1
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
4
|
Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv 2024; 21:1-12. [PMID: 38116624 DOI: 10.1080/17425247.2023.2297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Hu M, Taguchi K, Matsumoto K, Kobatake E, Ito Y, Ueda M. Polysarcosine-Coated liposomes attenuating immune response induction and prolonging blood circulation. J Colloid Interface Sci 2023; 651:273-283. [PMID: 37542902 DOI: 10.1016/j.jcis.2023.07.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
HYPOTHESIS Liposomes coated with long polysarcosine (PSar) chains at a high density might enable long blood circulation and attenuate accelerated blood clearance (ABC) phenomenon. EXPERIMENTS In this study, we controlled the length (23, 45, 68 mers) and density (5, 10, 15 mol%) of PSar on liposomal coatings and, furthermore, investigated the effects of PSar length and density on the blood circulation time, biodistribution, immune response, and ABC phenomenon induction. Length-controlled PSar-bound lipids (PSar-PEs) were synthesized using a click reaction and inserted into bare liposomes at different combinations of chain lengths and proportions. FINDINGS Although all PSar-coated liposomes (PSar-lipos) had similar morphological, physical, and chemical properties, they had different blood circulation times and biodistribution, and exerted varied effects on the immune system. All PSar-lipos with different PSar length and density showed a similar anti-PSar IgM response. Liposomes modified with the longest PSar chain (68 mers) at a high density (15 mol%) showed the longest blood circulation time and, additionally, attenuated ABC phenomenon compared with PEG-lipo. The ex vivo analysis of the biodistribution of liposomes revealed that a thick PSar layer enhanced the blood circulation time of liposomes due to the reduction of the accumulation of liposomes in the liver and spleen. These findings provide new insights into the relationship between IgM expression and ABC phenomenon inhibition.
Collapse
Affiliation(s)
- Mingxin Hu
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Motoki Ueda
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Yang M, Zhang ZC, Yuan FZ, Deng RH, Yan X, Mao FB, Chen YR, Lu H, Yu JK. An immunomodulatory polypeptide hydrogel for osteochondral defect repair. Bioact Mater 2023; 19:678-689. [PMID: 35600970 PMCID: PMC9112113 DOI: 10.1016/j.bioactmat.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Osteochondral injury is a common and frequent orthopedic disease that can lead to more serious degenerative joint disease. Tissue engineering is a promising modality for osteochondral repair, but the implanted scaffolds are often immunogenic and can induce unwanted foreign body reaction (FBR). Here, we prepare a polypept(o)ide-based PAA-RGD hydrogel using a novel thiol/thioester dual-functionalized hyperbranched polypeptide P(EG3Glu-co-Cys) and maleimide-functionalized polysarcosine under biologically benign conditions. The PAA-RGD hydrogel shows suitable biodegradability, excellent biocompatibility, and low immunogenicity, which together lead to optimal performance for osteochondral repair in New Zealand white rabbits even at the early stage of implantation. Further in vitro and in vivo mechanistic studies corroborate the immunomodulatory role of the PAA-RGD hydrogel, which induces minimum FBR responses and a high level of polarization of macrophages into the immunosuppressive M2 subtypes. These findings demonstrate the promising potential of the PAA-RGD hydrogel for osteochondral regeneration and highlight the importance of immunomodulation. The results may inspire the development of PAA-based materials for not only osteochondral defect repair but also various other tissue engineering and bio-implantation applications. A polypept(o)ide-based hydrogel. Prominent and early osteochondral repair. Minimized immunogenicity.
Collapse
Affiliation(s)
- Meng Yang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Zheng-Chu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Fu-Zhen Yuan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Rong-Hui Deng
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Feng-Biao Mao
- Institute of Medicine Innovation and Research Peking University Third Hospital, Beijing, 100191, China
| | - You-Rong Chen
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Corresponding author. Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China.
