1
|
Xue H, Xi Y, Kishimoto N. Quantum Chemical Model Calculations of Adhesion and Dissociation between Epoxy Resin and Si-Containing Molecules. Molecules 2024; 29:5050. [PMID: 39519691 PMCID: PMC11547936 DOI: 10.3390/molecules29215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
There is no doubt that when solid surfaces are modified, the functional groups and atoms directly bonded to solid atoms play a major role in adsorption interactions with molecules or resins. In this study, the adhesion and dissociation between epoxy resin and molecules containing Si atoms were analyzed. The analysis, conducted in contact with the solid surface of silicon, utilized quantum chemical calculations based on a molecular model. We compared some Si-containing molecular models to test quantum chemical calculations that contribute to the study of adhesion and dissociation between epoxy resins and solid surfaces somehow other than simple potential energy curve calculations. The AFIR (artificial force induced reaction) method, implemented in the GRRM (global reaction route mapping) program, was employed to separate an epoxy resin model molecule and three types of silicon compounds (Si(CH3)2(OH)2, Si(CH3)4, and (CH3)2SiF2) in three directions, determining their minimum dissociation energy when changing the applied energy by 2.5 kJ/mol. In systems with weak hydrogen bonds, such as Si(CH3)4 or (CH3)2SiF2, the energy required for dissociation was not large; however, in systems with strong hydrogen bonds, such as Si(CH3)2(OH)2, dissociation was more difficult in the vertical direction. Although anisotropy due to hydroxyl groups was calculated in the horizontal direction, dissociation remained relatively easy.
Collapse
Affiliation(s)
| | | | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.X.); (Y.X.)
| |
Collapse
|
2
|
Liao Z, Wang Y, Lu Y, Zeng R, Li L, Chen H, Song Q, Wang K, Zheng J. Covalently hybridized carbon dots@mesoporous silica nanobeads as a robust and versatile phosphorescent probe for time-resolved biosensing and bioimaging. Analyst 2024; 149:1473-1480. [PMID: 38294023 DOI: 10.1039/d3an01935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Phosphorescence analyses have attracted broad attention due to their remarkable merits of the elimination of auto-fluorescence and scattering light. However, it remains a great challenge to develop novel materials with uniform size and morphology, stability, long lifetime, and aqueous-phase room temperature phosphorescence (RTP) characteristics. Herein, monodisperse and uniform RTP nanobeads were fabricated by an in situ covalent hybridization of carbon dots (CDs) and dendritic mesoporous silicon nanoparticles (DMSNs) via silane hydrolysis. The formation of Si-O-C and Si-C/N covalent bonds is beneficial for the fixation of vibrations and rotations of the luminescent centers. Specially, the nanopores of DMSNs provide a confined area that can isolate the triplet state of CDs from water and oxygen and thus ensure the occurrence of aqueous-phase RTP with an ultra-long lifetime of 1.195 s (seen by the naked eye up to 9 seconds). Through surface modifying folic acid (FA), CDs@DMSNs can serve as a probe to distinguish different cell lines that feature varying FA receptor expression levels. In addition, taking MCF-7 as the model, highly sensitive and quantitative detection (linear range: 103-106 cells per mL) has been achieved via an RTP probe. Furthermore, their potential applications in cellular and in vivo time-gated phosphorescence imaging have been proposed and demonstrated, respectively. This work would provide a new route to design CD-based RTP composites and promote their further applications in the medical and biological fields.
Collapse
Affiliation(s)
- Zixuan Liao
- Wenzhou Medical University, Wenzhou 325035, P. R. China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Yuhui Wang
- Wenzhou Medical University, Wenzhou 325035, P. R. China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315302, P. R. China
| | - Yu Lu
- Wenzhou Medical University, Wenzhou 325035, P. R. China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Ruoxi Zeng
- Wenzhou Medical University, Wenzhou 325035, P. R. China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Lin Li
- Wenzhou Medical University, Wenzhou 325035, P. R. China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Qingwei Song
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315302, P. R. China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315302, P. R. China
| |
Collapse
|
3
|
