1
|
Sadeghi E, Morgen P, Makovec D, Gyergyek S, Sharma R, Andersen SM. Scalable Solid-State Synthesis of Carbon-Supported Ir Electrocatalysts for Acidic Oxygen Evolution Reaction: Exploring the Structure-Activity Relationship. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53750-53763. [PMID: 39316097 DOI: 10.1021/acsami.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enhancing iridium (Ir)-based electrocatalysts to achieve high activity and robust durability for the oxygen evolution reaction (OER) in acidic environments has been an ongoing mission in the commercialization of proton exchange membrane (PEM) electrolyzers. In this study, we present the synthesis of carbon-supported Ir nanoparticles (NPs) using a modified impregnation method followed by solid-state reduction, with Ir loadings of 20 and 40 wt % on carbon. Among the catalysts, the sample with an Ir loading of 20 wt % synthesized at 1000 °C with a heating rate of 300 °C/h demonstrated the highest mass-normalized OER performance of 1209 A gIr-1 and an OER current retention of 80% after 1000 cycles of cyclic voltammetry (CV). High-resolution STEM images confirmed the uniform dispersion of NPs, with diameters of 1.6 ± 0.4 nm across the support. XPS analysis revealed that the C-O and C═O peaks shifted slightly toward higher binding energies for the best-performing catalyst. In comparison, the metallic Ir state shifted toward lower binding energies compared to other samples. This suggests electron transfer from the carbon support to the Ir NPs, indicating a potential interaction between the catalyst and the support. This work underscores the strong potential of the solid-state method for the scalable synthesis of supported Ir catalysts.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Per Morgen
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Darko Makovec
- Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Saso Gyergyek
- Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Raghunandan Sharma
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Shuang Ma Andersen
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|
2
|
Li W, Yin D, Li P, Zhao X, Hao S. Iridium single-atoms anchored on a TiO 2 support as an efficient catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 2024; 26:19822-19830. [PMID: 38988227 DOI: 10.1039/d4cp01878h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Single-atom catalysts (SACs) play a vital role in the hydrogen evolution reaction (HER) owing to the highly desirable atom efficiency and the minimal amount of precious metals. Herein, we use TiO2 nanosheets to anchor stable atomically dispersed iridium (Ir) to be used as a catalyst (Ir@TiO2) for the HER. The atomic dispersion of Ir on the TiO2 substrate is confirmed by aberration-corrected scanning transmission electron microscopy and it is anchored by numerous surface functional groups on abundantly exposed basal planes in TiO2. In acidic media, the Ir@TiO2 catalyst (1.35 wt% Ir) shows a low overpotential (41 mV at 10 mA cm-2), a small Tafel slope of 42 mV dec-1, and a decent durability for 1000 cycles of the HER with the polarization curve having only a 1 mV shift, which are comparable with those of a commercial Pt/C catalyst with 20 wt% Pt. This work paves a way to design Ir atomically anchored catalysts with low cost and high activity.
Collapse
Affiliation(s)
- Wenxuan Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Dashu Yin
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Peng Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Xinhua Zhao
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Shengcai Hao
- Beijing Academy of Science and Technology, Beijing 100089, China.
- College of Materials Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
4
|
Wang J, Liu H, Fan S, Wang S, Xu G, Guo A, Wang Z. Dehydrogenation of Cycloalkanes over N-Doped Carbon-Supported Catalysts: The Effects of Active Component and Molecular Structure of the Substrate. NANOMATERIALS 2021; 11:nano11112846. [PMID: 34835611 PMCID: PMC8617684 DOI: 10.3390/nano11112846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Efficient dehydrogenation of cycloalkanes under mild conditions is the key to large-scale application of cycloalkanes as a hydrogen storage medium. In this paper, a series of active metals loaded on nitrogen-doped carbon (M/CN, M = Pt, Pd, Ir, Rh, Au, Ru, Ag, Ni, Cu) were prepared to learn the role of active metals in cycloalkane dehydrogenation with cyclohexane as the model reactant. Only Pt/CN, Pd/CN, Rh/CN and Ir/CN can catalyze the dehydrogenation of cyclohexane under the set conditions. Among them, Pt/CN exhibited the best catalytic activity with the TOF value of 269.32 h−1 at 180 °C, followed by Pd/CN, Rh/CN and Ir/CN successively. More importantly, the difference of catalytic activity between these active metals diminishes with the increase in temperature. This implies that there is a thermodynamic effect of cyclohexane dehydrogenation with the synthetic catalysts, which was evidenced by the study on the activation energy. In addition, the effects of molecular structure on cycloalkane dehydrogenation catalyzed by Pt/CN were studied. The results reveal that cycloalkane dehydrogenation activity and hydrogen production rate can be enhanced by optimizing the type, quantity and position of alkyl substituents on cyclohexane.
Collapse
Affiliation(s)
| | - He Liu
- Correspondence: (H.L.); (Z.W.); Tel.: +86-0532-86980607 (H.L.); Fax: +86-0532-86981787 (H.L.)
| | | | | | | | | | - Zongxian Wang
- Correspondence: (H.L.); (Z.W.); Tel.: +86-0532-86980607 (H.L.); Fax: +86-0532-86981787 (H.L.)
| |
Collapse
|
5
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Peng Y, Liu Q, Lu B, He T, Nichols F, Hu X, Huang T, Huang G, Guzman L, Ping Y, Chen S. Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03747] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Peng
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ting He
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Xiao Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tiffanie Huang
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Grace Huang
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Lizette Guzman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Lu Y, Wang W, Xie F. Investigation of oxygen evolution reaction kinetic process and kinetic parameters on iridium electrode by electrochemistry impedance spectroscopy analysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Zhu JY, Xue Q, Xue YY, Ding Y, Li FM, Jin P, Chen P, Chen Y. Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14064-14070. [PMID: 32125818 DOI: 10.1021/acsami.0c01937] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3-RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm-2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3-RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h-1 mgcat-1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yuan-Yuan Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Ding
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Pujun Jin
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|