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Corresponding author.
| | - Jia-Kuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Corresponding author. Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Lu Z, Xu G, Yang X, Liu S, Sun Y, Chen L, Liu Q, Liu J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int J Mol Sci 2022; 23:ijms232415656. [PMID: 36555298 PMCID: PMC9779597 DOI: 10.3390/ijms232415656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Herein, we developed a dual-activated prodrug, BTC, that contains three functional components: a glutathione (GSH)-responsive BODIPY-based photosensitizer with a photoinduced electron transfer (PET) effect between BODIPY and the 2,4-dinitrobenzenesulfonate (DNBS) group, and an ROS-responsive thioketal linker connecting BODIPY and the chemotherapeutic agent camptothecin (CPT). Interestingly, CPT displayed low toxicity because the active site of CPT was modified by the BODIPY-based macrocycle. Additionally, BTC was encapsulated with the amphiphilic polymer DSPE-mPEG2000 to improve drug solubility and tumor selectivity. The resulting nano-prodrug passively targeted tumor cells through enhanced permeability and retention (EPR) effects, and then the photosensitizing ability of the BODIPY dye was restored by removing the DNBS group with the high concentration of GSH in tumor cells. Light-triggered ROS from activated BODIPY can not only induce apoptosis or necrosis of tumor cells but also sever the thioketal linker to release CPT, achieving the combination treatment of selective photodynamic therapy and chemotherapy. The antitumor activity of the prodrug has been demonstrated in mouse mammary carcinoma 4T1 and human breast cancer MCF-7 cell lines and 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Ziyao Lu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Gan Xu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaozhen Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shijia Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Correspondence: (Q.L.); (J.L.)
| | - Jianyong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Q.L.); (J.L.)
| |
Collapse
|
8
|
Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing. Colloids Surf B Biointerfaces 2022; 220:112887. [PMID: 36191410 DOI: 10.1016/j.colsurfb.2022.112887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/29/2022]
Abstract
Photothermal therapy using laser activated gold nanorods (AuNRs) is a strategy for treatment of bacterial infections. Nevertheless, it also exerts cytotoxicity against human cells which leads to adverse effects in healthy human tissues and limits the applicable dose. Functionalization of AuNRs with a selective antimicrobial peptide (AMP) with higher selectivity for bacteria over human cells is a promising strategy for increasing the selectivity of the AuNRs for bacteria, hence increasing their cellular uptake by the bacteria in order to achieve stronger antimicrobial effects with lower doses of AuNRs without damaging the human cells. In this study, the surface of AuNRs was functionalized with a short AMP named C-At5 and the efficiency of the peptide functionalized AuNRs in killing gram-positive and gram-negative bacteria was evaluated in vitro as well as their potential for facilitating wound healing in a mouse model of wound infection with and without application of laser. The peptide-conjugated AuNRs exhibited higher antibacterial activity in vitro compared to the plain AuNRs both in the presence and absence of laser irradiation. Furthermore, AuNR@C-At5 had very low toxicity against human skin fibroblasts and human red blood cells indicating their higher biocompatibility compared to the plain AuNRs. Treatment of wounded mice with AuNR@C-At5 accelerated the wound healing process which was further enhanced by applying laser. The system developed in this study has great potential for customization for specific antimicrobial or antifungal therapy via conjugation of different types of AMPs with higher selectivity and can therefore serve as a guide for any future attempts in this regard.
Collapse
|
9
|
Zalba S, Ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Facing the PEG dilemma. J Control Release 2022; 351:22-36. [PMID: 36087801 DOI: 10.1016/j.jconrel.2022.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
Nanoparticles (Nps) have revolutionized the landscape of many treatments, by modifying not only pharmacokinetic properties of the encapsulated agent, but also providing a significant protection of the drug from non-desired interactions, and reducing side-effects of the enclosed therapeutic, enabling co-encapsulation of possibly synergistic compounds or activities, allowing a controlled release of content and improving the therapeutic effect. Nevertheless, in systemic circulation, Nps suffer a rapid removal by opsonisation and the action of Mononuclear phagocyte system (MPS). To overcome this problem, different polymers, in particular Polyethyleneglycol (PEG), have been used to cover the surface of these nanocarriers forming a hydrophilic layer that allows the delay of the removal. These advantages contrast with some drawbacks such as the difficulty to interact with cell membranes and the development of immunological reactions, conforming the known, "PEG dilemma". To address and minimize this phenomenon, different strategies have been applied. Therefore, this review aims to summarize the state of the art of Pegylation strategies, comment in depth on the principal characteristics of PEG and describe the main alternatives, which are the use of cleavable PEG, addition of different polymers or even use other derivatives of cell membranes to camouflage Nps.
Collapse
Affiliation(s)
- Sara Zalba
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, University of Navarra; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology, and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carmen Burgui
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, University of Navarra
| | - María J Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, University of Navarra; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
10
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
11
|
Xu T, Skoulas D, Ding D, Cryan SA, Heise A. Exploring the potential of polypeptide–polypeptoide hybrid nanogels for mucosal delivery. Polym Chem 2022. [DOI: 10.1039/d2py01126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By chain extension of polysarcosine with phenylalanine and cystine, nanogels are formed. The nanogels facilitate the transport of dyes across an artificial mucus coated membrane and their release by reductive bond cleavage.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| |
Collapse
|
12
|
Jiang N, Zhang D. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers (Basel) 2021; 13:3131. [PMID: 34578031 PMCID: PMC8473287 DOI: 10.3390/polym13183131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.