Zhao Y, Zeng Q, Lai X, Li H, Zhao Y, Li K, Jiang C, Zeng X. Multifunctional cellulose-based aerogel for intelligent fire fighting. Carbohydr Polym 2023; 316:121060. [PMID: 37321743 DOI: 10.1016/j.carbpol.2023.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Multifunctional biomass-based aerogels with mechanically robust and high fire safety are urgently needed for the development of environmentally-friendly intelligent fire fighting but challenging. Herein, a novel polymethylsilsesquioxane (PMSQ)/cellulose/MXene composite aerogel (PCM) with superior comprehensive performance was fabricated by ice-induced assembly and in-situ mineralization. It exhibited light weight (16.2 mg·cm-3), excellent mechanical resilience, and rapidly recovered after being subjected to the pressure of 9000 times of its own weight. Moreover, PCM demonstrated outstanding thermal insulation, hydrophobicity and sensitive piezoresistive sensing. In addition, benefiting from the synergism of PMSQ and MXene, PCM displayed good flame retardancy and improved thermostability. The limiting oxygen index of PCM was higher than 45.0 %, and it quickly self-extinguished after being removed away from fire. More importantly, the rapid electrical resistance reduction of MXene at high temperature endowed PCM with sensitive fire-warning capability (trigger time was less than 1.8 s), which provided valuable time for people to evacuate and relief. This work provides new insights for the preparation and application of the next-generation high performance biomass-based aerogels.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Qingtao Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ying Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
4
|
Asiri M, Srivastava N, Singh R, Al Ali A, Tripathi SC, Alqahtani A, Saeed M, Srivastava M, Rai AK, Gupta VK. Rice straw derived graphene-silica based nanocomposite and its application in improved co-fermentative microbial enzyme production and functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162765. [PMID: 36906037 DOI: 10.1016/j.scitotenv.2023.162765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the β-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, Bisha, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Abdulaziz Alqahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
5
|
Gong K, Yin L, Shi C, Qian X, Zhou K. Dual char-forming strategy driven MXene-based fire-proofing epoxy resin coupled with good toughness. J Colloid Interface Sci 2023; 640:434-444. [PMID: 36870219 DOI: 10.1016/j.jcis.2023.02.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
It is challenging that the functionalized MXene-based nanofillers are designed to modify the inherent flammability and poor toughness of epoxy polymeric materials and further to facilitate the application of EP composites. Herein, silicon-reinforced Ti3C2Tx MXene-based nanoarchitectures (MXene@SiO2) are synthesized by simple self-growth method, and its enhancement effects on epoxy resin (EP) are investigated. The as-prepared nanoarchitectures realize homogeneous dispersion in EP matrix, indicating well performance-enhancing potential. The incorporation of MXene@SiO2 achieves improved thermal stability for EP composites with higher T-5% and lower Rmax values. Moreover, EP/2 wt% MXene@SiO2 composites obtain a 30.2% and 34.0% reduction in peak heat release rate (PHRR) and peak smoke production rate (PSPR) compared to those of pure EP, respectively, also achieving a 52.5% fall in smoke factor (SF) values and increased yield and stability of chars. The dual char-forming effects of MXene@SiO2 nanoarchitectures, including the catalytic charring of MXene and the migration of SiO2 to induce charring, are accounted for the results, as well as lamellar barrier effects. Additionally, EP/MXene@SiO2 composites achieve an enhanced storage modulus of 51.5%, along with improved tensile strength and elongation at break, compared to those of pure EP.
Collapse
Affiliation(s)
- Kaili Gong
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Lian Yin
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Congling Shi
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China.
| | - Xiaodong Qian
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China
| | - Keqing Zhou
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China.
| |
Collapse
|
6
|
Yu F, Wang K, Li H, Peng L. Superhydrophobic and ethylene scavenging paper doped with halloysite nanotubes for food packaging applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Sun X, He W, Liu B. Water-soluble long afterglow carbon dots/silica composites for dual-channel detection of alkaline phosphatase and multi-level information anti-counterfeiting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5001-5011. [PMID: 36445329 DOI: 10.1039/d2ay01587k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-soluble carbon dots/silica (CDs/SiO2) composites with an ultra-long lifetime of 846.9 ms and an ultra-high afterglow quantum yield of 12.1% were successfully obtained by incorporating CDs into a SiO2 network. Within the aqueous solution, the SiO2 layer isolates CDs from the surrounding oxygen. Meanwhile, hydrogen bonds and covalent bonds are formed between the CDs and SiO2, and these bonds restrict the movement and vibration of the CDs. Accordingly, the non-radiative inactivation rate of the triplet excitons of the CDs is reduced, thereby enhancing the room-temperature phosphorescence of the CDs and triggering thermally activated delayed fluorescence. The multiple properties of the material effectively protect the CDs from the external environment, making CDs/SiO2 emit a long afterglow in the solid and liquid phases. The prepared CDs/SiO2 composites have exceptional stability against strong oxidants, acids, bases, and polar solvents. The composites were successfully used in the dual-optical mode detection of alkaline phosphatase, as an anti-counterfeiting ink, and in multi-level information anti-counterfeiting and encryption.
