1
|
Sun X, Liu M, Liu H, Li L, Ding Y. A molecularly imprinted electrochemical aptasensor-based dual recognition elements for selective detection of dexamethasone. Talanta 2024; 277:126404. [PMID: 38879945 DOI: 10.1016/j.talanta.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
In this work, a novel molecularly imprinted electrochemical aptasensor (MIEAS) was developed for highly selective detection of dexamethasone (Dex) in natural water environment. Gold nanoparticles (AuNPs) modified by nitrogen doped molybdenum carbide-graphene (N-Mo2C-Gr) were employed as the supports, where N-Mo2C-Gr improved the conductivity of the electrode and provided a larger specific surface area to polymerize more active substances. Using Dex as template molecule, o-phenylenediamine (o-PD) as the chemical functional monomer and aptamer as the biofunctional monomer, a molecularly imprinted polymer (MIP) membrane with Dex specific recognition sites was formed by electropolymerization. Due to the synergistic effect of MIP and aptamers, the as-prepared MIEAS exhibited a decent linear relationship to Dex detection within a relatively wide range of 10-13 - 10-5 M, and the detection limit was 1.79 × 10-14 M. The recovery in actual water and tablet samples is satisfactory, which confirms the potential application prospects of this sensor in the determination of Dex.
Collapse
Affiliation(s)
- Xuyuan Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Minmin Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Suseela MNL, Mehata AK, Vallamkonda B, Gokul P, Pradhan A, Pandey J, Selvin J, Sterlin Leo Hudson M, Muthu MS. Comparative evaluation of liquid-liquid extraction and nanosorbent extraction for HPLC-PDA analysis of cabazitaxel from rat plasma. J Pharm Biomed Anal 2024; 245:116149. [PMID: 38678858 DOI: 10.1016/j.jpba.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
A precise, sensitive, accurate, and validated reverse-phase high-performance liquid chromatography (RP-HPLC) method with a bioanalytical approach was utilized to analyze Cabazitaxel (CBZ) in rat plasma. Comparative research on extraction recoveries was performed between traditional liquid-liquid extraction (LLE) and synthesized graphene oxide (GO) based magnetic solid phase extraction (GO@MSPE). The superparamagnetic hybrid nanosorbent was synthesized using the combination of iron oxide and GO and subsequently applied for extraction and bioanalytical quantification of CBZ from plasma by (HPLC-PDA) analysis. Fourier- transform infrared spectroscopy (FT-IR), particle size, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analysis were employed in the characterization of synthesized GO@MSPE nanosorbent. The investigation was accomplished using a shim pack C18 column (150 mm×4.6 mm, 5 µm) with a binary gradient mobile phase consisting of formic acid: acetonitrile: water (0.1:75:25, v/v/v) at a 0.8 mL/min flow rate, and a λmax of 229 nm. The limits of detection (LOD) and quantitation (LOQ) have been determined to be 50 and 100 ng/mL for both LLE and SPE techniques. The linearity range of the approach encompassed from 100 to 5000 ng/mL and was found to be linear (coefficient of determination > 0.99) for CBZ. The proposed method showed extraction recovery of 76.8-88.4% for the synthesized GO@MSPE and 69.3-77.4% for LLE, suggesting that the proposed bioanalytical approach was robust and qualified for all validation parameters within the acceptable criteria. Furthermore, the developed hybrid GO@MSPE nanosorbent with the help of the proposed RP-HPLC method, showed a significant potential for the extraction of CBZ in bioanalysis.
