1
|
Li Y, Gu Y, Li J, Liu L, Zhang X, Bai Z, Zhang C, Gu T, Yang J. Advanced therapeutic strategy: A single-dose injection of a dual-loaded 6-mercaptopurine gelatin-based hydrogel for effective inhibition of tumor growth. Int J Biol Macromol 2025; 303:140528. [PMID: 39904445 DOI: 10.1016/j.ijbiomac.2025.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
The suboptimal aqueous solubility and pronounced systemic toxicity pose significant constraints on the clinical utility of 6-mercaptopurine (6-MP). This study presents an innovative approach using injectable sustained-release hydrogels for localized drug delivery. A gelatin-based anticancer hydrogel (Gel-MP@Gel@6-MP) was developed to deliver 6-MP through both physical encapsulation and chemical coupling via CS bonds, providing a multistage sustained release platform. In vitro experiments demonstrated that physically encapsuled drug achieved rapid release within 4 h, comparable to intravenous administration kinetics. Furthermore, in the presence of glutathione (GSH), nucleophilic attack triggered slow release of S-(6-purinyl) glutathione (PG) and a minor amount of 6-MP, with sustained release observed for up to 96 h. This suggests that, in contrast to conventional delivery methods, the proposed system not only facilitates an initial high-concentration drug release lasting hours, but also enables the sustained release of drug fragments over an extended period of several days, owing to the gradual cleavage of chemical bonds following one single injection. Ultimately, in vivo antitumor studies revealed superior tumor inhibition with Gel-MP@Gel@6-MP compared to free 6-MP. This dual drug loading strategy significantly prolongs drug action duration and obviates the necessity for repeated drug administrations, thereby revealing the diverse modes of drug administration.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiming Gu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Liu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Xin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhimin Bai
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Chen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China.
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
3
|
Guo LY, Yang YL, Tong JB, Chang ZL, Gao P, Liu Y, Zhang YK, Xing XY. Computational Simulation Study of Potential Inhibition of c-Met Kinase Receptor by Phenoxy pyridine Derivatives: Based on QSAR, Molecular Docking, Molecular Dynamics. Chem Biodivers 2024; 21:e202400782. [PMID: 38923279 DOI: 10.1002/cbdv.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The mesenchymal-epithelial transition factor (c-Met) is a tyrosine kinase receptor protein, and excessive cell transformation can lead to cancer. Therefore, there is an urgent need to develop novel receptor tyrosine kinase inhibitors by inhibiting the activity of c-Met protein. In this study, 41 compounds are selected from the reported literature, and the interactions between phenoxy pyridine derivatives and tumor-associated proteins are systematically investigated using a series of computer-assisted drug design (CADD) methods, aiming to predict potential c-Met inhibitors with high activity. The Topomer CoMFA (q2=0.620, R2=0.837) and HQSAR (q2=0.684, R2=0.877) models demonstrate a high level of robustness. Further internal and external validation assessments show high applicability and accuracy. Based on the results of the Topomer CoMFA model, structural fragments with higher contribution values are identified and randomly combined using a fragment splice technique, result in a total of 20 compounds with predicted activities higher than the template molecules. Molecular docking results show that these compounds have good interactions and van der Waals forces with the target proteins. The results of molecular dynamics and ADMET predictions indicate that compounds Y4, Y5, and Y14 have potential as c-Met inhibitors. Among them, compound Y14 exhibits superior stability with a binding free energy of -165.18 KJ/mol. These studies provide a reference for the future design and development of novel compounds with c-Met inhibitory activity.
Collapse
Affiliation(s)
- Li-Yuan Guo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yu-Lu Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Ze-Lei Chang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Peng Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yuan Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Ya-Kun Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Xiao-Yu Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| |
Collapse
|
4
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Tu Y, Zhang W, Fan G, Zou C, Zhang J, Wu N, Ding J, Zou WQ, Xiao H, Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Deliv 2023; 30:2189106. [PMID: 36916054 PMCID: PMC10026753 DOI: 10.1080/10717544.2023.2189106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
High intracellular reactive oxygen species (ROS) level is characteristic of cancer cells and could act as a target for the efficient targeted drug delivery for cancer treatment. Consequently, biomaterials that react to excessive levels of ROS are essential for biomedical applications. In this study, a novel ROS-responsive polymer based on D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly (β-thioester) (TPGS-PBTE) was synthesized for targeted delivery of the first-line antineoplastic drug, paclitaxel (PTX). The resultant TPGS-PBTE NPs showed good ROS-responsive capability in size change and drug release. Compared to PTX, PTX-loaded nanoparticles (PTX@TPGS-PBTE NPs) showed enhanced cytotoxicity and higher level of apoptosis toward squamous cell carcinoma (SCC-7) cells. Tumor-targeted delivery of the NPs was also observed, especially after being modified with a tumor-targeting peptide, cRGD. Enhanced tumor growth inhibition was also observed in head and neck cancer SCC-7 murine models. In summary, PTX@TPGS-PBTE NPs can achieve good therapeutic effects of PTX against head and neck cancer both in vitro and in vivo, especially when modified by cRGD for active targeting, which enriched the application of ROS responsive system utilized in the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Qing Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Okasha AT, Abdel-Khalek AA, Rudayni HA, Al Zoubi W, Alfassam HE, Allam AA, Abukhadra MR. Synthesis and characterization of Mg-hydroxyapatite and its cellulose hybridized structure as enhanced bio-carrier of oxaliplatin drug; equilibrium and release kinetics. RSC Adv 2023; 13:30151-30167. [PMID: 37849691 PMCID: PMC10577681 DOI: 10.1039/d3ra04268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg HAP) was synthesized and hybridized with cellulose fibers, producing a safe biocomposite (CF/Mg HAP) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy drug during the treatment stages of colorectal cancer. The qualifications of CF/Mg HAP as a carrier for OXPN were followed based on loading, release, and cytotoxicity as compared to Mg HAP. The CF/Mg HAP composite exhibits a notably higher OXPN encapsulation capacity (256.2 mg g-1) than the Mg HAP phase (148.9 mg g-1). The OXPN encapsulation process into CF/Mg HAP displays the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 178.58 mg g-1) as compared to pure Mg HAP (Nm = 69.39 mg g-1). Also, the capacity of each site was enhanced to be loaded by 2 OXPN molecules (n = 1.43) in a vertical orientation. The OXPN encapsulation energy into CF/Mg HAP (<40 kJ mol-1) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CF/Mg HAP exhibit slow and controlled properties for about 100 h, either at pH 5.5 or pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/Mg HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (21.82% cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.85% cell viability).