Collapse
Affiliation(s)
- Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| | - Wei He
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| |
Collapse
|
8
|
Zhou Z, Seif A, Pourhashem S, Silvestrelli PL, Ambrosetti A, Mirzaee M, Duan J, Rashidi A, Hou B. Experimental and Theoretical Studies toward Superior Anti-corrosive Nanocomposite Coatings of Aminosilane Wrapped Layer-by-Layer Graphene Oxide@MXene/Waterborne Epoxy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51275-51290. [PMID: 36321761 DOI: 10.1021/acsami.2c14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, layer-by-layer MXene/graphene oxide nanosheets wrapped with 3-aminopropyltriethoxy silane (abbreviated as F-GO@MXene) are proposed as an anti-corrosion promoter for waterborne epoxies. The GO@MXene nanohybrid is synthesized by a solvothermal reaction to produce a multi-layered 2D structure without defects. Then, the GO@MXene is modified by silane wrapping under a reflux reaction, in order to achieve chemical stability and to create active sites on the nanohybrid surface for reaction with the polymer matrix of the coating. The organic coating modified with 0.1 wt % F-GO@MXene has revealed superior corrosion protection efficiency than the organic coatings modified with either F-GO or F-MXene nanosheets. The impedance modulus at low frequency for the pure epoxy, epoxy/F-MXene, epoxy/F-GO, and epoxy/F-GO@MXene coatings is 4.17 × 105, 5.5 × 108, 4.46 × 108, and 1.14 × 1010 Ω·cm2 after 30 days of immersion in the corrosive media, respectively. The remarkable anti-corrosion property is assigned to the intense effect of the nanohybrid on the barrier performance, surface roughness, and adhesion strength of the epoxy coating. The complemental analysis based on first-principles density functional theory reveals that the adhesion strength related to the silane functional groups in its complexes follows the order F-GO@MXene > F-MXene > F-GO. The enhanced stabilization predicted on the GO@MXene nanohybrid ultimately stems from the combined role of the electrostatic and van der Waals forces, suggesting an increase in the penetration path of the corrosive media.
Collapse
Affiliation(s)
- Ziyang Zhou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, 100049 Beijing, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
| | - Abdolvahab Seif
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Sepideh Pourhashem
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| | - Pier Luigi Silvestrelli
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Alberto Ambrosetti
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Majid Mirzaee
- Non-Metallic Materials Research Group, Niroo Research Institute, P.O. Box 14665517 Tehran, Iran
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box 14857-33111 Tehran, Iran
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| |
Collapse
|
9
|
Shuai C, Yang F, Shuai Y, Peng S, Chen S, Deng Y, Feng P. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold. J Adv Res 2022:S2090-1232(22)00198-9. [PMID: 36087925 DOI: 10.1016/j.jare.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION The aggregation of graphene oxide (GO) is considered as main challenge, although GO possesses excellent mechanical properties which arouses widespread attention as reinforcement for polymers. OBJECTIVES In this study, silicon dioxide (SiO2) nanoparticles were decorated onto surface of GO nanosheets through in situ growth method for promoting dispersion of GO in poly(l-lactic acid) (PLLA) bone scaffold. METHODS Hydroxyl and carboxyl functional groups of GO provided sites for SiO2 nucleation, and SiO2 grew with hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) and finally formed nanoparticles onto surface of GO with covalent bonds. Then, the GO@ SiO2 nanocomposite was blended with PLLA for the fabrication of bone scaffold by selective laser sintering (SLS). RESULT The results indicated that the obtained SiO2 were distributed relatively uniformly on surface of GO under TEOS concentration of 0.10 mol/L (GO@SiO2-10), and the covering of SiO2 on GO could increase interlayer distance of GO nanosheets from 0.799 nm to 0.894 nm, thus reducing van der Waals forces between GO nanosheets and facilitating the dispersion. Tensile and compressive strength of scaffold containing GO@SiO2 hybrids were significantly enhanced, especially for the scaffold containing GO@SiO2-10 hybrids with enhancement of 30.95 % in tensile strength and 66.33 % in compressive strength compared with the scaffold containing GO. Additionally, cell adhesion and fluorescence experiments demonstrated excellent cytocompatibility of the scaffold. CONCLUSIONS The good dispersion of GO@SiO2 enhances the mechanical properties and cytocompatibility of scaffold, making it a potential candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
10
|
Manpetch P, Singhapong W, Jaroenworaluck A. Synthesis and characterization of a novel composite of rice husk-derived graphene oxide with titania microspheres (GO-RH/TiO 2) for effective treatment of cationic dye methylene blue in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63917-63935. [PMID: 35467189 DOI: 10.1007/s11356-022-20176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) was synthesized utilizing rice husk (RH) as the starting raw material via a modified Hummers' method. Ground pencil leads were used as a control powder of the starting raw material to monitor the consistency of the synthesis method. TiO2 microspheres were synthesized via a precipitated method using the pluronic F127 solution as the pore template. GO derived from RH (GO-RH) was composited with TiO2 microspheres as GO-RH/TiO2 composites by an impregnation method with weight ratios of 3:1, 2:2, and 1:3. Characterized results revealed GO-RH formed a ternary phase material of graphene oxide, graphite oxide, and silica. A typical microstructure of the calcined TiO2 microspheres was found as the agglomerated anatase nanoparticles. Furthermore, the composites belong to large surface areas and numerous oxygen-containing functionalities on their surfaces. Removal efficiencies of cationic dye methylene blue (MB) from aqueous solutions by the composites, GO-RH and TiO2, were studied under UV illumination for 180 min. Due to the effective combination of adsorption and photodegradation for the MB removal, the composites provided the higher efficiencies (99-100%) faster than those of GO-RH and TiO2 and could be reused at least 4 times. Finally, a mechanism of the MB removal by the composites was proposed.