Collapse
Affiliation(s)
- Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Donghui Zhang
- Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
14
|
Zhou D, Liu S, Hu Y, Yang S, Zhao B, Zheng K, Zhang Y, He P, Mo G, Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 2021; 8:3801-3813. [PMID: 32227025 DOI: 10.1039/d0tb00143k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lack of sufficient tumor penetration of the current nanomedicines is a major reason limiting their clinical success in cancer therapy. In this work, we aimed at the development of a novel biodegradable nanoplatform for the selective and controlled delivery of anticancer agents, with improved tumor permeability and the ability to release ultrasmall nanovesicles in the tumor microenvironment. To this end, positively charged nanogels were obtained through the double-crosslinking of chitosan with an ionic physical gelator and a disulfide-containing chemical crosslinker. After conjugation to an anionic oligomer, the cationic nanogels were transformed into negatively charged nanocarriers (CTCP), enabling effective encapsulation of the cationic anticancer agent doxorubicin (DOX) to generate a biodegradable nanomedicine (DOX@CTCP). DOX@CTCP could maintain sustained DOX release and decreased DOX toxicity. Upon arrival at the tumor tissue, the reductive and lysozyme-high microenvironment drives the cleavage of the nanomedicine to release DOX-carrying nanoblocks of smaller size, which together with their acidic-protonable feature achieves an effective therapeutic delivery into cancer cells. The nanomedicine described here showed excellent biocompatibility/biosafety and enhanced in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Dong Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Sainan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yongjun Hu
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Shiwei Yang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Bing Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Kaikai Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Guoyan Mo
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China. and The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Tao X, Chang X, Wan X, Guo Y, Zhang Y, Liao Z, Song Y, Song E. Impact of Protein Corona on Noncovalent Molecule-Gold Nanoparticle-Based Sensing. Anal Chem 2020; 92:14990-14998. [PMID: 33104346 DOI: 10.1021/acs.analchem.0c02850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticle (AuNP)-based sensors have been extensively applied for sensing or imaging. It is known that a protein shell named protein corona (PC) formed around the nanomaterials could not only block the desired function of nanomaterials but also affect their behavior, which is a hot and important issue needing consideration. Therefore, we hypothesize that the formation of PC around AuNPs could inevitably affect the AuNP-based target assay. In this work, the effects of PC on the detection results in sensors based on AuNPs were studied. Three types of noncovalent molecule-AuNP sensors including AuNP-dichlorofluorescein, AuNP-aptamer, and AuNP-antibody-DNA were constructed, and several typical proteins (bovine serum albumin, fibrinogen, hemoglobin, and β-lactoglobulin), milk, and fetal bovine serum were selected as models for the formation of PCs. This study shows that the PC could cause the loss of detection signals (up to 80%) and result in positive deviation of the measuring value compared with the true value. Moreover, the loss of detection signals could also increase the limits of detection (almost 10 times), decreasing the sensitivity of the three types of sensors, as proposed in this work compared to that without PC. Moreover, the polyethylene glycol backfilling strategy could not resolve the negative effects of PC on noncovalent molecule-AuNP sensors. The impacts of PC on detection results from noncovalent molecule-AuNP sensors would cause misdiagnosis or wasted production, which needs careful reconsideration of the AuNP-based detection in application fields like clinic diagnosis, food safety control, and so forth.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaoxi Chang
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xulin Wan
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yina Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yaqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Ziyi Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| |
Collapse
|
16
|
Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater 2020; 116:105-137. [PMID: 32911109 DOI: 10.1016/j.actbio.2020.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
17
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
18
|
Awotunde O, Okyem S, Chikoti R, Driskell JD. Role of Free Thiol on Protein Adsorption to Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9241-9249. [PMID: 32686419 DOI: 10.1021/acs.langmuir.0c01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-gold nanoparticle (AuNP) bioconjugates have many potential applications in nanomedicine. A thorough understanding of the interaction between the protein and the AuNP is critical to engineering these functional bioconjugates with desirable properties. In this work, we investigate the role of free thiols presented by the protein on the stability of the protein-AuNP conjugate. Human serum albumin (HSA) was modified with 2-iminothiolane (Traut's reagent) to introduce additional thiols onto the protein surface, and three variants of HSA were synthesized to present 1, 5, and 20 free thiols by controlling the molar excess of the chemical modifier. Protein exchange studies on AuNPs were conducted using these HSA species and an IgG antibody which exhibited 10 free thiols. Antibody-AuNP conjugates were synthesized, purified, and dispersed in solutions containing each of the HSA species. No protein exchange was detected with the HSA or modified HSA containing 5 thiols; however, 85% of the antibody was displaced on the AuNP surface by the extensively thiolated HSA presenting 20 free thiols. Furthermore, the impact of the protein adsorption sequence was probed in which each of the HSA species were preadsorbed onto the AuNP and dispersed in a solution of antibody. The antibody fully displaced the HSA with a single thiol from the AuNP within 3 h, required 24 h to completely displace the modified HSA containing 5 thiols, and was unable to displace the modified HSA containing 20 thiols. These results indicate that the number of Au-S interactions governs the binding interaction between the protein and the AuNP. This work provides further insight into the protein-AuNP binding mechanism and identifies important design principles for engineered proteins to optimize bioconjugates.
