater. By means of infrared reflection-absorption spectroscopy (IRRAS), we found that multiple sea salt mixtures induced deprotonated forms of fatty acids at the air-water interface. Sea salts can improve the stability and lifetime of mixed fatty acid and phthalate ester monolayer on aqueous droplets in the atmosphere. Interfacial properties of mixed fatty acid and phthalate ester monolayers at the air-ocean interface are important to help understand their behavior and fate in the marine environment.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
43
|
Link KA, Hsieh CY, Tuladhar A, Chase Z, Wang Z, Wang H, Walker RA. Vibrational studies of saccharide-induced lipid film reorganization at aqueous/air interfaces. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Wang R, Guo Y, Liu H, Chen Y, Shang Y, Liu H. The effect of chitin nanoparticles on surface behavior of DPPC/DPPG Langmuir monolayers. J Colloid Interface Sci 2018; 519:186-193. [DOI: 10.1016/j.jcis.2018.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
|
45
|
Thermodynamic Behaviour of Mixed Films of an Unsaturated and a Saturated Polar Lipid. (Oleic Acid-Stearic Acid and POPC-DPPC). COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Li S, Du L, Tsona NT, Wang W. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. CHEMOSPHERE 2018; 196:323-330. [PMID: 29310068 DOI: 10.1016/j.chemosphere.2017.12.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe3+, Pb2+, Zn2+, Cu2+, Ni2+, Cr3+, Cd2+, and Co2+, with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn2+ and Fe3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Lin Du
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China.
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| |
Collapse
|
47
|
|
48
|
Adams EM, Verreault D, Jayarathne T, Cochran RE, Stone EA, Allen HC. Surface organization of a DPPC monolayer on concentrated SrCl 2 and ZnCl 2 solutions. Phys Chem Chem Phys 2018; 18:32345-32357. [PMID: 27854367 DOI: 10.1039/c6cp06887a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metals are known to be enriched in organic-coated marine aerosols, but the impact these cations have on their surface properties is not well understood. Here the effect of Zn2+ enrichment on the surface properties of a dipalmitoylphosphatidylcholine (DPPC) monolayer was investigated and compared to that of the alkaline earth metal Sr2+, an ion not enriched in aerosols. Phase behavior of the DPPC film on concentrated aqueous solutions was probed with surface pressure-area isotherms while domain morphology was monitored with Brewster angle microscopy (BAM). Infrared reflection-absorption spectroscopy (IRRAS) and vibrational sum frequency generation (VSFG) spectroscopy were used to assess the impact of cations on the conformation and orientation of alkyl chains as well as the hydration state of the carbonyl and phosphatidylcholine (PC) moieties. Results of compression isotherms and BAM show that Zn2+ strongly interacts with DPPC molecules, and induces condensation of the monolayer while Sr2+ only weakly interacts with the monolayer in expanded phases. Conformational order and orientation of alkyl chains in the condensed phase are not significantly altered by either cation. IRRAS indicates that Sr2+ has weak interactions with the PC headgroup. Zn2+ ions cause dehydration of carbonyl groups and binds to the phosphate group in a 2 : 1 bridging complex. Findings here suggest that Sr2+ is not enriched in aerosols because it behaves similar to a monovalent ion and only weakly interacts with the monolayer, while enrichment of Zn2+ is due to strong binding to the lipid film.
Collapse
Affiliation(s)
- Ellen M Adams
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Dominique Verreault
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | - Richard E Cochran
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
49
|
Kanti De S, Kanwa N, Ahamed M, Chakraborty A. Spectroscopic evidence for hydration and dehydration of lipid bilayers upon interaction with metal ions: a new physical insight. Phys Chem Chem Phys 2018; 20:14796-14807. [DOI: 10.1039/c8cp01774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Nishu Kanwa
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Mirajuddin Ahamed
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Anjan Chakraborty
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
50
|
Wellen Rudd BA, Vidalis AS, Allen HC. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems. Phys Chem Chem Phys 2018; 20:16320-16332. [DOI: 10.1039/c8cp01188e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium ions bind to palmitic acid monolayers at the air–aqueous interface resulting in changes of both thermodynamic and non-equilibrium stability.
Collapse
Affiliation(s)
| | - Andrew S. Vidalis
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Heather C. Allen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|