Collapse
Affiliation(s)
- Panlekha Manpetch
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wadwan Singhapong
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Angkhana Jaroenworaluck
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Effect of 1wt% GO, MWCNTs, SiO2-GO and SiO2-MWCNTs on Mechanical Properties and Corrosion Resistance of Double-Layer Zinc Silicate Coatings. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Zhao L, Chen Z, Ren J, Yang L, Li Y, Wang Z, Ning W, Jia S. Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. J Colloid Interface Sci 2022; 627:205-214. [PMID: 35849854 DOI: 10.1016/j.jcis.2022.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Polymer-based dielectrics with high thermal conductivity and superb dielectric properties hold great promising for advanced electronic packaging and thermal management application. However, integrating these properties into a single material remains challenging due to their mutually exclusive physical connotations. Here, an ideal dielectric thermally conductive epoxy composite is successfully prepared by incorporating multiscale hybrid fillers of boron nitride microsphere (BNMS) and silicon dioxide coated silicon carbide nanoparticles (SiC@SiO2). In the resultant composites, the microscale BNMS serve as the principal building blocks to establish the thermally conductive network, while the nanoscale SiC@SiO2 as bridges to optimize the heat transfer and suppress the interfacial phonon scattering. In addition, the special core-shell nanoarchitecture of SiC@SiO2 can significantly impede the leakage current and generate a great deal of minicapacitors in the composites. Consequently, favorable thermal conductivity (0.76 W/mK) and dielectric constant (∼8.19) are simultaneously achieved in the BNMS/SiC@SiO2/Epoxy composites without compromising the dielectric loss (∼0.022). The strategy described in this study provides important insights into the design of high-performance dielectric composites by capitalizing on the merits of different particles.
Collapse
Affiliation(s)
- Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhijie Chen
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Junwen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Lingyu Yang
- State Key Lab of the Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuchao Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Zhong Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjun Ning
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; State Key Lab of the Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
13
|
Insight into mechanical, thermal, and chemical stability of polysulfone-based membranes for the separation of O2/N2. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Souza EC, Bello RH, Coelho LAF. Hydrophilic and hydrophobic silica‐based nanocomposites of chemically recyclable thermoset. POLYM INT 2022. [DOI: 10.1002/pi.6359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eduarda C Souza
- Center for Technological Sciences State University of Santa Catarina, UDESC Joinville Brazil
| | - Roger H Bello
- Department of Engineering of Materials, Superior School of Technology University of Amazonas State, UEA Manaus Brazil
| | - Luiz AF Coelho
- Center for Technological Sciences State University of Santa Catarina, UDESC Joinville Brazil
| |
Collapse
|
15
|
Li Q, Lin G, Chen S, Zhang L, Song Y, Geng C, Qu S, Jing Y, Liu F, Liang Z. Enhancing mechanical performance and wet‐skid resistance of emulsion styrene butadiene rubber/natural rubber latex composites via in‐situ hybridization of silanized graphene oxide and silica. J Appl Polym Sci 2022. [DOI: 10.1002/app.52083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiao Li
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guangyi Lin
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Shouzhen Chen
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Lin Zhang
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yingjie Song
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Chuanbao Geng
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Siyuan Qu
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yuan Jing
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Fumin Liu
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhenning Liang
- College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
16
|
Kaimal R, Vinoth V, Shrikrishna Salunke A, Valdés H, Viswanathan Mangalaraja R, Aljafari B, Anandan S. Highly sensitive and selective detection of glutathione using ultrasonic aided synthesis of graphene quantum dots embedded over amine-functionalized silica nanoparticles. ULTRASONICS SONOCHEMISTRY 2022; 82:105868. [PMID: 34902816 PMCID: PMC8669454 DOI: 10.1016/j.ultsonch.2021.105868] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized. GQDs embedded on amine-functionalized SiNPs were physical-chemically characterized by different techniques that included high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), UV-visible spectroscopy, Fourier-transform infrared spectroscopy(FTIR), and Raman spectroscopy. The newly developed electrode exhibits a good response to glutathione with a wide linear range (0.5-7 µM) and a low detection limit (0.5 µM) with high sensitivity(2.64 µA µM-1). The fabricated GQDs-SiNPs/GC electrode shows highly attractive electrocatalytic activity towards glutathione detection in the neutral media at low potential due to a synergistic surface effect caused by the incorporation of GQDs over SiNPs. It leads to higher surface area and conductivity, improving electron transfer and promoting redox reactions. Besides, it provides outstanding selectivity, reproducibility, long-term stability, and can be used in the presence of interferences typically found in real sample analysis.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Victor Vinoth
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Laboratorio de Technologίas Limpias, Facultad de Ingernierίa, Universidad Catόlica de la Santίsima Concepciόn, Concepciόn, Chile.
| | - Amol Shrikrishna Salunke
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Héctor Valdés
- Laboratorio de Technologίas Limpias, Facultad de Ingernierίa, Universidad Catόlica de la Santίsima Concepciόn, Concepciόn, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion, Chile; Technological Development Unit (UDT), University of Concepcion, Coronel Industrial Park, Coronel, Chile
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
17
|
Mechanical and corrosion resistance of cold sprayed zinc (CSZ) nano composite coating enhanced by SiO2-GO hybrid material. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Khine YY, Wen X, Jin X, Foller T, Joshi R. Functional groups in graphene oxide. Phys Chem Chem Phys 2022; 24:26337-26355. [DOI: 10.1039/d2cp04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Graphene oxide consists of diverse surface chemistry which allows tethering GO with additional functionalities and tuning its intrinsic properties. This review summarizes recently advanced methods to covalently modify GO for specific applications.