Collapse
Affiliation(s)
- Alaa T Okasha
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Abdel-Khalek
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Haifa E Alfassam
- Princess Nourah Bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
7
|
Daoui O, Nour H, Abchir O, Elkhattabi S, Bakhouch M, Chtita S. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:7768-7785. [PMID: 36120976 DOI: 10.1080/07391102.2022.2124456] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Small molecules such as 4-phenoxypyridine derivatives have remarkable inhibitory activity against c-Met enzymatic activity and proliferation of cancer cell lines. Since there is a relationship between structure and biological activity of these molecules, these little compounds may have great potential for clinical pharmaceutical use against various types of cancer caused by c-Met activity. The purpose of this study was to remodel the structures of 4-phenoxypyridine derivatives to achieve strong inhibitory activity against c-Met and provide favorable pharmacokinetic properties for drug design and discovery. Therefore, this paper describes the structure-activity relationship and the rationalization of appropriate pharmacophore sites to improve the biological activity of the investigated molecules, based on bioinformatics techniques represented by a computer-aided drug design approach. Accordingly, robust and reliable 3D-QSAR models were developed based on CoMFA and CoMSIA techniques. As a result, 46 lead molecules were designed and their biological and pharmacokinetic activities were predicted in silico. Screening filters by 3D-QSAR, Molecular Docking, drug-like and ADME-Tox identified the computer-designed compounds P54 and P55 as the best candidates to achieve high inhibition of c-Met enzymatic activity compared to the synthesized template compound T14. Finally, through molecular dynamics simulations, the structural properties and dynamics of c-Met free and complex (PDB code: 3LQ8) in the presence of 4-phenoxypyridine-derived compounds in an aqueous environment are discussed. Overall, the rectosynthesis of the designed drug inhibitors (P54 and P55) and their in vitro and in vivo bioactivity evaluation may be attractive for design and discovery of novel drug effective to inhibit c-Met enzymatic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
8
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Insight into the Physiochemical and Cytotoxic Properties of β-cyclodextrin Hybridized Zeoilitic Diatomite as an Enhanced Carrier of Oxaliplatin Drug: Loading, Release, and Equilibrium Studies. J Inorg Organomet Polym Mater 2023; 33:2984-3001. [DOI: 10.1007/s10904-023-02731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 01/04/2025]
|
9
|
Alqahtani MD, Nasser N, AlZahrani SA, Allam AA, Abukhadra MR. Characterization of Kaolinite Single Methoxy Nano-Sheets as Potential Carriers of Oxaliplatin Drug of Enhanced Loading, Release, and Cytotoxicity Properties During the Treatment of Colorectal Cancer. J Inorg Organomet Polym Mater 2023; 33:2111-2126. [DOI: 10.1007/s10904-023-02634-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/26/2023] [Indexed: 01/04/2025]
|
10
|
Alqahtani MD, Nasser N, Bin Jumah MN, AlZahrani SA, Allam AA, Abukhadra MR, Bellucci S. Insight into the Morphological Properties of Nano-Kaolinite (Nanoscrolls and Nanosheets) on Its Qualification as Delivery Structure of Oxaliplatin: Loading, Release, and Kinetic Studies. Molecules 2023; 28:5158. [PMID: 37446820 DOI: 10.3390/molecules28135158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Natural kaolinite underwent advanced morphological-modification processes that involved exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes (KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-medication (OXAP) delivery systems. The morphological-transformation processes resulted in a remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite (6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was accomplished by multi-molecular processes, including physical mechanisms considering both the Gaussian energy (<8 KJ/mol) and the loading energy (<40 KJ/mol). The release activity of OXAP from KNs and KNTs exhibits continuous and regulated profiles up to 100 h, either by KNs or KNTs, with substantially faster characteristics for KNTs. Based on the release kinetic investigations, the release processes have non-Fickian transport-release features, indicating cooperative-diffusion and erosion-release mechanisms. The synthesized structures have a significant cytotoxicity impact on HCT-116 cancer cell lines (KNs (71.4% cell viability and 143.6 g/mL IC-50); KNTs (11.3% cell viability and 114.3 g/mL IC-50). Additionally, these carriers dramatically increase OXAP's cytotoxicity (2.04% cell viability, 15.4 g/mL IC-50 (OXAP/KNs); 0.6% cell viability, 4.5 g/mL IC-50 (OXAP/KNTs)).