Collapse
Affiliation(s)
- Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Rishika Chikoti
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
19
|
England RM, Moss JI, Gunnarsson A, Parker JS, Ashford MB. Synthesis and Characterization of Dendrimer-Based Polysarcosine Star Polymers: Well-Defined, Versatile Platforms Designed for Drug-Delivery Applications. Biomacromolecules 2020; 21:3332-3341. [PMID: 32672451 DOI: 10.1021/acs.biomac.0c00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper describes the synthesis of star polymers designed for future drug-delivery applications. A generation-5 lysine dendrimer was used as a macroinitiator for the ring-opening polymerization of the sarcosine N-carboxyanhydride monomer to produce 32-arm star polymers with narrow molar mass distributions and desirable hydrodynamic size control. Fluorescent dye-labeled polymers were dosed in mice to measure plasma pharmacokinetics. Long circulation times were observed, representing ideal properties for biophysical targeting of tumors. In vivo efficacy of one of these star polymers conjugated to the therapeutic molecule SN-38 was evaluated in mice bearing SW620 xenografted tumors to demonstrate high antitumor activity and low body weight loss compared to the SN-38 prodrug irinotecan and this shows the potential of these delivery systems. As a further build, we demonstrated that these star polymers can be easily chain-end-functionalized with useful chemical moieties, giving opportunities for future receptor-targeting strategies. Finally, we describe the synthetic advantages of these star polymers that make them attractive from a pharmaceutical manufacturing perspective and report characterization of the polymers with a variety of techniques.
Collapse
Affiliation(s)
- Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.,Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Jennifer I Moss
- Early TDE, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anders Gunnarsson
- Discovery Sciences, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
20
|
Zhou W, Ling L, Du Y, He W, Xia Q, Yao C, Li X. Thiol-Mediated Multidentate Phosphorylcholine as a Zwitterionic Ligand for Stabilizing Biocompatible Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13031-13039. [PMID: 31537058 DOI: 10.1021/acs.langmuir.9b01547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing application of gold nanoparticles (AuNPs) in biomedicine requires extensive investigation of surface modification and stabilization to maximize their advantages for the diversity of more challenging biological utilization. Herein, a thiol-mediated multifunctional phospholipid ligand was designed while disclosing a zwitterionic nature to AuNPs. The ligand was synthesized by attachment to two bidentate lipoic acid (LA) anchor groups and incorporation of a zwitterionic phosphatidylcholine (PC) group, allowing for excellent hydrophilicity. As demonstrated through ultraviolet-visible spectroscopy, appropriate 7 nm diameter AuNPs modified with a 1,2-dilipoyl-sn-glycero-3-phosphorylcholine (di-LA-PC) compact ligand exhibited the best colloidal stability in a high NaCl concentration of up to 217 mM, different temperatures, and a wide range of pH values from 3 to 11 when compared to the traditional surfactants or thiol-contained amino acid surface modification cases. These AuNPs are also stable without specific interaction to positively/negatively charged proteins, possibly leading to prolonged blood circulation after in vivo administration. Moreover, much more resistance to ligand competition of dithiothreitol was found than other thiol-coated AuNPs, which further highlighted their affinity in an aqueous system. Biocompatibility of the zwitterionic ligand di-LA-PC-modified AuNPs was finally evaluated by hemolysis and cytotoxicity tests. Cumulatively, the remarkable stability and biocompatibility of AuNPs, multicoordinated with a di-LA-PC ligand, potentially motivated them as a practical alternative for surface tailoring in biotechnology.