Collapse
Affiliation(s)
- Yee Yee Khine
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xinyue Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaoheng Jin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Liang X, Li X, Tang Y, Zhang X, Wei W, Liu X. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification. J Colloid Interface Sci 2021; 611:105-117. [PMID: 34933189 DOI: 10.1016/j.jcis.2021.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
Despite great efforts have been made on epoxy resins modification, development of additives that can be used to efficiently and universally modify epoxy composites remains a challenging task. Herein, graphene oxide (GO) sheets were covalently linked with hyperbranched epoxy resin (HBPEE-epoxy) to form HBPEE-epoxy functionalized GO (HPE-GO), which was then incorporated into epoxy resin (EP) matrix to achieve efficient and all-purpose enhancement of the properties of EPs. Compared with unmodified GO sheets, the functionalized HPE-GO sheets were better dispersed and exhibited better interfacial compatibility with the epoxy matrix, and consequently, the mechanical and thermal properties of HPE-GO/EP composites improved significantly compared to unmodified GO/EP composites. The tensile strength, flexural strength, impact strength, and fracture toughness (KIC) of EP composites containing 0.5 wt% HPE-GO increased by 65.0%, 36.2%, 259.1%, and 178.9%, respectively, compared with those for the neat EP. The storage modulus (E'), glass transition temperature (Tg), and thermal stability (T5%) also showed modest improvements. Furthermore, the HPE-GO/EP composites exhibited optimal thermal conductivities and thermal expansion properties, while maintaining higher volume resistivities compared with GO/EP composites. The results of this study support that HPE-GO is a promising, all-purpose modifier for EPs.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| | - Yong Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiyu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
20
|
Preparation and characteristics of sepiolite-waterborne polyurethane composites. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A kind of organic/inorganic composite material composed of waterborne polyurethane and sepiolite was prepared in this work. Sepiolite was organically modified by three kinds of silane coupling agents, and then compounded with waterborne polyurethane through layer-by-layer method in order to prepare composite materials. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) show the crystal and chemistry structure of sepiolite samples, and confirmed the preparation of organic sepiolite. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) showed the surface microstructure and elemental content of sepiolite and organic sepiolite, and was consistent with the XRD results. Transmission electron microscope (TEM) examination of waterborne polyurethane composites surfaces showed that sepiolite particles were regularly dispersed in the waterborne polyurethane matrix. Thermal resistance of waterborne polyurethane composites was determined by thermogravimetry analyzer (TG) and derivative thermogravimetry analyzer (DTG), differential scanning calorimetry (DSC), gas chromatography (GC), and mass chromatography (MS). Mechanical behavior was examined by tensile strength tester, showed higher break strength than that of the control waterborne polyurethane. Therefore, organically modified sepiolite was considered to be a kind of wonderful inorganic material that could be used to improve the thermal stability and mechanical property of polymer.
Collapse
|
21
|
Nano-SiO 2 and Silane Coupling Agent Co-Decorated Graphene Oxides with Enhanced Anti-Corrosion Performance of Epoxy Composite Coatings. Int J Mol Sci 2021; 22:ijms222011087. [PMID: 34681743 PMCID: PMC8537813 DOI: 10.3390/ijms222011087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Coatings are of great significance for irons and steels in regards to the harsh marine environment. Graphene oxides (GO) have been considered as an ideal filler material of epoxy coating. However, the undesired dispersion in the epoxy together with easy agglomeration and stacking remain great problems for practical application of GO composited epoxy coatings. A method that can effectively solve both self-aggregation and poor dispersion of GO is highly desired. Herein, we present a high dispersion strategy of graphene oxides in epoxy by co-decoration of nano-SiO2 and silane coupling agent. The co-decorated GO filled epoxy coating exhibits high anti-corrosion performance, including high electrochemical impedance, high self-corrosive potential, low self-corrosive current, and superior electrochemical impedance stability for ten days to Q235 carbon steel. This work displays new possibilities for designing novel coating materials with high performance toward practical marine anti-corrosion applications.