Collapse
Affiliation(s)
- Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nourhan Nasser
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - May N Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleha A AlZahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
11
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Characterization of cellulose-functionalized phillipsite biocomposite as an enhanced carrier of oxaliplatin drug during the treatment of colorectal cancer: loading, release, and cytotoxicity. RSC Adv 2023; 13:16327-16341. [PMID: 37266494 PMCID: PMC10231141 DOI: 10.1039/d3ra02243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Natural phillipsite (N.Ph) was hybridized with cellulose fibers to produce a safe biocomposite (CF/N.Ph) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment stages of colorectal cancer cells. The requirements of CF/N.Ph as a carrier for OXPN were followed based on the loading, release, and cytotoxicity compared to N.Ph. CF/N.Ph composite exhibits a notably higher OXPN encapsulation capacity (311.03 mg g-1) than the N.Ph phase (79.6 mg g-1). The OXPN encapsulation processes into CF/N.Ph display the isotherm behavior of the Freundlich model (R2 = 0.99) and the kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 100.01 mg g-1) compared to pure N.Ph (Nm = 27.94 mg g-1). Additionally, the capacity of each site was enhanced to be loaded by 4 OXPN molecules (n = 3.11) compared to 3 by N.Ph (n = 2.85) in a vertical orientation. The OXPN encapsulation energy into CF/N.Ph (<40 kJ mol-1) reflects physical encapsulation reactions involving electrostatic attraction, van der Waals forces, and hydrogen bonding. The OXPN release profiles of CF/N.Ph exhibit slow and controlled properties for about 150 h either at pH 5.5 or at pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/N.Ph particles display a considerable cytotoxic effect on HCT-116 cancer cells (46.91% cell viability), and its OXPN-loaded product shows a strong cytotoxic effect (3.14% cell viability).
Collapse
Affiliation(s)
- Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Menna-Tullah Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| |
Collapse
|
12
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose functionalized zeolitic diatomite as an enhanced carrier of oxaliplatin drug; loading, release, and cytotoxicity. Int J Biol Macromol 2023; 235:123825. [PMID: 36828091 DOI: 10.1016/j.ijbiomac.2023.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Natural diatomite frustules (D) were incorporated in zeolitization and cellulose functionalization processes to obtain zeolitized diatomite (ZD) and cellulose fibrous/zeolitized diatomite composite (CF/ZD). The modified products were assessed as potential carriers of oxaliplatin drug (OXPL) with enhanced properties. The prepared ZD (112.5 mg/g) and CF/ZD (268.3 mg/g) structures exhibit significantly enhanced encapsulation capacities as compared to raw diatomite (65.9 mg/g). The occurred encapsulation reactions follow the classic Pseudo-first order kinetic (R2 > 0.93) and traditional Langmuir isotherm (R2 = 0.99). The estimated effective encapsulation site density of CF/ZD is 104.8 mg/g which is a notably higher value than ZD (44.6 mg/g) and D (28.4 mg/g). Moreover, each effective site can be occupied with up to 3 molecules of OXPL molecules in vertical forms involving multi-molecular mechanisms. The encapsulation energy (<40 KJ/mol) suggested the predominant effects of the physical mechanisms during the encapsulation reactions. The release profiles of ZD as well as CF/ZD exhibit slow and controlled properties for about 100 h either at pH 5.5 or at pH 7.4. The release kinetic studies involving the obtained diffusion exponent values (>0.45) suggested non-Fickian transport and complex erosion/diffusion release mechanism. These structures exhibit enhanced cytotoxic effects on the HCT-116 cancer cell lines (D (18.78 % cell viability), ZD (9.76 % cell viability), and CF/ZD (3.16 % cell viability).