Collapse
Affiliation(s)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi 522213, India
| | - Pathraj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - Aditi Pradhan
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - Jyotsana Pandey
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| |
Collapse
|
3
|
Cui X, Wang Q, Guo M, Yang K, Yu L, Luo Z, Chang C, Fu Q. Selective Analysis of Progesterone in Cosmetic Samples Based on Molecularly Imprinted Solid-Phase Extraction and High-Performance Liquid Chromatography. J Chromatogr Sci 2023; 61:995-1004. [PMID: 36250313 DOI: 10.1093/chromsci/bmac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 06/16/2023]
Abstract
The illegal addition of progesterone to cosmetics could cause serious adverse reactions and pose a serious threat to human health. In this work, a simple, fast and sensitive method was developed by combining molecularly imprinted solid-phase extraction and high-performance liquid chromatography (MISPE-HPLC) for the selective determination of progesterone in cosmetics. Chitosan-modified silica is used as the carrier to provide binding sites for the effective conjugation of the target. The obtained molecularly imprinted polymers exhibited excellent adsorption capacity (36.2 mg·g-1), good selectivity and fast mass transfer rate for progesterone. Meanwhile, the prepared MISPE column could eliminate the interference of co-existing substances. Combined MISPE with HPLC, a selective and effective method for detecting progesterone in different cosmetics was achieved. Under the optimum conditions, the established MISPE-HPLC method was successfully used for the detection of progesterone in real samples. The linear range of this method was 1 to 200 μg·mL-1 with a limit of detection of 0.016 μg·mL-1. Therefore, this method could be used for the selective and effective detection of progesterone in different cosmetic samples with complex substrates. We provided an alternative method for the detection of illegal additions in cosmetics.
Collapse
Affiliation(s)
- Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Qun Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Miao Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Ke Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Liangwei Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Chun Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, 74 Yanta West Road, Xi'an, Shaanxi Province, Xi'an 710061, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, Shenzhen 518118, China
| |
Collapse
|
4
|
Yang G, Guo J, Yuan H, Sun L, Sha L. Determination of selected glucocorticoids in healthy foods by ultra-performance convergence chromatography-triple quadrupole mass spectrometry. J Chromatogr A 2023; 1694:463924. [PMID: 36933464 DOI: 10.1016/j.chroma.2023.463924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
The presence of glucocorticoids in healthy foods has recently become a topic of concern because of their side effects. In this study, we developed a method based on ultra-performance convergence chromatography-triple quadrupole mass spectrometry (UPC2-MS/MS) to detect 63 glucocorticoids in healthy foods. The analysis conditions were optimized, and the method was validated. We further compared the results of this method with those of the RPLC-MS/MS method. Glucocorticoids were separated on an Acquity Torus 2-picolylamine column (100 mm × 3.0 mm, 1.7 µm) and detected via MS/MS. CO2 and methanol (containing 0.1% formic acid) were used as mobile phases. The method demonstrated good linear relationships between 1 and 200 µg·L-1 (R2 ≥ 0.996). The limits of detection in different types of samples were 0.3-1.5 µg·kg-1 (S/N = 3). The average recoveries (n = 9) and RSDs in different types of samples were 76.6-118.2% and 1.1-13.1%, respectively. The matrix effect, calculated as the ratio between calibration curves built in matrix and pure solvent, was less than 0.21 for both a fish oil and a protein powder. This method exhibited better selectivity and resolution than RPLC-MS/MS method. Lastly, it could realize the baseline separation of 31 isomers of 13 groups, including four groups of eight epimers. This study provides new technical support for assessing the risk of exposure to glucocorticoids in healthy foods.
Collapse
Affiliation(s)
- Guangyong Yang
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China.
| | - Jingxi Guo
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| | - Hui Yuan
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| | - Lei Sun
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| | - Lina Sha
- Urumqi Berun Tiancheng Electronic Technology Co., Ltd, Urumqi 830054, China.
| |
Collapse
|
5
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|
6
|
Liu C, Xu G, Li B, Wang X, Lin JM, Zhao RS. Three-dimensional hydroxylated covalent organic frameworks for solid phase extraction of glucocorticoids in environmental water samples. Anal Chim Acta 2023; 1239:340662. [PMID: 36628702 DOI: 10.1016/j.aca.2022.340662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
It is challenging to achieve the highly sensitive detection of glucocorticoids at ultratrace levels because of the abundant hydrophilic groups in their molecules and the complexity of environmental water sample matrices. Here, a highly crystalline three-dimensional hydroxylated covalent organic frameworks (denoted by COF-301) with tetra(4-anilyl)methane (TAM) and 2,5-dihydroxyterephthalaldehyde (DHTA) as building units was constructed and proposed as adsorbent for solid phase extraction (SPE) of glucocorticoids. Theoretical studies were conducted to elucidate the potential adsorption mechanism of glucocorticoids on the COF-301. The COF-301 based SPE combined with liquid chromatography-tandem mass spectrometry provides a promising approach for the preconcentration and determination of glucocorticoids residue in water samples. Good linearity with a correlation coefficient exceeding 0.9988, low limits of detection ranging from 0.024 to 0.075 ng L-1 and relative standard deviations below 6.68% were achieved. The proposed method was successfully applied to analyze glucocorticoids residue in actual water samples, demonstrating the prospects of this method for the determination of trace glucocorticoids.