Collapse
Affiliation(s)
- Wenya Zhou
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Longbing Ling
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Yawei Du
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Wei He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Qing Xia
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Chen Yao
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China
| |
Collapse
|
21
|
Zheng Q, Gao P, Li X, Li H. [Effects of magnetic thermotherapy mediated by magnetic nanocomposite PEG-APTESMNP on proliferation of liver cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:891-897. [PMID: 31511207 DOI: 10.12122/j.issn.1673-4254.2019.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the inhibitory effects of PEG-APTES-MNP magnetic heating on liver cancer cells. METHODS The magnetic nanoparticle complex PEG-APTES-MNP was synthesized and its physiochemical properties and biocompatibility were characterized. HepG2 cells were incubated with the PEG-APTES-MNP nanoparticles for magnetic heating or nanoparticle therapy. Prussian blue staining was used to detect the uptake efficiency of the magnetic nanoparticles by HepG2 cells. MTT assay and flow cytometry were used to evaluate the inhibitory effect of the nanoparticles on HepG2 cells, and laser scanning confocal microscopy was used to detect the production of reactive oxygen species (ROS) in the cells. Fifteen nude mice bearing HepG2 cell xenografts were randomized equally into PEG-APTES-MNP injection group (with nanocomposite injection only), PEG-APTES-MNP magnetic heating group and control group (with PBS injection), and the tumor growth were observed in the mice after the treatments. RESULTS The synthesized PEG-APTES-MNP nanoparticles showed good physicochemical properties and biocompatibility. Incubation of HepG2 with the nanoparticles resulted in significantly increased ROS production, obvious inhibition of the cell growth through the synergetic effects of magnetic heating (P < 0.05), and significantly enhanced cell apoptosis. In the tumor-bearing nude mice, the nanoparticles strongly inhibited the tumor growth by magnetic heating (P < 0.05). CONCLUSIONS The magnetic nanocomposite PEG-APTES-MNP has good physicochemical properties and bioavailability and can strongly inhibit the growth of liver cancer cells both in vitro and in nude mice through magnetic heating, demonstrating its potential as a candidate nanomedicine for liver cancer treatment.
Collapse
Affiliation(s)
- Quan Zheng
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Peng Gao
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaofeng Li
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Hailiang Li
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
22
|
Hou Z, Wang Z, Liu R, Li H, Zhang Z, Su T, Yang J, Liu H. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J Nanobiotechnology 2019; 17:88. [PMID: 31426815 PMCID: PMC6699291 DOI: 10.1186/s12951-019-0522-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gold nanoparticles (AuNPs) have been proposed for many applications in medicine and bioanalysis. For use in all these applications, maintaining the stability of AuNPs in solution by suppressing aggregation is paramount. Herein, the effects of amino acids were investigated in stabilizing AuNPs by rationally designed peptide scaffolds. RESULTS Compared to other tested amino acids, phosphotyrosine (pY) significantly stabilized AuNPs. Our results indicated that pY modified AuNPs presented a high level of stability in various solutions, and had good biocompatibility. When a pY-peptide was used in stabilizing AuNPs, the phosphate group could be removed by phosphatases, which subsequently caused the aggregation and the cargo release of AuNPs. In vitro study showed that AuNPs formed aggregation in a phosphatase concentration depending manner. The aggregation of AuNPs was well correlated with the enzymatic activity (R2 = 0.994). In many types of cancer, a significant increase in phosphatases has been observed. Herein, we demonstrated that cancer cells treated with pY modified AuNPs in conjunction with doxorubicin killed SGC-7901 cells with high efficiency, indicating that the pY peptide stabilized AuNPs could be used as carriers for targeted drug delivery. CONCLUSION In summary, pY peptides can act to stabilize AuNPs in various solutions. In addition, the aggregation of pY-AuNPs could be tuned by phosphatase. These results provide a basis for pY-AuNPs acting as potential drug carriers and anticancer efficacy.