Collapse
|
22
|
Fabrication of recoverable magnetic surface ion-imprinted polymer based on graphene oxide for fast and selective removal of lead ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Attaching SiO2 nanoparticles to GO sheets via amino-terminated hyperbranched polymer for epoxy composites: Extraordinary improvement in thermal and mechanical properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Anticorrosive and photocatalytic properties research of epoxy-silica organic–inorganic coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Cui M, Li M, Wang J, Chen R, Xu Z, Wang J, Han J, Hu G, Sun R, Jiang X, Song B, He Y. Hydrothermal Synthesis of Zinc‐Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Long‐Lived Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Zhaojian Xu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Jingyang Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Junfei Han
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
26
|
Cui M, Li M, Wang J, Chen R, Xu Z, Wang J, Han J, Hu G, Sun R, Jiang X, Song B, He Y. Hydrothermal Synthesis of Zinc-Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Long-Lived Room-Temperature Phosphorescence. Angew Chem Int Ed Engl 2021; 60:15490-15496. [PMID: 33904244 DOI: 10.1002/anie.202103200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Indexed: 01/28/2023]
Abstract
Fluorescence and phosphorescence are known as two kinds of fundamental optical signals, which have been used for myriad applications. To date, simultaneous activation of stable fluorescence and long-lived room-temperature phosphorescence (RTP) emission in the aqueous phase remains a big challenge. We prepare zinc-doped silica nanospheres (Zn@SiNSs) with fluorescence and RTP properties using a facile hydrothermal synthetic strategy. For the as-prepared Zn@SiNSs, the recombination of electrons and holes in defects and defect-stabilized excitons derived from oxygen vacancy/C=N bonds lead to the production of stable fluorescence and long-lived RTP (emission lasting for ≈9 s, quantum yield (QY): ≈33.6 %, RTP lifetime: ≈236 ms). The internal Si-O bonded networks and hydrophilic surface in Zn@SiNSs can reduce nonradiative decay to form self-protective RTP, and also provide high water solubility, excellent pH- and photostability.
Collapse
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Manjing Li
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Zhaojian Xu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Jingyang Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Junfei Han
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Rong Sun
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xin Jiang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| |
Collapse
|
27
|
Peres RM, Forero JS, Corrêa RJ. Tuning the graphene oxide chemistry by excimer formation: The stabilization of electron/hole pair on sp2 surface. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Mirheidari M, Safaei-Ghomi J. Design, synthesis, and catalytic performance of modified graphene oxide based on a cobalt complex as a heterogenous catalyst for the preparation of aminonaphthoquinone derivatives. RSC Adv 2021; 11:17108-17115. [PMID: 35479717 PMCID: PMC9032551 DOI: 10.1039/d1ra01790j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/03/2021] [Indexed: 12/05/2022] Open
Abstract
We are reporting a functionalized graphene oxide catalyst developed by modifying graphene oxide surface using the covalent attachment of an amino-functionalized SiO2 sphere/cobalt complex. Silica network has special characteristics including mechanical strength, high thermal and chemical stability with good dispersion in solvents. The silica/graphene oxide mixture provides improved properties and extends the scope of application. Graphene oxide was functionalized by spherical silica with the help of hybrid silane-containing nitrogen to coordinate with Co(ii) for increasing the catalytic activity. The catalyst was characterized by Fourier Transform Infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM), Raman spectroscopy, and Thermal Gravimetric (TGA) analyses. The catalyst showed high catalytic activity for multi-component reactions in the synthesis of aminonaphthoquinones in ethanol solvent. The catalyst's ability to improve the yield (96-98%), reduce the reaction time (5-8 min), and recycling ability are important benefits for the catalyst.
Collapse
Affiliation(s)
- Mahnaz Mirheidari
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran
| |
Collapse
|
29
|
Song G, Zhu Q, Li L, Zheng Z, Zhao Q, Feng J, Zhang X, Wang P, Chen K, Shen Q. Lipidomics phenotyping of clam (Corbicula fluminea) through graphene/fibrous silica nanohybrids based solid-phase extraction and HILIC-MS analysis. Food Chem 2021; 354:129565. [PMID: 33756323 DOI: 10.1016/j.foodchem.2021.129565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Polyunsaturated phospholipids are abundant in clam (Corbicula fluminea) but difficult to be fully extracted. Herein, graphene/fibrous silica (G/KCC-1) nanohybrids were synthesized, characterized, and applied for solid-phase extraction (SPE) of phospholipids in clam. The effectiveness of G/KCC-1 SPE was verified by hydrophilic interaction chromatography mass spectrometry (HILIC-MS) based lipidomics and statistical analysis. The ions of PE 16:0/18:1 (m/z 716.4), PC 16:0/20:5 (m/z 824.6) and etc. were regarded as the main difference among the crude lipids, acetone washed extract, and eluate of G/KCC-1 SPE. Finally, this method was validated in terms of linearity (R2 0.9965 to 0.9981), sensitivity (LOD 0.19-0.51 μg·mL-1 and LOQ 0.48 - 1.47 μg·mL-1), and precision (RSDintra-day ≤ 7.16% and RSDinter-day ≤ 7.30%). In conclusion, the G/KCC-1 SPE and HILIC-MS method was shown to be accurate and efficient in selective extracting and phenotyping phospholipids in C. fluminea.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Linqiu Li
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhenxiao Zheng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaodi Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Pingya Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
30
|
Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars. MATERIALS 2021; 14:ma14040915. [PMID: 33671967 PMCID: PMC7919027 DOI: 10.3390/ma14040915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Graphene’s outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO2-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO2-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO2-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO2-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO2-RGO cement mortars were conducted, and it was found that with the same amount of TiO2-RGO and GO, the TiO2-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO2-RGO prepared by titanium dioxide (TiO2) intercalation can better improve the strength and durability performance of cement mortars compared to GO.