Collapse
Affiliation(s)
- Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Menna-Tullah Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
13
|
Hohagen M, Guggenberger P, Kiss E, Kählig H, Marko D, Del Favero G, Kleitz F. TANNylation of mesoporous silica nanoparticles and bioactivity profiling in intestinal cells. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Characterization of β-cyclodextrin/phillipsite (β-CD/Ph) composite as a potential carrier for oxaliplatin as therapy for colorectal cancer; loading, release, and cytotoxicity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129144] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Altoom N, Ashraf MT, Ibrahim SM, Othman SI, Allam AA, Alqhtani HA, Abukhadra MR. Insight into the loading, release, and anticancer properties of cellulose/zeolite-A as an enhanced delivery structure for oxaliplatin chemotherapy; characterization and mechanism. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2022; 103:752-765. [DOI: 10.1007/s10971-022-05866-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2025]
|
17
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
18
|
Ghosh S, Kundu M, Dutta S, Mahalanobish S, Ghosh N, Das J, Sil PC. Enhancement of anti-neoplastic effects of cuminaldehyde against breast cancer via mesoporous silica nanoparticle based targeted drug delivery system. Life Sci 2022; 298:120525. [PMID: 35378139 DOI: 10.1016/j.lfs.2022.120525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
Abstract
AIMS Synthesis of novel drug delivery system for targeted delivery of cuminaldehyde to breast cancer cells and the subsequent analyses of anti-neoplastic potential of the drug. MAIN METHODS 3-carboxy-phenyl boronic acid (PBA) conjugated and polyacrylic acid (PAA) gated mesoporous silica nanoparticles (MSNs) were synthesized for the targeted delivery of cuminaldehyde (CUM) to breast cancer cells. Enhancement of anti-neoplastic effects of cuminaldehyde (4-isopropylbenzaldehyde) by the nanoconjugates was assessed. KEY FINDINGS The anti-cancer effects of non-targeted and targeted drug-nanoconjugates were examined in vitro and in vivo. The targeted drug-nanoconjugates caused cell cycle arrest and induced the intrinsic pathway of apoptosis in MCF-7 cells through mitochondrial damage. In vivo intravenous injection of the targeted drug-nanoconjugates led to effective reduction in growth of 4 T1 induced mammary pad tumor in female BALB/c mice via augmented accumulation of cuminaldehyde. The drug-nanoconjugates did not exhibit any systemic toxicity. SIGNIFICANCE Therefore, MSN-PBA-CUM-PAA represents a potent therapeutic model for breast cancer treatment.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
19
|
Shen F, Tao D, Peng R, He Y, Liu Z, Ji J, Feng L. Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials 2022; 283:121428. [DOI: 10.1016/j.biomaterials.2022.121428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
20
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
|
22
|
Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, Zeng X. New advances in gated materials of mesoporous silica for drug controlled release. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
24
|
Magnetic-fluorescent nanoliposomes decorated with folic acid for active delivery of cisplatin and gemcitabine to cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021; 177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Over the last years, respiratory diseases represent a clinical concern, being included among the leading causes of death in the world due to the lack of effective lung therapies, mainly ascribed to the pulmonary barriers affecting the delivery of drugs to the lungs. In this way, nanomedicine has arisen as a promising approach to overcome the limitations of current therapies for pulmonary diseases. The use of nanoparticles allows enhancing drug bioavailability at the target site while minimizing undesired side effects. Despite different approaches have been developed for pulmonary delivery of drugs, including the use of polymers, lipid-based nanoparticles, and inorganic nanoparticles, more efforts are required to achieve effective pulmonary drug delivery. This review provides an overview of the clinical challenges in main lung diseases, as well as highlighted the role of nanomedicine in achieving efficient pulmonary drug delivery. Drug delivery into the lungs is a complex process limited by the anatomical, physiological and immunological barriers of the respiratory system. We discuss how nanomedicine can be useful to overcome these pulmonary barriers and give insights for the rational design of future nanoparticles for enhancing lung treatments. We also attempt herein to display more in detail the potential of mesoporous silica nanoparticles (MSNs) as promising nanocarrier for pulmonary drug delivery by providing a comprehensive overview of their application in lung delivery to date while discussing the use of these particles for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
26
|
Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26:750-764. [PMID: 34154500 DOI: 10.1080/10837450.2021.1944205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.
Collapse
Affiliation(s)
- Hakan Nazlı
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Gülşah Gedik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| |
Collapse
|
27
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
28
|
Phogat S, Saxena A, Kapoor N, Aggarwal C, Tiwari A. Diatom mediated smart drug delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Tabasi H, Hamed Mosavian M, Sabouri Z, Khazaei M, Darroudi M. pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for Oxaliplatin loading and colon cancer treatment. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Zhao M, Zheng YH, Zhao QY, Zheng W, Yang JH, Pei HY, Liu L, Liu KJ, Xue LL, Deng DX, Wang L, Ma X, Fu SH, Peng AH, Tang MH, Luo YZ, Ye HY, Chen LJ. Synthesis and evaluation of new compounds bearing 3-(4-aminopiperidin-1-yl)methyl magnolol scaffold as anticancer agents for the treatment of non-small cell lung cancer via targeting autophagy. Eur J Med Chem 2021; 209:112922. [PMID: 33069436 DOI: 10.1016/j.ejmech.2020.112922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
Magnolol and honokiol are the two major active ingredients with similar structure and anticancer activity from traditional Chinese medicine Magnolia officinalis, and honokiol is now in a phase I clinical trial (CTR20170822) for advanced non-small cell lung cancer (NSCLC). In search of potent lead compounds with better activity, our previous study has demonstrated that magnolol derivative C2, 3-(4-aminopiperidin-1-yl)methyl magnolol, has better activity than honokiol. Here, based on the core of 3-(4-aminopiperidin-1-yl)methyl magnolol, we synthesized fifty-one magnolol derivatives. Among them, compound 30 exhibited the most potent antiproliferative activities on H460, HCC827, H1975 cell lines with the IC50 values of 0.63-0.93 μM, which were approximately 10- and 100-fold more potent than those of C2 and magnolol, respectively. Besides, oral administration of 30 and C2 on an H460 xenograft model also demonstrated that 30 has better activity than C2. Mechanism study revealed that 30 induced G0/G1 phase cell cycle arrest, apoptosis and autophagy in cancer cells. Moreover, blocking autophagy by the autophagic inhibitor enhanced the anticancer activity of 30in vitro and in vivo, suggesting autophagy played a cytoprotective role on 30-induced cancer cell death. Taken together, our study implied that compound 30 combined with autophagic inhibitor could be another choice for NSCLC treatment in further investigation.
