1
|
Qin Y, Chai B, Sun Y, Zhang X, Fan G, Song G. Amino-functionalized cellulose composite for efficient simultaneous adsorption of tetracycline and copper ions: Performance, mechanism and DFT study. Carbohydr Polym 2024; 332:121935. [PMID: 38431402 DOI: 10.1016/j.carbpol.2024.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
A novel cellulose composite (denoted as PEI@MMA-1) with porous interconnected structure was prepared by adsorbing methyl cellulose (MC) onto microcrystalline cellulose (MCC) and cross-linking polyethyleneimine (PEI) with MCC by the action of epichlorohydrin, which had the excellent adsorption property, wettability and elasticity. The performances of PEI@MMA-1 composite for removing tetracycline (TC), Cu2+ and coexistent pollutant (TC and Cu2+ mixture) were systematically explored. For single TC or Cu2+ contaminant, the maximum adsorption capacities were 75.53 and 562.23 mg/g at 30 °C, respectively, while in the dual contaminant system, they would form complexes and Cu2+ could play a "bridge" role to remarkably promote the adsorption of TC with the maximum adsorption capacities of 281.66 and 253.58 mg/g for TC and Cu2+. In addition, the adsorption kinetics, isotherms and adsorption mechanisms of single-pollutant and dual-pollutant systems have been thoroughly investigated. Theoretical calculations indicated that the amide group of TC molecule with the assistance of Cu2+ interacted with the hydroxyl group of PEI@MMA-1 composite to enhance the TC adsorption capacity. Cycle regeneration and fixed bed column experiments revealed that the PEI@MMA-1 possessed the excellent stability and utility. Current PEI@MMA-1 cellulose composite exhibited a promising application for remediation of heavy metals and antibiotics coexistence wastewater.
Collapse
Affiliation(s)
- Yi Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bo Chai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Ya Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Xiaohu Zhang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
2
|
Zhang X, Cai T, Zhang S, Hou J, Cheng L, Chen W, Zhang Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132862. [PMID: 39492100 DOI: 10.1016/j.jhazmat.2023.132862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
While the occurrence and removal technologies of tetracyclines in the environment have been reported, a comprehensive systematic summary and analysis remain limited, especially for new generations compounds such as doxycycline. In this review, the latest information regarding the distribution of various tetracyclines in different countries over the past seven years (2017-2023) reveals a notable absence of research reports in North America and Oceania. With China as the representative country, the investigation indicates that the maximum concentrations of TCs exceed 5 µg/L. The maximum concentration of tetracyclines in feces (26.22 µg/L) can reach one order of magnitude higher than that in other media. Furthermore, advanced oxidation technologies, such as Fenton processes, electrochemical oxidation, photolysis, ozonation, etc., were also examined, and the median degradation rate achieved 91.9-97.67%. Reactions such as methylation, demethylation, hydroxylation, dehydration, ring cleavage, and oxidation were observed during degradation. The most common intermediate product was identified as m/z = 461 (C22H25N2O9). This review indicates that future efforts should emphasize understanding the occurrence and fate of new-generation tetracyclines in the environment.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
3
|
Alaa Abdulhusain N, Tark Abd Ali Z. Green approach for fabrication of sand-bimetallic (Fe/Pb) nanocomposite as reactive material for remediation of contaminated groundwater using permeable reactive barrier. ALEXANDRIA ENGINEERING JOURNAL 2023; 72:511-530. [DOI: 10.1016/j.aej.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Yang Z, Sun Y, Hou Z, Yu H, Li M, Li Y, Li Y, Gao B, Xu S. Repeated fluctuation of Cu 2+ concentration during photocatalytic purification of SMZ-Cu 2+ combined pollution: Behavior, mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130768. [PMID: 36640508 DOI: 10.1016/j.jhazmat.2023.130768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Although the effect of Cu2+ on antibiotic removal during photocatalytic reaction has been studied in depth, there is less known about the effect of antibiotics on Cu2+ removal. In this study, we report for the first time that, during the photocatalytic purification of sulfamerazine (SMZ) and Cu2+ combined pollution, Cu2+ concentration showed an obvious five-stage fluctuation, which was completely different from the simple promotion or inhibition reported in previous studies. By employing HPLC-MS analysis and density functional theory (DFT) calculation, the repeated fluctuation of Cu2+ concentration was found to be closely related to the SMZ degradation process, mainly resulting from solution pH drop and formation of Cu-containing intermediates which acted as sacrificial agents for Cu2+ reduction. In addition, compared with the SMZ-free system, the presence of SMZ can greatly enhance the deep removal of Cu2+ (minimum Cu2+ concentration was only 0.17 mg/L vs. 1.28 mg/L without SMZ), and there was a wide time interval to ensure the efficient recovery of Cu metal. More interestingly, the in-situ obtained Cu-decorated TiO2 photocatalyst performed well in water splitting, nitrogen fixation and bacterial sterilization. Results of this study confirmed the great potential of photocatalytic technology in purifying antibiotic-heavy metal combined pollution.