Collapse
|
31
|
Sharif NA, Ehsani M, Zaarei D, Kalaee MR, Khajavi R. Nanocomposite Coatings Based on Modified Graphene Oxide and Polydimethylsiloxane: Characterization and Thermal Properties. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220110191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tao W, Kong X, Bao A, Fan C, Zhang Y. Preparation and Phase Change Performance of Graphene Oxide and Silica Composite Na 2SO 4·10H 2O Phase Change Materials (PCMs) as Thermal Energy Storage Materials. MATERIALS 2020; 13:ma13225186. [PMID: 33212870 PMCID: PMC7698442 DOI: 10.3390/ma13225186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
In this study, a novel nucleating agent composed of graphene oxide (GO) and silicon dioxide (SiO2) (GO-SiO2) is developed. GO is used as a skeleton material through which SiO2 nanomaterials are absorbed and subsequently incorporated into Na2SO4·10H2O phase change materials (PCMs). Furthermore, this study examines the phase change performance of the composite Na2SO4·10H2O materials. Fourier-transform infrared (FTIR) spectra confirmed the physical combination of GO with a SiO2 nanoparticles. Scanning electron microscope (SEM) results showed that the GO-SiO2 composite exhibited a layered structure and excellent dispersibility. The GO-SiO2 composite Na2SO4·10H2O PCMs displayed a low level of supercooling, i.e., about 1.2 °C with the addition of GO-SiO2 at 2.45 wt%. This was because the synergistic relation of the GO and the high dispersion SiO2, imparted more nucleation sites for Na2SO4·10H2O. Additionally, the prepared PCMs achieved high phase change latent heat and thermal conductivity, even under these conditions. The results show that the GO-SiO2 in the Na2SO4·10H2O exhibited advantageous application prospects for the improvement of the thermal performance of hydrate salts.
Collapse
Affiliation(s)
- Wen Tao
- School of Material Science and Engineering, Anhui University of Technology, Anhui 243002, China; (W.T.); (X.K.); (A.B.); (C.F.)
| | - Xiangfa Kong
- School of Material Science and Engineering, Anhui University of Technology, Anhui 243002, China; (W.T.); (X.K.); (A.B.); (C.F.)
| | - Anyang Bao
- School of Material Science and Engineering, Anhui University of Technology, Anhui 243002, China; (W.T.); (X.K.); (A.B.); (C.F.)
| | - Chuangang Fan
- School of Material Science and Engineering, Anhui University of Technology, Anhui 243002, China; (W.T.); (X.K.); (A.B.); (C.F.)
| | - Yi Zhang
- School of Material Science and Engineering, Anhui University of Technology, Anhui 243002, China; (W.T.); (X.K.); (A.B.); (C.F.)
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Anhui 243002, China
- Correspondence:
| |
Collapse
|
33
|
Li J, Chen P, Wang Y. Tribological and corrosion performance of epoxy resin composite coatings reinforced with graphene oxide and fly ash cenospheres. J Appl Polym Sci 2020. [DOI: 10.1002/app.50042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianchao Li
- School of Mechanical Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Ping Chen
- School of Mechanical Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Yuan Wang
- School of Mechanical Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
34
|
Javidparvar AA, Naderi R, Ramezanzadeh B. Non-covalently surface modification of graphene oxide nanosheets and its role in the enhancement of the epoxy-based coatings` physical properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Amani M, Shakeri A. Synthesis and Characterization of Water-Based Epoxy-Acrylate/Graphene Oxide Decorated with Fe3O4 Nanoparticles Coatings and Its Enhanced Anticorrosion Properties. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1773500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehdi Amani
- Department of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran
| | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Qu L, Sui Y, Zhang C, Li P, Dai X, Xu B, Fang D. POSS-functionalized graphene oxide hybrids with improved dispersive and smoke-suppressive properties for epoxy flame-retardant application. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties. Polymers (Basel) 2019; 11:polym11111866. [PMID: 31726740 PMCID: PMC6918404 DOI: 10.3390/polym11111866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
An effective approach to the fabrication of progressive epoxy nanocomposites by the incorporation of hydroxyl-terminated dendrimers functionalized graphene oxide (GO-TCT-Tris) is reported. The relationship between surface grafting, chemical construction, morphology, dispersion, and interfacial interaction as well as the corresponding mechanical properties of the composites were studied in detail. It was shown that hydroxyl-terminated triazine derivatives have been resoundingly bonded onto the GO surface through covalent bonding, which effectively improved the dispersion and compatibility of GO sheets in epoxy resin. The tensile and flexural tests manifested that the GO-TCT-Tris/epoxy composites exhibited greater tensile/flexural strength and modulus than either the pure epoxy or the GO/epoxy composites. For GO-TCT-Tris (0.10 wt%)/epoxy composite, the tensile strength and elastic modulus increased from 63 ± 4 to 89 ± 6 MPa (41.27%) and from 2.8 ± 0.1 to 3.6 ± 0.2 GPa (28.57%), and the flexural strength and modulus increased from 106 ± 5 to 158 ± 6 MPa (49.06%) and from 3.0 ± 0.1 to 3.5 ± 0.2 GPa (16.67%), respectively, compared to the pure epoxy matrix. Moreover, the fractographic analysis also illustrated the ameliorative interfacial interaction between GO-TCT-Tris and epoxy matrix.