Collapse
Affiliation(s)
- Min Zhao
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yun-Hua Zheng
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qi-Yuan Zhao
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wei Zheng
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jian-Hong Yang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - He-Ying Pei
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ling Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Kong-Jun Liu
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lin-Lin Xue
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - De-Xin Deng
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lun Wang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xu Ma
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Su-Hong Fu
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ai-Hua Peng
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ming-Hai Tang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yun-Zi Luo
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Hao-Yu Ye
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Li-Juan Chen
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
31
|
Rathod S, Bahadur P, Tiwari S. Nanocarriers based on vitamin E-TPGS: Design principle and molecular insights into improving the efficacy of anticancer drugs. Int J Pharm 2021; 592:120045. [DOI: 10.1016/j.ijpharm.2020.120045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
|
32
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
33
|
Oliveira ALCDSL, Zerillo L, Cruz LJ, Schomann T, Chan AB, de Carvalho TG, Souza SVDP, Araújo AA, de Geus-Oei LF, de Araújo Júnior RF. Maximizing the potency of oxaliplatin coated nanoparticles with folic acid for modulating tumor progression in colorectal cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111678. [PMID: 33545840 DOI: 10.1016/j.msec.2020.111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
One of the challenges of nanotechnology is to improve the efficacy of treatments for diseases, in order to reduce morbidity and mortality rates. Following this line of study, we made a nanoparticle formulation with a small size, uniform surfaces, and a satisfactory encapsulation coefficient as a target for colorectal cancer cells. The results of binding and uptake prove that using the target system with folic acid works: Using this system, cytotoxicity and cell death are increased when compared to using free oxaliplatin. The data show that the system maximized the efficiency of oxaliplatin in modulating tumor progression, increasing apoptosis and decreasing resistance to the drug. Thus, for the first time, our findings suggest that PLGA-PEG-FA increases the antitumor effectiveness of oxaliplatin by functioning as a facilitator of drug delivery in colorectal cancer.
Collapse
Affiliation(s)
- Ana Luiza C de S L Oliveira
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luana Zerillo
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands.
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | | | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Shirley Vitória de P Souza
- Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Aurigena A Araújo
- Postgraduate Program in Public Health and Pharmaceutical Science and Pharmacology, Department of Biophysics and Farmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Raimundo F de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands; Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, 59064 741 Natal, RN, Brazil.
| |
Collapse
|
34
|
Hao L, Li X, Wang Y. Synthesis of mesoporous silicate molecular sieves by the aerosol-assisted method for loading and release of drug. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200650. [PMID: 33204450 PMCID: PMC7657891 DOI: 10.1098/rsos.200650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The mesoporous silicate molecular sieves were synthesized with polyether F127 as the template by the aerosol-assisted method for loading and release of ibuprofen (IBU). The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption-desorption isotherms. The drug IBU was applied as a model drug to investigate the drug release behaviour by ultraviolet spectrophotometry measurements. The investigation results demonstrate that mesoporous silicate molecular sieves by the aerosol-assisted method are spherical with a core-shell structure. As the drug carrier, it has good structural stability and can achieve drug controlled release which is expected. It exhibits safety to a certain degree. Therefore, the aerosol-assisted synthesis method provides a new idea for the synthesis of sustained-release drug carriers.
Collapse
Affiliation(s)
| | | | - Yang Wang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
35
|
Li Y, Xu P, He D, Xu B, Tu J, Shen Y. Long-Circulating Thermosensitive Liposomes for the Targeted Drug Delivery of Oxaliplatin. Int J Nanomedicine 2020; 15:6721-6734. [PMID: 32982229 PMCID: PMC7494235 DOI: 10.2147/ijn.s250773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Oxaliplatin (L-OHP) is a well-known third-generation platinum anticancer drug with severe systemic- and neuro-toxicity. The main objective of the current research was to develop a targeted long-circulating thermosensitive smart-release liposome (LCTL) system for better therapeutic efficacy and less toxicity. Methods The reverse-phase evaporation method (REV) was used to prepare L-OHP loaded LCTL (L-OHP/LCTL). The physical characteristics were evaluated including encapsulation efficiency (EE), size, zeta potential and stability. The release behavior, cytotoxicity and in vivo evaluation were also carried out. Results EE of LCTL was around 25% with a uniform size distribution, and LCTL achieved almost complete release at 42°C while it was only 10% at 37°C. Moreover, the LCTL showed significantly higher cytotoxicity at 42°C than that at 37°C. The in vivo results indicated LCTL could target tumors and enhance retention for more than 24 h, thereby enhancing anti-tumor efficacy on 4T1-bearing mice. Discussion These results indicated that LCTL not only possessed a prolonged circulation time but it also enhanced accumulation and achieved selective release at the tumor sites. Conclusively, LCTL could serve as a promising carrier for oxaliplatin delivery to treat solid tumors.