Collapse
Affiliation(s)
- Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jeffy Yang
- Schulich Medicine and Dentistry, Western University, London, Canada
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
23
|
Ruiz G, Ryan N, Rutschke K, Awotunde O, Driskell JD. Antibodies Irreversibly Adsorb to Gold Nanoparticles and Resist Displacement by Common Blood Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10601-10609. [PMID: 31335148 DOI: 10.1021/acs.langmuir.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles (AuNPs) functionalized with proteins to impart desirable surface properties have been developed for many nanobiotechnology applications. A strong interaction between the protein and nanoparticle is critical to the formation of a stable conjugate to realize the potential of these emerging technologies. In this work, we examine the robustness of a protein layer adsorbed onto gold nanoparticles while under the stress of a physiological environment that could potentially lead to protein exchange on the nanoparticle surface. The adsorption interaction of common blood plasma proteins (transferrin, human serum albumin, and fibrinogen) and anti-horseradish peroxidase antibody onto AuNPs is investigated by nanoparticle tracking analysis. Our data show that a monolayer of protein is formed at saturation for each protein, and the maximum size increase for the conjugate, relative to the AuNP core, correlates with the protein size. The binding affinity of each protein to the AuNP is extracted from a best fit of the adsorption isotherm to the Hill equation. The antibody displays the greatest affinity (Kd = 15.2 ± 0.8 nM) that is ∼20-65 times stronger than the affinity of the other plasma proteins. Antibody-AuNP conjugates were prepared, purified, and suspended in solutions of blood plasma proteins to evaluate the stability of the antibody layer. An enzyme-mediated assay confirms that the antibody-AuNP interaction is irreversible, and the adsorbed antibody resists displacement by the plasma proteins. This work provides insight into the capabilities and potential limitations of antibody-AuNP-enabled technologies in biological systems.
Collapse
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Nicki Ryan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Kylie Rutschke
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Olatunde Awotunde
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Jeremy D Driskell
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
24
|
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
25
|
van Pomeren M, Peijnenburg WJGM, Vlieg RC, van Noort SJT, Vijver MG. The biodistribution and immuno-responses of differently shaped non-modified gold particles in zebrafish embryos. Nanotoxicology 2019; 13:558-571. [PMID: 30714844 DOI: 10.1080/17435390.2018.1564079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Important questions raised in (nano)ecotoxicology are whether biodistribution of nanoparticles (NPs) is affected by particle shape and to what extent local adverse responses are subsequently initiated. For nanomedicine, these same questions become important when the labeled NPs lose the labeling. In this study, we investigated the biodistribution patterns of gold nanoparticles (AuNPs) as well as immune-related local and systemic sublethal markers of exposure and behavioral assessment. Hatched zebrafish embryos were exposed to four differently shaped non-coated AuNPs with comparable sizes: nanospheres, nanorods, nano-urchins, and nano-bipyramids. Shape-dependent trafficking of the particles resulted in a different distribution of the particles over the target organs. The differences across the distribution patterns indicate that the particles behave slightly different, although they eventually reach the same target organs - yet in different ratios. Mainly local induction of the immune system was observed, whereas systemic immune responses were not clearly visible. Macrophages were found to take AuNPs from the body fluid, be transferred into the veins and transported to digestive organs for clearance. No significant behavioral toxicological responses in zebrafish embryos were observed after exposure. The trafficking of the particles in the macrophages indicates that the particles are removed via the mononuclear phagocytic system. The different ratios in which the particles are distributed over the target organs indicate that the shape influences their behavior and eventually possibly the toxicity of the particles. The observed shape-dependent biodistribution patterns might be beneficial for shape-specific targeting in nanomedicine and stress the importance of incorporating shape-features in nanosafety assessment.