Collapse
Affiliation(s)
- Chuqing Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, China
| | - Guiju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Baoyu Li
- Test Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan, China
| | - Xiaoli Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, China.
| |
Collapse
|
7
|
Efficient and selective extraction of chlorogenic acid in juice samples using magnetic molecularly imprinted polymers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Magnetic molecularly imprinted polymers based on eco-friendly deep eutectic solvent for recognition and extraction of three glucocorticoids in lotion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
|
10
|
Wang L, Cui X, Xu J, Wang G, Guo M, Yu L, Yang K, Luo Z, Zeng A, Chen G, Zhang J, Fu Q. Highly efficient amino-functionalized aluminum-based metal organic frameworks mesoporous nanorods for selective extraction of hydrocortisone in pharmaceutical wastewater. J Pharm Biomed Anal 2022; 219:114933. [PMID: 35820249 DOI: 10.1016/j.jpba.2022.114933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Hydrocortisone (HC), as a common steroid hormone drug, is also one of the key intermediates involved in the synthesis of multiple steroid hormone drugs. Residual HC in pharmaceutical wastewater frequently pollutes environmental water as steroid hormone contaminant and possesses great threat to human health as well as sustainable development of the ecosystem. Herein, in order to develop a highly efficient adsorbent system for selective enrichment and detection of HC in pharmaceutical wastewater, a novel amino-functionalized aluminum-based metal organic frameworks (Al-MOFs@NH2) mesoporous nanorod is fabricated, in which 2-aminoterephthalic acid plays a dual role as organic linker and functional modification unit. The resultant Al-MOFs@NH2 not only exhibits stable mesoporous structure but also has large specific surface area (849.76 m2 g-1) and plentiful binding sites, which significantly increases the adsorption capacity for HC. Under the promotion of hydrogen bonding and hydrophobic interaction together, Al-MOFs@NH2 possesses high adsorption capacity (218.53 mg g-1) for HC, as well as shows satisfactory selectivity for HC and other steroid hormones. Moreover, a method using Al-MOFs@NH2 as solid phase extraction adsorbents combined with high performance liquid chromatography (HPLC) has been developed to specifically enrich and detect trace amount of HC in pharmaceutical wastewater. The developed method has a low limit of detection (LOD) (0.5×10-3 μg mL-1) and shows satisfactory recoveries for HC (75.9%-102.5%) with an acceptable relative standard deviation (RSD). These results demonstrate that the facile one-step preparation and excellent adsorption capacity makes Al-MOFs@NH2 attractive to capture and remove environmental steroid hormone pollutants. More importantly, the method proposed in this work is expected to provide a prospective solution for analysis of strong bioactive contaminants in pharmaceutical wastewater.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiameng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gege Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Miao Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liangwei Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ke Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong 723000, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
11
|
Kempe H, Kempe M. Ouzo polymerization: A bottom-up green synthesis of polymer nanoparticles by free-radical polymerization of monomers spontaneously nucleated by the Ouzo effect; Application to molecular imprinting. J Colloid Interface Sci 2022; 616:560-570. [DOI: 10.1016/j.jcis.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
|
12
|
Liu M, Zhu C, Li X, Wang F. 3DG Functionalized Magnetic Solid Phase Extraction Materials for the Efficient Enrichment of Hexamethylenetetramine in Vermicelli. Molecules 2022; 27:1548. [PMID: 35268649 PMCID: PMC8911869 DOI: 10.3390/molecules27051548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Solid phase extraction (SPE) is regarded as the most effective purification method for complex matrix samples owing to its simplicity of operator, time-saving, high accuracy, and environmental friendliness. SPE technology is still affected by the high cost of commercial SPE columns and poor adsorption selectivity. Hence, the development of low-cost and highly selective adsorbents is quite challenging and demanding in SPE. In this study, a novel 3DG functionalized magnetic solid phase extraction materials was prepared based on "thiol-ene" click chemistry. The structure, morphology, thermal stability, and magnetic properties of the magnetic composites were studied by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Then the adsorption performance of composite was determined by static adsorption experiments, which showed fast binding kinetics (100 min) and good adsorption performance (Qe = 65.34 mg/g). Moreover, these magnetic nanoparticles were used as adsorbents for magnetic solid phase extraction (MSPE) and coupled with high-performance liquid chromatography (HPLC) for separation and detection of illegally added hexamethylenetetramine in vermicelli. As for practical application, the recoveries for the spiked samples in the concentration range of 8-40 μg/g were between 83.24-92.69%, and the RSD was between 0.20-2.07%.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Chen Zhu