Collapse
Affiliation(s)
- Yanan Li
- China Pharmaceutical University, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Nanjing 210009, People's Republic of China
| | - Pengcheng Xu
- China Pharmaceutical University, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Nanjing 210009, People's Republic of China
| | - Dongsheng He
- China Pharmaceutical University, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Nanjing 210009, People's Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong 226001, People's Republic of China
| | - Jiasheng Tu
- China Pharmaceutical University, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Nanjing 210009, People's Republic of China
| | - Yan Shen
- China Pharmaceutical University, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Nanjing 210009, People's Republic of China
| |
Collapse
|
36
|
Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111526. [PMID: 33255079 DOI: 10.1016/j.msec.2020.111526] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Nanocarriers have demonstrated great promise in the delivery of hydrophobic drugs particularly to tumor spaces by enhanced permeability and retention (EPR) effects. Mesoporous silica nanoparticles (MSNs) are the attractive nanocarrier system to reduce the drug's toxic side effects, enable controlled drug release, prevent drug degradation and provide a biocompatible and biodegradable high surface area carrier. Surface-modified MSNs have been applied to increase drug loading and efficiency. In this study, functionalized MSNs loaded with methotrexate (MTX) were designed for use as a cytotoxic agent. The MSNs were first modified with 3-triethoxysilylpropylamine (APTES) and then with chitosan through covalent coupling mediated by glutaraldehyde. The physicochemical properties of the nanoparticles were optimized for each step. The loading percentage (12.2%) and release profile of MTX as an anti-breast cancer drug, loaded at amine-modified MSNs, were measured via high performance liquid chromatography (HPLC). Moreover, the uptake profiles of fluorescein isothiocyanate (FITC)-labeled MSN-APTES-chitosan with or without MTX were monitored on MCF7 cancer cells via confocal microscopy. Following exposure of nanoparticles to body fluids, they were surrounded by specific proteins that may affect their cellular uptake. Hence, the adsorption profiles of protein corona on the surface of MSN, amine-modified MSN and MTX-loaded MSN-APTES-chitosan were analyzed. The cytotoxic potential for killing breast cancer cells was also studied. The MTX loaded MSN-APTES-chitosan showed a positive effect at a low dose (0.5 μM MTX). In this study, we introduce a new method to synthesize biodegradable MSNs with small and uniform particle size, achieve high MTX loading via covalent amine and chitosan-functionalization, monitor the cellular uptake and demonstrate the potential to decrease the viability of breast cancer cells at low dose.
Collapse
Affiliation(s)
- Zahra Shakeran
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehrnaz Keyhanfar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Synthesis of exfoliate bentonite/cellulose nanocomposite as a delivery system for Oxaliplatin drug with enhanced loading and release properties; cytotoxicity and pharmacokinetic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Tian L, Abukhadra MR, Mohamed AS, Nadeem A, Ahmad SF, Ibrahim KE. Insight into the Loading and Release Properties of an Exfoliated Kaolinite/Cellulose Fiber (EXK/CF) Composite as a Carrier for Oxaliplatin Drug: Cytotoxicity and Release Kinetics. ACS OMEGA 2020; 5:19165-19173. [PMID: 32775918 PMCID: PMC7408237 DOI: 10.1021/acsomega.0c02529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 05/22/2023]
Abstract
Kaolinite layers were exfoliated as single sheets and admixed with cellulose fibers, forming an advanced exfoliated kaolinite/cellulose fiber (EXK/CF) composite, which was characterized as a promising carrier for the oxaliplatin (OL) drug to induce safety as well as the therapeutic effect. The EXK/CF composite exhibited promising loading capacity and achieved an experimental value of 670 mg/g and an expected theoretical value of 704.4 mg/g. The loading behavior of OL using the EXK/CF composite followed the pseudo-first-order kinetic model and the Langmuir equilibrium model, achieving an adsorption energy of 7.7 kJ/mol. This suggested physisorption and homogeneous loading behavior of the OL molecules in a monolayer form. The release profile of OL from EXK/CF continued for about 100 h with maximum release percentages of 86.4 and 95.2% in the phosphate and acetate buffers, respectively. The determined diffusion exponent from the Korsmeyer-Peppas kinetic model suggested non-Fickian transport behavior of the OL molecules and releasing behavior controlled by erosion as well as diffusion mechanisms. Regarding the cytotoxic effect, the EXK/CF composite has a high safety impact on the normal colorectal cells (CCD-18Co) and higher toxic impacts on the colorectal cancer cell (HCT116) than the free oxaliplatin drug.
Collapse
Affiliation(s)
- Lijun Tian
- Deputy
Chief Physician, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef 62511, Egypt
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Aya S. Mohamed
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef 62511, Egypt
- Department
of Environment and Industrial Development, Faculty of Postgraduate
Studies for Advanced Sciences, Beni-Suef
University, Beni Suef 62511, Egypt
| | - Ahmed Nadeem
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
39
|
Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release. J CHEM-NY 2020. [DOI: 10.1155/2020/9176257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper introduces the synthesis of mesoporous silica nanoparticles (MSNs) with three different groups such as amine, thiol, and sulfonic acid, along the internal surface. Trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride was used to modify the external surface of the nanomaterials. Such materials allow control of the drug release from MSN pores. Multifunctional MSNs were loaded with doxycycline (Doxy) to study their capacities and uploading time. The loading profile indicates that sulfonic groups in the internal surface were the most efficient surfaces with a loading capacity of ca. 35% in 90 min in acidic media.