Collapse
Affiliation(s)
- M van Pomeren
- a Institute of Environmental Sciences (CML), Leiden University , Leiden , The Netherlands
| | - W J G M Peijnenburg
- a Institute of Environmental Sciences (CML), Leiden University , Leiden , The Netherlands.,b Center for the Safety of Substances and Products National Institute of Public Health and the Environment , Bilthoven , The Netherlands
| | - R C Vlieg
- c Leiden Institute of Physics (LION) Leiden University , Leiden , The Netherlands
| | - S J T van Noort
- c Leiden Institute of Physics (LION) Leiden University , Leiden , The Netherlands
| | - M G Vijver
- a Institute of Environmental Sciences (CML), Leiden University , Leiden , The Netherlands
| |
Collapse
|
26
|
Tao X, Li MH, Ling J. α-Amino acid N-thiocarboxyanhydrides: A novel synthetic approach toward poly(α-amino acid)s. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Alinejad Z, Khakzad F, Mahdavian AR. Efficient approach to in-situ preparation of anisotropic and assemblable gold nanoparticles mediated by stimuli-responsive PDMAEMA. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Tao X, Zheng B, Bai T, Li MH, Ling J. Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride through Regioselective Initiation of Cysteamine: A Direct Way toward Thiol-Capped Polypeptoids. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min-Hui Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Hu Y, Hou Y, Wang H, Lu H. Polysarcosine as an Alternative to PEG for Therapeutic Protein Conjugation. Bioconjug Chem 2018; 29:2232-2238. [DOI: 10.1021/acs.bioconjchem.8b00237] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Weber B, Birke A, Fischer K, Schmidt M, Barz M. Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Karl Fischer
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Jakob Welder Weg 11, 55128 Mainz, Germany
| | - Manfred Schmidt
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Jakob Welder Weg 11, 55128 Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
31
|
Kang H, An S, Lee WJ, Kang GR, Kim S, Hur SM, Paeng K, Kim M. Stable polymer brushes with effectively varied grafting density synthesized from highly crosslinked random copolymer thin films. RSC Adv 2018; 8:24166-24174. [PMID: 35539156 PMCID: PMC9081858 DOI: 10.1039/c8ra04480e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Crosslinkable epoxy copolymers enable achieving highly stable P(S-b-MMA) brushes with controlled grafting density for close examination of phase separation behaviors.
Collapse
Affiliation(s)
- Hyungoo Kang
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Sol An
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Woo Jung Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Ga Ryang Kang
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Sangwon Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Su-Mi Hur
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Keewook Paeng
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| |
Collapse
|
32
|
Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater 2017; 55:13-27. [PMID: 28377307 DOI: 10.1016/j.actbio.2017.03.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
In the past few years, concerns of protein-gold nanoparticles (AuNP) interaction have been continuously growing in numerous potential biomedical applications. Despite the advances in tunable size, shape and excellent biocompatibility, unpredictable adverse effects related with protein corona (PC) have critically affected physiological to therapeutic responses. The complexity and uncontrollability of AuNP-PC formation limited the clinical applications of AuNP, e.g. AuNP-based drug delivery systems or imaging agent. Thus, even intensive attempts have been made for in vitro characterizations of PC around AuNP, the extrapolation of these data into in vivo PC responses still lags far behind. However, with accumulated knowledge of corona formation and the unique properties of AuNP, we are now encouraged to move forward to seeking positive exploitations. Herein, we summarize recent researches on interaction of protein and AuNP, aiming at provide a comprehensive understanding of such interaction associated with subsequent biomedical impacts. Importantly, the emerging trends in exploiting of potential applications and opportunities based on protein-AuNP interaction were discussed as well. STATEMENT OF SIGNIFICANCE Gold nanoparticles (AuNPs) have shown great potentials in biomedical areas. However, its practical use is highly limited by protein corona, formed as a result of protein-AuNP interaction. This protein corona surrounding AuNPs is a new identity and the real substance that the organs and cells firstly encounter, and finally makes the behavior of AuNPs in vivo uncontrollable and unpredictable. Therefore, comprehensively understanding such interaction is of great significance for predicting the in vivo fate of AuNPs and for designing advanced AuNPs systems. In this review, we would provide a detailed description of protein-AuNP interaction and launch an interesting discussion on how to use such interaction for smart and controlled AuNPs delivery, which would be a topic of widespread interest.
