1
|
Wang Z, Mu X, Yang Q, Luo J, Zhao Y. Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha. J Colloid Interface Sci 2022; 628:106-115. [PMID: 35987150 DOI: 10.1016/j.jcis.2022.08.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
The overexpression of hypoxia-inducible factor-1 alpha (HIF-1α) in solid tumor compromises the potency of chemotherapy under hypoxia. The high level of HIF-1α arises from the stabilization effect of reduced nicotinamideadeninedinucleotide(phosphate) NAD(P)H: quinone oxidoreductase 1 (NQO1). It was postulated that the inhibition of NQO1 could degrade HIF-1α and sensitize hypoxic cancer cells to antineoplastic agents. In the current work, we report hypoxia-responsive polymer micelles, i.e. methoxyl poly(ethylene glycol)-co-poly(aspartate-nitroimidazole) orchestrate with a NQO1 inhibitor (dicoumarol) to sensitize the ovarian cancer cell line (SKOV3) to a model anticancer agent (sorafenib) at low oxygen conditions. Both cargos were physically encapsulated in the nanoscale micelles. The placebo micelles transiently induced the depletion of reduced nicotinamideadeninedinucleotidephosphate (NADPH) as well as glutathione and thioredoxin under hypoxia, which further inactivated NQO1 because NADPH was the cofactor of NQO1. As a consequence, the expression of HIF-1α was repressed due to the dual action of dicoumarol and polymer. The degradation of HIF-1α significantly increased the vulnerability of SKOV3 cells to sorafenib-induced apoptosis, as indicated by the enhancement of cytotoxicity, and increase of caspase 3 and cytochrome C. The current work opens new avenues of addressing hypoxia-induced drug resistance in chemotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xuewen Mu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Qian Yang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jiajia Luo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022; 64:517-543. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The natural bioactive or nutraceuticals exhibit several health benefits, including anti-inflammatory, anti-cancer, metal chelation, antiviral, and antimicrobial activity. The inherent limitation of nutraceuticals or bioactive ligand(s) in terms of poor pharmacokinetic and other physicochemical properties affects their overall therapeutic efficiency. The excess of iron in the physiological compartments and its varying dynamic oxidation state [Fe(II) and Fe(III)] precipitates various clinical conditions such as non-transferrin bound iron (NTBI), labile iron pool (LIP), ferroptosis, cancer, etc. Though several natural bioactive ligands are proposed to chelate iron, the efficiency of bioactive ligands is limited due to poor bioavailability, denticity, and other related physicochemical properties. The present review provides insight into the relevance of studying the dynamic oxidation state of iron(II) and iron(III) in the physiological compartments and its clinical significance for selecting diagnostics and therapeutic regimes. We suggested a three-pronged approach, i.e., diagnosis, selection of therapeutic regime (natural bioactive), and integration of novel drug delivery systems (NDDS) or nanotechnology-based principles. This systematic approach improves the overall therapeutic efficiency of natural iron chelators to manage iron overload-related clinical conditions.
Collapse
Affiliation(s)
- K N Lokesh
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
4
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
5
|
Enhanced Fe 3+ binding through cooperativity of 3-hydroxypyridin-4-one groups within a linear co-polymer: wrapping effect leading to superior antimicrobial activity. Biometals 2020; 33:339-351. [PMID: 33074473 DOI: 10.1007/s10534-020-00253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
To tackle the rise of antibiotic resistant pathogenic microbes, iron withdrawal agents have shown considerable promise as antibiotic alternatives due to the microbes' irreplaceable metabolic need for the essential element iron. DIBI is a water-soluble, linear co-polymer functionalized with 3-hydroxy-pyridin-4-one (HPO) chelators that selectively and strongly bind iron(III) in biological environments. Compared to HPO congeners, DIBI has over 1000 times higher antimicrobial activity against a broad-spectrum of Gram-(+) and Gram-(-) bacteria including highly antibiotic resistant clinical isolates. Herein, we explain the enhanced antimicrobial activity of DIBI by a cooperativity effect of the linear co-polymer wrapping around three iron(III) centres. DIBI's structural and iron(III) binding properties were investigated by comparative experiments against HPO monomer and deferiprone using chemical and physical characterization methods with direct biological implications such as pH stability, reductive off-loading of bound iron(III), trans-membrane permeability, and competition experiments with vertebrate transferrin class iron carrier. The three iron(III) ions bound to DIBI are preferentially incorporated into a tris-bidentate chelates, which forces the linear backbone of the polymer to wrap around the complexes, as the bound iron was much less susceptible to dithionite reduction than the tris iron(III) complexes of HPO monomers and deferiprone. The results suggest a high degree of cooperativity of the polymer-bound HPO groups to effect a wrapping of the polymer backbone around the chelated iron, shielding the iron(III) centres from ready access by microbes. The structural effect of DIBI is compared to polymers containing 3-hydroxy-pyridin-4-one chelators that do not undergo this wrapping effect.
Collapse
|
6
|
Jones G, Goswami SK, Kang H, Choi HS, Kim J. Combating iron overload: a case for deferoxamine-based nanochelators. Nanomedicine (Lond) 2020; 15:1341-1356. [PMID: 32429801 PMCID: PMC7304435 DOI: 10.2217/nnm-2020-0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
While iron is a nutrient metal, iron overload can result in multiple organ failures. Iron chelators, such as deferoxamine, are commonly used to ameliorate iron overload conditions. However, their uses are limited due to poor pharmacokinetics and adverse effects. Many novel chelator formulations have been developed to overcome these drawbacks. In this review, we have discussed various nanochelators, including linear and branched polymers, dendrimers, polyrotaxane, micelles, nanogels, polymeric nanoparticles and liposomes. Although these research efforts have mainly been focused on nanochelators with longer half-lives, prolonged residence of polymers in the body could raise potential safety issues. We also discussed recent advances in nanochelation technologies, including mechanism-based, long-acting nanochelators.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sumanta Kumar Goswami
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Gao M, Deng J, Liu F, Fan A, Wang Y, Wu H, Ding D, Kong D, Wang Z, Peer D, Zhao Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019; 223:119486. [DOI: 10.1016/j.biomaterials.2019.119486] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022]
|
8
|
Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. Int J Pharm 2019; 566:342-351. [DOI: 10.1016/j.ijpharm.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|