Collapse
|
40
|
Jajaei MS, Rafiei S. Preparation of drug delivery system based on poly (lactide-glycolide) and evaluation of parameters affecting its structure for cancer treatment. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Wang C, Zhang R, Tan J, Meng Z, Zhang Y, Li N, Wang H, Chang J, Wang R. Effect of mesoporous silica nanoparticles co‑loading with 17‑AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2. Oncol Rep 2020; 43:1491-1502. [PMID: 32323855 PMCID: PMC7108023 DOI: 10.3892/or.2020.7537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/19/2020] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive tumor with a poor prognosis and a low median survival rate because of insufficient effective therapeutic modalities. Recently, mesoporous silica nanoparticles (MSNs) as a green non-toxic and safe nanomaterial have shown advantages to be a drug carrier and to modify the targeting group to the targeted therapy. To aim of the study was to explore the effects of MSNs co-loading with 17-allylamino-17-demethoxy-geldanamycin (17-AAG; HSP90 inhibitor) and 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2; mTOR inhibitor) by targeting vascular endothelial growth factor receptor 2 (VEGFR2) on the viability of human anaplastic thyroid carcinoma FRO cells. The cytotoxicity of 17-AAG and Torin2 were analyzed by MTT assay. The possible synergistic antitumor effects between 17-AAG and Torin2 were evaluated by CompuSyn software. Flow cytometry was performed to assess the VEGFR2 targeting of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab and uptake by FRO cells. An ATC xenograft mouse model was established to assess the antitumor effect of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab in vivo. The results revealed that the combination of 17-AAG and Torin2 inhibited the growth of FRO cells more effectively compared with single use of these agents. Additionally, the synergistic antitumor effect appeared when concentration ratio of the two drugs was 1:1 along with total drug concentration greater than 0.52 µM. Furthermore, in an ATC animal model, it was revealed that the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab therapy modality could most effectively prolong the median survival time [39.5 days vs. 33.0 days (non-targeted) or 27.5 days (control)]. Compared to (17-AAG+Torin2)@MSNs, the (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab could not only inhibit ATC cell growth but also prolong the median survival time of tumor-bearing mice in vivo and vitro more effectively, which may provide a new promising therapy for ATC.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yueqian Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, P.R. China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
42
|
Xu Y, Xiao L, Chang Y, Cao Y, Chen C, Wang D. pH and Redox Dual-Responsive MSN-S-S-CS as a Drug Delivery System in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1279. [PMID: 32178282 PMCID: PMC7143049 DOI: 10.3390/ma13061279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer-Emmett-Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| |
Collapse
|
43
|
Kankala RK, Liu CG, Yang DY, Wang SB, Chen AZ. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. CHEMICAL ENGINEERING JOURNAL 2020; 383:123138. [DOI: 10.1016/j.cej.2019.123138] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110786. [PMID: 32409023 DOI: 10.1016/j.msec.2020.110786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to prepare a promising drug carrier for treatment of lung cancer. The self-assembly nanoparticles of SDP-GEM/PEI-PEG-anti-EGFR with chemotherapeutic drug of gemcitabine (GEM), Magnetic resonance imaging (MRI) guided- imaging and targeting of anti- Epidermal Growth Factor Receptor (anti-EGFR) were designed. The imaging capacity, targeting feasibility and anti-tumor function were evaluated respectively. SDP-GEM/PEI-PEG-anti-EGFR exhibited contrast enhancement under T2 Weight Image (T2WI) and a liner relationship was found between the concentration and relaxation rate of R2 and R2* in vitro. With the targeting of anti-EGFR, the endocytosis of nanoparticles increased significantly, which effectively killed lung cancer cells in vitro, and importantly it can be accurately delivered to tumor site within 3 h in vivo. Prolonged lifetime and smaller tumor volume demonstrated that SDP-GEM/PEI-PEG-anti-EGFR efficiently inhibited tumor growth in vivo. Therefore, SDP-GEM/PEI-PEG-anti-EGFR was an effective and safe drug carrier, which had a great potential application in MRI-guided lung cancer therapy.
Collapse
|
45
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Zhu Y, Xing L, Zheng X, Yang CX, He YJ, Zhou TJ, Jin QR, Jiang HL. Amplification of tumor antigen presentation by NLGplatin to improve chemoimmunotherapy. Int J Pharm 2020; 573:118736. [DOI: 10.1016/j.ijpharm.2019.118736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/14/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023]
|
47
|
Sapre N, Chakraborty R, Purohit P, Bhat S, Das G, Bajpe SR. Enteric pH responsive cargo release from PDA and PEG coated mesoporous silica nanoparticles: a comparative study in Drosophila melanogaster. RSC Adv 2020; 10:11716-11726. [PMID: 35496595 PMCID: PMC9050832 DOI: 10.1039/c9ra11019d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/13/2020] [Indexed: 01/16/2023] Open
Abstract