Collapse
|
33
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Kurzhals S, Pretzner B, Reimhult E, Zirbs R. Thermoresponsive Polypeptoid-Coated Superparamagnetic Iron Oxide Nanoparticles by Surface-Initiated Polymerization. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Steffen Kurzhals
- Institute for Biologically Inspired Materials; Department of Nanobiotechnology; University of Natural Resources and Life Sciences, Vienna; Muthgasse 11 1190 Vienna Austria
| | - Barbara Pretzner
- Institute for Biologically Inspired Materials; Department of Nanobiotechnology; University of Natural Resources and Life Sciences, Vienna; Muthgasse 11 1190 Vienna Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials; Department of Nanobiotechnology; University of Natural Resources and Life Sciences, Vienna; Muthgasse 11 1190 Vienna Austria
| | - Ronald Zirbs
- Institute for Biologically Inspired Materials; Department of Nanobiotechnology; University of Natural Resources and Life Sciences, Vienna; Muthgasse 11 1190 Vienna Austria
| |
Collapse
|
35
|
Tao X, Zheng B, Bai T, Zhu B, Ling J. Hydroxyl Group Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Mediated by Aminoalcohols: A Simple Way to α-Hydroxyl-ω-aminotelechelic Polypeptoids. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xinfeng Tao
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Botuo Zheng
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baoku Zhu
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Guryanov I, Polo F, Ubyvovk EV, Korzhikova-Vlakh E, Tennikova T, Rad AT, Nieh MP, Maran F. Polylysine-grafted Au 144 nanoclusters: birth and growth of a healthy surface-plasmon-resonance-like band. Chem Sci 2017; 8:3228-3238. [PMID: 28507699 PMCID: PMC5414598 DOI: 10.1039/c6sc05187a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
Poly(amino acid)-coated gold nanoparticles hold promise in biomedical applications, particularly because they combine the unique physicochemical properties of the gold core, excellent biocompatibility, and easy functionalization of the poly(amino acid)-capping shell. Here we report a novel method for the preparation of robust hybrid core-shell nanosystems consisting of a Au144 cluster and a densely grafted polylysine layer. Linear polylysine chains were grown by direct N-carboxyanhydride (NCA) polymerization onto ligands capping the gold nanocluster. The density of the polylysine chains and the thickness of the polymer layer strongly depend on the amount and concentration of the NCA monomer and the initiator. The optical spectra of the so-obtained core-shell nanosystems show a strong surface plasmon resonance (SPR)-like band at 531 nm. In fact, despite maintenance of the gold cluster size and the absence of interparticle aggregation, the polylysine-capped clusters behave as if they have a diameter nearly 4 times larger. To the best of our knowledge, this is the first observation of the growth of a fully developed, very stable SPR-like band for a gold nanocluster of such dimensions. The robust polylysine protective shell makes the nanoparticles very stable under conditions of chemical etching, in the presence of glutathione, and at different pH values, without gold core deshielding or alteration of the SPR-like band. This polymerization method can conceivably be extended to prepare core-shell nanosystems based on other mono- or co-poly(amino acids).
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Federico Polo
- Department of Chemistry , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Evgeniy V Ubyvovk
- Department of Physics , St. Petersburg State University , 3 Ulyanovskaya, 198504 Petrodvorets , St. Petersburg , Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Tatiana Tennikova
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Armin T Rad
- Department of Biomedical Engineering , University of Connecticut , 260 Glenbrook Road , Storrs , Connecticut 06269 , USA
| | - Mu-Ping Nieh
- Polymer Program , Institute of Materials Science , University of Connecticut , 97 N. Eagleville Rd , Storrs , Connecticut 06269 , USA
- Department of Chemical & Biomolecular Engineering , University of Connecticut , 191 Auditorium Rd , Storrs , Connecticut 06269 , USA
| | - Flavio Maran
- Department of Chemistry , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
- Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , 06269 Connecticut , USA
| |
Collapse
|
37
|
Zhu H, Chen Y, Yan FJ, Chen J, Tao XF, Ling J, Yang B, He QJ, Mao ZW. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater 2017; 50:534-545. [PMID: 28027959 DOI: 10.1016/j.actbio.2016.12.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Gold nanorods (AuNRs) are suitable candidates for photothermal therapy in vivo, because of their excellent ability to transfer near-infrared (NIR) light into heat. However, appropriate surface should be generated on AuNRs before their in vivo application because of the low colloidal stability in complicate biological environment and relatively strong toxicity compared to their pristine stabilizer cetyltrimethylammonium bromide. In the current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. Polysarcosine with optimized molecular weight was synthesized and used to modify AuNRs by traditional ligand exchange. The grafting of PS on AuNRs was evidenced by fourier transform infrared (FTIR) spectroscopy and the alternation of surface zeta potential. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer with the ligand competition of dithiothreitol (DTT). The Au@PS NRs had neglectable cytotoxicity and showed efficient ablation of tumor cells in vitro. Moreover, Au@PS NRs had a longer circulation time in body that resulted in a higher accumulation in solid tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). Photothermal therapy in vivo demonstrated that the tumors were completely destroyed by single-time irradiation of NIR laser after one-time injection of the polysarcosine capped AuNRs. The Au@PS NRs did not cause obvious toxicity in vivo, suggesting promising potential in cancer therapy. STATEMENT OF SIGNIFICANCE In current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer. The Au@PS NRs had very low cytotoxicity and showed high efficacy for the ablation of cancer cells in vitro. Moreover, Au@PS NRs had a longer circulation time in blood that led to a higher accumulation in tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). In vivo photothermal therapy showed that tumors were completely cured without reoccurrence by one-time irradiation of NIR laser after a single injection of the polysarcosine modified AuNRs.
Collapse
|