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Xiaoyan Li
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Fang Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| |
Collapse
|
13
|
Progress in Application of Dual/Multi-Template Molecularly Imprinted Polymers. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Preparation of a magnetic molecularly imprinted polymer for non-invasive determination of cortisol. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02659-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
16
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
17
|
Zhang H, Song H, Tian X, Wang Y, Hao Y, Wang W, Gao R, Yang W, Ke Y, Tang Y. Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2. Mikrochim Acta 2021; 188:17. [PMID: 33403455 DOI: 10.1007/s00604-020-04693-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
A synergistic imprinting strategy of covalent and non-covalent interactions is proposed to prepare magnetic molecularly imprinted polymers (DI-MMIPs) for highly selective separation of procyanidin B2 (PC) from grape seed samples. Dopamine and 3-amino-phenylboronic acid as cooperative functional monomers endow the imprinted sites with synergistic tailoring. Benefiting from the synergistic effect, the DI-MMIPs exhibit enhanced imprinting performance with high adsorption capacity (27.71 mg g-1), fast kinetic equilibrium time (within 30 min), outstanding selectivity (IF = 5.8, SC > 3.2), and satisfactory regeneration ability. In addition, the DI-MMIPs possess good magnetism, uniform morphology with typical core-shell structure, and stable crystallization. Furthermore, the established DI-MMIPs coupled with HPLC-UV (~ 280 nm) method has a wide linearity range of 0.05-200 μg mL-1 with correlation coefficient of 0.9997, high recoveries (> 93.1%) with RSDs from 2.9 to 5.5%, and low LOD (0.0008 μg mL-1). Consequently, this work provides an effective and easily tailored way to fabricate magnetic imprinted nanomaterials with both rapid recognition rate and high selectivity and thus holds great promise to realize the extraction and detection of PC from real samples.
Collapse
Affiliation(s)
- Haipin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Wenting Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Wan Yang
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - YuShen Ke
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
18
|
Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Mikrochim Acta 2020; 187:503. [PMID: 32812169 DOI: 10.1007/s00604-020-04465-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
A novel magnetic dual-template molecularly imprinted polymer (DMIP) was prepared with methyl-parathion and quinalphos as templates. For comparison, a series of single-template polymers with only methyl-parathion (MPMIP) or quinalphos (QPMIP) as template as well as a non-imprinted polymer (NIP) in the absence of the template, were synthesized using the same procedure of DMIP. The obtained MIPs were characterized by scanning electron microscopy(SEM), Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). The properties including kinetic effect, thermodynamic effect, selectivity, and reusability of MIPs were investigated . Only DMIP possessed high affinity and good recognition for all twelve OPPs including quinalphos, isazophos, chlorpyrifos-methyl, chlorpyrifos, methidathion, triazophos, profenofos, fenthion, fenitrothion, methyl-parathion, parathion, and paraoxon in comparison to MPMIP, QPMIP, or NIP. Moreover, DMIP was used as magnetic solid phase extraction (MSPE) sorbent for the pre-concentration of twelve OPPs in cabbage samples. The developed DMIP-MSPE-GC-MS method showed high sensitivity, low LODs (1.62-13.9 ng/g), fast adsorption equilibrium (10 min), and acceptable spiked recoveries (81.5-113.4%) with relative standard deviations (RSD) in the range 0.05-7.0% (n = 3). The calibration plots were linear in the range 10-800 ng/mL with coefficients of determination (R2) better 0.99 for all twelve compounds. These results suggest that the DMIP is applicable for rapid determination and high throughput analysis of multi-pesticide residues. Graphical abstract.