Physiological stimulus-specific cargo release from nanoparticle carriers is a holy grail of drug delivery research. While the majority of such work is carried out in vitro with cell lines, widespread use of common mammalian model systems – mice and rats – is difficult due to the associated cost and regulatory restrictions. Here we use the inexpensive, easily reared, excellent genetic model system Drosophila melanogaster to test pH responsive cargo release from widely used mesoporous silica nanoparticles (MSNs) coated with pH sensitive polydopamine (PDA) and polyethylene glycol (PEG) polymers. We synthesized 650 ± 75 nm diameter PDA or PEG coated mesoporous silica nanoparticles loaded with a fluorescent dye and fed to individual adult flies. Subsequently, the passage of the particles were monitored through the fly gut. As in mammals, the fly intestine has multiple pH specific zones that are easily accessible for imaging and also genetic, biochemical or physiological manipulations. We observed that both the species of MSNs ruptured around the acidic (pH < 4.0) middle midgut of the flies. PEG coated particles showed sharper specificity of release in the acidic middle midgut of flies than the PDA coated ones and had less tendency to clump together. Our results clearly show that the Drosophila gut can be used as a model to test pH responsive biocompatible materials in vivo. Our work paves the way for greater use of Drosophila as an in vivo complete systemic model in drug delivery and smart materials research. It also suggests that such specific delivery of chemical/biological cargo can be exploited to study basic biology of the gut cells and their communication with other organs. Targeted delivery in Drosophila middle mid-gut at pH < 4.0.![]()
Collapse
Affiliation(s)
- Nidhi Sapre
- Symbiosis Centre for Nanoscience and Nanotechnology
- Symbiosis International (Deemed University) (SIU)
- Pune
- India
| | | | | | | | - Gaurav Das
- National Centre for Cell Science
- Pune
- India
| | - Sneha R. Bajpe
- Symbiosis Centre for Nanoscience and Nanotechnology
- Symbiosis International (Deemed University) (SIU)
- Pune
- India
| |
Collapse
|
48
|
Liu M, Sun X, Liao Z, Li Y, Qi X, Qian Y, Fenniri H, Zhao P, Shen J. Zinc oxide end-capped Fe 3O 4@mSiO 2 core-shell nanocarriers as targeted and responsive drug delivery system for chemo-/ions synergistic therapeutics. Drug Deliv 2019; 26:732-743. [PMID: 31340678 PMCID: PMC6713220 DOI: 10.1080/10717544.2019.1642419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 10/31/2022] Open
Abstract
Multifunctional core-shell nanocarriers based on zinc oxide (ZnO)-gated magnetic mesoporous silica nanoparticles (MMSN) were prepared for cancer treatment through magnetic targeting and pH-triggered controlled drug release. Under an external magnetic field, the MMSN could actively deliver chemotherapeutic agent, daunomycin (DNM), to the targeted sites. At neutral aqueous, the functionalized MMSN could stably accommodate the DNM molecules since the mesopores were capped by the ZnO gatekeepers. In contrast, at the acid intercellular environment, the gatekeepers would be removed to control the release of drugs due to the dissolution of ZnO. Meanwhile, ZnO quantum dots not only rapidly dissolve in an acidic condition of cancer cells but also enhance the anti-cancer effect of Zn2+. An in vitro controlled release proliferation indicated that the acid sensitive ZnO gatekeepers showed well response by the 'on-off' switch of the pores. Cellular experiments against cervical cancer cell (HeLa cells) further showed that functionalized MMSN significantly suppressed cancer cells growth through synergistic effects between the chemotherapy and Zn2+ ions with monitoring the treatment process. These results suggested that the ZnO-gated MMSN platform is a promising approach to serve as a pH-sensitive system for chemotherapies delivery and Zn2+ controlled release for further application in the treatment of various cancers by synergistic effects.
Collapse
Affiliation(s)
- Minchao Liu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihui Liao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yahui Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaoliang Qi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hicham Fenniri
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
49
|
Yuan X, Peng S, Lin W, Wang J, Zhang L. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. J Colloid Interface Sci 2019; 555:82-93. [DOI: 10.1016/j.jcis.2019.07.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
|
50
|
Chaves NL, Amorim DA, Lopes CAP, Estrela-Lopis I, Böttner J, de Souza AR, Báo SN. Comparison of the effect of rhodium citrate-associated iron oxide nanoparticles on metastatic and non-metastatic breast cancer cells. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Nanocarriers have the potential to improve the therapeutic index of currently available drugs by increasing drug efficacy, lowering drug toxicity and achieving steady-state therapeutic levels of drugs over an extended period. The association of maghemite nanoparticles (NPs) with rhodium citrate (forming the complex hereafter referred to as MRC) has the potential to increase the specificity of the cytotoxic action of the latter compound, since this nanocomposite can be guided or transported to a target by the use of an external magnetic field. However, the behavior of these nanoparticles for an extended time of exposure to breast cancer cells has not yet been explored, and nor has MRC cytotoxicity comparison in different cell lines been performed until now. In this work, the effects of MRC NPs on these cells were analyzed for up to 72 h of exposure, and we focused on comparing NPs’ therapeutic effectiveness in different cell lines to elect the most responsive model, while elucidating the underlying action mechanism.
Results
MRC complexes exhibited broad cytotoxicity on human tumor cells, mainly in the first 24 h. However, while MRC induced cytotoxicity in MDA-MB-231 in a time-dependent manner, progressively decreasing the required dose for significant reduction in cell viability at 48 and 72 h, MCF-7 appears to recover its viability after 48 h of exposure. The recovery of MCF-7 is possibly explained by a resistance mechanism mediated by PGP (P-glycoprotein) proteins, which increase in these cells after MRC treatment. Remaining viable tumor metastatic cells had the migration capacity reduced after treatment with MRC (24 h). Moreover, MRC treatment induced S phase arrest of the cell cycle.
Conclusion
MRC act at the nucleus, inhibiting DNA synthesis and proliferation and inducing cell death. These effects were verified in both tumor lines, but MDA-MB-231 cells seem to be more responsive to the effects of NPs. In addition, NPs may also disrupt the metastatic activity of remaining cells, by reducing their migratory capacity. Our results suggest that MRC nanoparticles are a promising nanomaterial that can provide a convenient route for tumor targeting and treatment, mainly in metastatic cells.
Collapse
|