Collapse
|
38
|
Song B, Shi Y, Liu Q. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti‐corrosion property of waterborne epoxy. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bojun Song
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong University Jingshi Road 17923 Jinan People's Republic of China
| | - Yuanchang Shi
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong University Jingshi Road 17923 Jinan People's Republic of China
| | - Qingdong Liu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong University Jingshi Road 17923 Jinan People's Republic of China
| |
Collapse
|
39
|
Feng Z, Huang C, Guo Y, Tong P, Zhang L. Chemical bonding of oxygenated carbon nitride nanosheets onto stainless steel fiber for solid-phase microextraction of phthalic acid esters. Anal Chim Acta 2019; 1084:43-52. [DOI: 10.1016/j.aca.2019.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/18/2023]
|
40
|
Naicker C, Nombona N, van Zyl WE. Fabrication of novel magnetic chitosan/graphene-oxide/metal oxide nanocomposite beads for Cr(VI) adsorption. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00895-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Qin Z, Zeng Y, Hua Q, Xu Q, Shen X, Min Y. Synergistic effect of hydroxylated boron nitride and silane on corrosion resistance of aluminum alloy 5052. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
M. L, M.N. P, Song J. Fabrication of hybrid matrix/silane modified carbon fabric composites and study of their mechanical properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.47695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Latif M.
- Department of Mechanical EngineeringChangwon National University Changwon 51140 Korea
| | - Prabhakar M.N.
- Department of Mechanical EngineeringChangwon National University Changwon 51140 Korea
| | - Jung‐il Song
- Department of Mechanical EngineeringChangwon National University Changwon 51140 Korea
| |
Collapse
|
43
|
Ozcan UE, Karabork F, Yazman S, Akdemir A. Effect of Silica/Graphene Nanohybrid Particles on the Mechanical Properties of Epoxy Coatings. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03724-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Synthesis and characterization of surface-functionalized mesoporous graphene nanohybrid. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00963-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Li J, Zheng L, Sha X, Chen P. Microstructural and mechanical characteristics of graphene oxide‐fly ash cenosphere hybrid reinforced epoxy resin composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.47173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian‐Chao Li
- School of Mechanical EngineeringUniversity of Science and Technology Beijing Beijing 100083 China
| | - Li‐Fang Zheng
- School of Mechanical EngineeringUniversity of Science and Technology Beijing Beijing 100083 China
| | - Xiao‐Hua Sha
- School of Engineering and TechnologyChina University of Geosciences (Beijing) Beijing 100083 China
| | - Ping Chen
- School of Mechanical EngineeringUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
47
|
Metal-organic framework-coated stainless steel fiber for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 2018; 1570:10-18. [DOI: 10.1016/j.chroma.2018.07.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
|
48
|
Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2185-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Abbas SS, Rees GJ, Kelly NL, Dancer CEJ, Hanna JV, McNally T. Facile silane functionalization of graphene oxide. NANOSCALE 2018; 10:16231-16242. [PMID: 30124719 DOI: 10.1039/c8nr04781b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The facile silane functionalization of graphene oxide (GO) was achieved yielding vinyltrimethoxysilane-reduced graphene oxide (VTMOS-rGO) nanospheres located in the inter-layer spacing between rGO sheets via an acid-base reaction using aqueous media. The successful grafting of the silane agent with pendant vinyl groups to rGO was confirmed by a combination of Fourier-transform infrared (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The structure and speciation of the silane-graphene network (nanosphere) and, the presence of free vinyl groups was verified from solid-state magic angle spinning (MAS) and solution 13C and 29Si nuclear magnetic resonance (NMR) measurements. Evidence from Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and TEM-High-Angle Annular Dark-Field (TEM-HAADF) imaging showed that these silane networks aided the exfoliation of the rGO layers preventing agglomeration, the interlayer spacing increased by 10 Å. The thermal stability (TGA/DTA) of VTMOS-rGO was significantly improved relative to GO, displaying just one degradation process for the silane network some 300 °C higher than either VTMOS or GO alone. The reduction of GO to VTMOS-rGO induced sp2 hybridization and enhanced the electrical conductivity of GO by 105 S m-1.
Collapse
Affiliation(s)
- Syeda S Abbas
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
50
|
The epoxy coating interfacial adhesion and corrosion protection properties enhancement through deposition of cerium oxide nanofilm modified by graphene oxide. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|