Collapse
Affiliation(s)
- Lixia Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
- School of Pharmacy, China Medical University, Shenyang, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China.
| |
Collapse
|
19
|
Wjihi S, Aouaini F, Almuqrin AH, Lamine AB. Physicochemical assessment of prednisone adsorption on two molecular composites using statistical physics formalism in cosmetics. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
20
|
Semiquantitative immunochromatographic colorimetric biosensor for the detection of dexamethasone based on up-conversion fluorescent nanoparticles. Mikrochim Acta 2020; 187:447. [DOI: 10.1007/s00604-020-04418-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022]
|
21
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
22
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
23
|
Wei A, Muhammad T, Aihebaier S, Muhammad I, Wu B, Ge J, Ayupbek A. In-situ preparation of porous monolithic polymer inside hollow fiber as a micro-solid phase extraction device for glucocorticoids in cosmetics. J Sep Sci 2019; 43:936-945. [PMID: 31826320 DOI: 10.1002/jssc.201901049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 11/06/2022]
Abstract
Glucocorticoids have a certain whitening effect on the skin. However, frequent and long-term use of cosmetics including glucocorticoids is harmful to health. Herein, we proposed a novel micro-solid phase extraction method for the detection of prednisolone acetate, prednisone, and prednisolone in cosmetics coupled with high-performance liquid chromatography. In this method, porous monolithic polymer micro-extraction bars were prepared by "one-step, one-pot" in situ photopolymerization combined with sacrificial support in hollow fiber under water atmosphere. The crucial factors such as pH of sample solution, extraction, and elution times that influence micro-extraction were optimized and found to be 9.0, 2 h, and 32 min, respectively. Under the optimum experimental conditions, the linear range of the calibration curves were from 5.0 to 2000 µg/L with correlation coefficients (R2 ) between 0.9922 and 0.9996. The limit of detection and limit of quantification were 1.5 µg/L and 5.0 µg/L, respectively, and the recoveries were found to be in range of 69.0-113.3%. The analysis of precision for intraday and interday were less than 10.40 and 10.59%. The device has been successfully achieved photopolymerization under water atmosphere. The results indicated that this method is simple, accurate, and satisfactory for the pretreatment and determination of glucocorticoids in complex cosmetics samples.
Collapse
Affiliation(s)
- Aixia Wei
- College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi, 830046, P.R. China
| | - Turghun Muhammad
- College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi, 830046, P.R. China
| | - Sailemayi Aihebaier
- College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi, 830046, P.R. China
| | - Imran Muhammad
- College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi, 830046, P.R. China
| | - Beibei Wu
- College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi, 830046, P.R. China
| | - Jing Ge
- Xinjiang Uygur Autonomous Regional Institute for Drug Control, Urumqi, 830011, P.R. China
| | - Amatjan Ayupbek
- Xinjiang Uygur Autonomous Regional Institute for Drug Control, Urumqi, 830011, P.R. China
| |
Collapse
|
24
|
A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins. Mikrochim Acta 2019; 186:822. [DOI: 10.1007/s00604-019-3985-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023]
|
25
|
Jia C, Zhang M, Zhang Y, Ma ZB, Xiao NN, He XW, Li WY, Zhang YK. Preparation of Dual-Template Epitope Imprinted Polymers for Targeted Fluorescence Imaging and Targeted Drug Delivery to Pancreatic Cancer BxPC-3 Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32431-32440. [PMID: 31393695 DOI: 10.1021/acsami.9b11533] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers were commonly used for drug delivery. However, single-template molecularly imprinted polymers often fail to achieve both drug delivery and precise targeting. To address this issue, a dual-template molecularly imprinted polymer nanoparticle used for targeted diagnosis and drug delivery for pancreatic cancer BxPC-3 cells (FH-MIPNPs) was prepared. In the FH-MIPNPs, the 71-80 peptide of human fibroblast growth-factor-inducible 14 modified with glucose (Glu-FH) and bleomycin (BLM) were used as templates simultaneously, so that the FH-MIPNPs could load BLM and bind to the BxPC-3 cells, which overexpress human fibroblast growth-factor-inducible 14 (FN14). Targeted imaging experiments in vitro show that the FH-MIPNPs could specifically target BxPC-3 cells and that there is no targeting effect on cells without expression of FN14. In vivo antitumor experiment results demonstrated that the FH-MIPNP-loaded BLM (FH-MIPNPs/BLM) could inhibit the growth of xenografts tumor of BxPC-3 (tumor volume increased to 1.05×), which shows that FH-MIPNPs/BLM had obvious targeted therapeutic effect compared to the other three control groups of BLM, FH-NIPNPs/BLM, and physiological saline (tumor volume increased to 1.5×, 1.6×, and 2.4×, respectively). What is more, FH-MIPNPs have low biotoxicity through toxicity experiments in vitro and in vivo, which is favorable toward making molecularly imprinted polymers an effective platform for tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Man Zhang
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , China
| | - Zi-Bo Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Nan-Nan Xiao
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
26
|
Zhang X, Wang H, Sun X, Shang H, Di Y, Zhao Z. Preparation and properties of thermo-sensitive surface Pb(Ⅱ) ion-imprinted polymers. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Liu P, Ren Y, Ma J, Zhang Z, Song H, Yang T, Luo L, Wang X. Two different states conversion mechanism of the imprinting sites. J Colloid Interface Sci 2019; 539:235-244. [PMID: 30583203 DOI: 10.1016/j.jcis.2018.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 11/18/2022]
Abstract
Bisphenol A molecular imprinted adsorbent (BMIA) was successfully synthesized by a sol-gel process and showed a good specific binding performance in the water. The further studies showed that the mass transfer process was controlled by in-diffusion, and the synthesis conditions would effect on the amount of imprinting sites. Scatchard model analysis evidenced that the high binding affinity sites and the low binding affinity sites were both on BMIA, and the high binding affinity sites played a key role in the specific binding process. Scatchard model analysis of temperature effect experiments and dosage effect experiments proved that the specific binding sites with high binding affinity and the unexpressed specific binding sites with low binding affinity were the two different states of the imprinting binding sites. The conversion between the two different states depended on the reaction driving force, and the increasing reaction driving force would increase the number of specific binding sites. Especially, the temperature showed a linear positive correlation with the amount of specific binding sites. Finally, a possible model was put forward to explain the two different states conversion mechanism of the imprinting sites.
Collapse
Affiliation(s)
- Pingxin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yueming Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zhongxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haoran Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lisha Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaowen Wang
- Yantai No.2 Middle School of Shandong Province, Yantai, Shandong 264003, PR China
| |
Collapse
|
28
|
Lu W, Liu J, Li J, Wang X, Lv M, Cui R, Chen L. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019; 144:1292-1302. [DOI: 10.1039/c8an02133c] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dual-template molecularly imprinted polymers were synthesized using norfloxacin and enrofloxacin as templates by precipitation polymerization with a multi-template imprinting strategy.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Light Industry Science and Technology
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jie Liu
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Rong Cui
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
29
|
Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:205-211. [PMID: 30529494 DOI: 10.1016/j.jchromb.2018.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
Abstract
In this work, surface molecularly imprinted polymers (SMIPs) were prepared as a specific sorbent to remove the limonin from the lemon juice for the first time, and then the MIPs containing limonin were directly made into a water-soluble gel to treat inflammation of mice. The resulting polymers were characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectrometer spectra. And the polymerization conditions and adsorption performances of the resultant nanomaterials were further investigated in detail. Results showed that the MIPs have higher adsorption capacity (27.72 mg/g) compared with surface molecularly non-imprinted polymers (NIPs) (8.12 mg/g). The selectivity experiment indicated that the polymers had excellent selective recognition for limonin and the selectivity factors were calculated as 2.75 and 1.83 for nomilin and obakunone, respectively. The MIPs were successfully used as adsorbent for selectively removing limonin from lemon juice and the MIPs extracted almost all the limonin from lemon juice according to the HPLC results. Furthermore, the MIPs with limonin were processed into water-soluble gel, which can be used to reduce the inflammation and enhance wound healing of model mice.
Collapse
|
30
|
Preparation and application of a molecular capture for safety detection of cosmetics based on surface imprinting and multi-walled carbon nanotubes. J Colloid Interface Sci 2018; 527:124-131. [DOI: 10.1016/j.jcis.2018.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/21/2022]
|
31
|
Phungpanya C, Chaipuang A, Machan T, Watla-iad K, Thongpoon C, Suwantong O. Synthesis of prednisolone molecularly imprinted polymer nanoparticles by precipitation polymerization. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chalida Phungpanya
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Angkana Chaipuang
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Theeraphan Machan
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Kanchana Watla-iad
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Chalermporn Thongpoon
- Program of Chemistry, Faculty of Science and Technology; Pibulsongkram Rajabhat University; Phitsanulok 65000 Thailand
| | - Orawan Suwantong
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| |
Collapse
|
32
|
Du W, Zhang B, Guo P, Chen G, Chang C, Fu Q. Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J Sep Sci 2018. [DOI: 10.1002/jssc.201701195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Du
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
- Shaanxi Institute for Food and Drug Control; Xi'an P. R. China
| | - Bilin Zhang
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Pengqi Guo
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Guoning Chen
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Chun Chang
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Qiang Fu
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| |
Collapse
|
33
|
Sun C, Wang J, Huang J, Yao D, Wang CZ, Zhang L, Hou S, Chen L, Yuan CS. The Multi-Template Molecularly Imprinted Polymer Based on SBA-15 for Selective Separation and Determination of Panax notoginseng Saponins Simultaneously in Biological Samples. Polymers (Basel) 2017; 9:E653. [PMID: 30965954 PMCID: PMC6418985 DOI: 10.3390/polym9120653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
The feasible, reliable and selective multi-template molecularly imprinted polymers (MT-MIPs) based on SBA-15 (SBA-15@MT-MIPs) for the selective separation and determination of the trace level of ginsenoside Rb₁ (Rb₁), ginsenoside Rg₁ (Rg₁) and notoginsenoside R₁ (R₁) simultaneously from biological samples were developed. The polymers were constructed by SBA-15 as support, Rb₁, Rg₁, R₁ as multi-template, acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. The new synthetic SBA-15@MT-MIPs were satisfactorily applied to solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) for the separation and determination of trace Rb₁, Rg₁ and R₁ in plasma samples. Under the optimized conditions, the limits of detection (LODs) and quantitation (LOQs) of the proposed method for Rb₁, Rg₁ and R₁ were in the range of 0.63⁻0.75 ng·mL-1 and 2.1⁻2.5 ng·mL-1, respectively. The recoveries of R₁, Rb₁ and Rg₁ were obtained between 93.4% and 104.3% with relative standard deviations (RSDs) in the range of 3.3⁻4.2%. All results show that the obtained SBA-15@MT-MIPs could be a promising prospect for the practical application in the selective separation and enrichment of trace Panax notoginseng saponins (PNS) in the biological samples.
Collapse
Affiliation(s)
- Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jinhua Wang
- Department of Pharmacy Intravenous Admixture Service, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Shuying Hou
- Department of Pharmacy Intravenous Admixture Service, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Liu JM, Wei SY, Liu HL, Fang GZ, Wang S. Preparation and Evaluation of Core⁻Shell Magnetic Molecularly Imprinted Polymers for Solid-Phase Extraction and Determination of Sterigmatocystin in Food. Polymers (Basel) 2017; 9:E546. [PMID: 30965842 PMCID: PMC6418914 DOI: 10.3390/polym9100546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Magnetic molecularly imprinted polymers (MMIPs), combination of outstanding magnetism with specific selective binding capability for target molecules, have proven to be attractive in separation science and bio-applications. Herein, we proposed the core⁻shell magnetic molecularly imprinted polymers for food analysis, employing the Fe₃O₄ particles prepared by co-precipitation protocol as the magnetic core and MMIP film onto the silica layer as the recognition and adsorption of target analytes. The obtained MMIPs materials have been fully characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), vibrating sample magnetometer (VSM), and re-binding experiments. Under the optimal conditions, the fabricated Fe₃O₄@MIPs demonstrated fast adsorption equilibrium, a highly improved imprinting capacity, and excellent specificity to target sterigmatocystin (ST), which have been successfully applied as highly efficient solid-phase extraction materials followed by high-performance liquid chromatography (HPLC) analysis. The MMIP-based solid phase extraction (SPE) method gave linear response in the range of 0.05⁻5.0 mg·L-1 with a detection limit of 9.1 µg·L-1. Finally, the proposed method was used for the selective isolation and enrichment of ST in food samples with recoveries in the range 80.6⁻88.7% and the relative standard deviation (RSD) <5.6%.
Collapse
Affiliation(s)
- Jing-Min Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shu-Yuan Wei
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui-Lin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|