Collapse
Affiliation(s)
- Zitong Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yunkai Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haiyan Yu
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yude Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shiping Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Chen J, Ren Q, Xu C, Chen B, Chen S, Ding Y, Jin Z, Guo W, Jia X. Efficient degradation of imidacloprid in wastewater by a novel p-n heterogeneous Ag2O/BiVO4/diatomite composite under hydrogen peroxide. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Yu Y, Sun Y, Ge B, Yan J, Zhang K, Chen H, Hu J, Tang J, Song S, Zeng T. Synergistic removal of organic pollutants from water by CTF/BiVO 4 heterojunction photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27570-27582. [PMID: 36385341 DOI: 10.1007/s11356-022-24184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Herein, a series of covalent triazine framework/bismuth vanadate (CTF/BiVO4) heterojunction catalysts were prepared using the hydrothermal method. The mechanism of the CTF/BiVO4 heterojunction photocatalyst in the system was examined to provide a theoretical basis for constructing a high-efficiency photocatalysis composite system for removing organic pollutants from water. Compared with CTF and BiVO4 catalysts alone, composite materials have been shown to have significantly higher degradation efficiencies against organic pollutants in water. Moreover, the degradation effect was found to be optimal when the mass ratio of CTF to BiVO4 was 1:1 (1-CTF/BiVO4). On the basis of physicochemical characterization results, it was concluded that the effective construction of CTF/BiVO4 composite photocatalyst material systems and the formation of type II heterojunction structures between CTF and BiVO4 effectively promote the separation of photogenerated carriers and increase the interface charge transfer efficiency.
Collapse
Affiliation(s)
- Yan Yu
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Yanan Sun
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Beixiao Ge
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Jiawen Yan
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Kaili Zhang
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Hui Chen
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Jinxing Hu
- College of Science & Technology, Ningbo University, Ningbo, 315212, People's Republic of China
| | - Juntao Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| |
Collapse
|
7
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
8
|
Jiang Y, Xing C, Chen Y, Shi J, Wang S. Preparation of BiFeO 3 and photodegradation of tetracycline pollutant in the UV-heterogeneous Fenton-like system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57656-57668. [PMID: 35353309 DOI: 10.1007/s11356-022-19806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Surplus tetracycline in the water body causes damage to the ecology balance and human health. Therefore, this work established an efficient strategy, namely, the BFO-based UV-heterogeneous Fenton-like system, to eliminate TC pollution. The photocatalytic oxidation system has been integrated with the heterogeneous Fenton-like system, cooperated with the photolysis of H2O2. These synergistic effects could boost the generation of reactive species for the TC degradation and mineralization, due to the reduction of Fe(III) to Fe(II) by photogenerated electrons and the separation of photogenerated electron-hole pairs. The prepared BFO was stable with no secondary pollution, and could be recovered by an extra magnet to reuse. Compared with other single oxidation systems, this coupled system showed an outstanding performance in TC disposal, and TC and TOC removal efficiencies could reach 100% and 74.92%, respectively. Moreover, the mechanisms for TC degradation involved that TC was degraded by oxidation species, such as superoxide radicals, hydroxyl radicals, and positive holes, and intermediate products in the TC degradation process mainly were products at m/z = 459, m/z = 445, and m/z = 134. The promising TC disposal efficiency achieved by the integration between BFO-based photocatalytic and heterogeneous Fenton-like system sheds light on applying BFO to control water pollution.
Collapse
Affiliation(s)
- Yongwei Jiang
- Jiangsu Provincial Academy of Environmental Science Co., Ltd, Nanjing, 210036, People's Republic of China
| | - Chao Xing
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yue Chen
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| | - Jing Shi
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Sheng Wang
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| |
Collapse
|
9
|
Balu S, Chuaicham C, Balakumar V, Rajendran S, Sasaki K, Sekar K, Maruthapillai A. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. CHEMOSPHERE 2022; 298:134311. [PMID: 35307392 DOI: 10.1016/j.chemosphere.2022.134311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical organics are a vital milestone in contemporary human research since they treat various diseases and improve the quality of human life. However, these organic compounds are considered one of the major environmental hazards after the conception, along with the massive rise in antimicrobial resistance (AMR) in an ecosystem. There are various biological and catalytic technologies existed to eliminate these organics in aqueous system with their limitation. Advanced Oxidation processes (AOPs) are used to decompose these pharmaceutical organic compounds in the wastewater by generating reactive species with high oxidation potential. This review focused various photocatalysts, and photocatalytic oxidation processes, especially core-shell materials for photo (electro)catalytic application in pharmaceutical wastewater decomposition. Moreover, we discussed in details about the design and recent developments of core shell catalysts and comparison for photocatalytic, electrocatalytic and photo electrocatalytic applications in pharmaceutical wastewater treatment. In addition, the mixture of inorganic and organic core-shell materials, and metal-organic framework-based core-shell catalysts discussed in detail for antibiotic degradation.
Collapse
Affiliation(s)
- Surendar Balu
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Arthanareeswari Maruthapillai
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Song X, Mo J, Fang Y, Luo S, Xu J, Wang X. Synthesis of magnetic nanocomposite Fe 3O 4@ZIF-8@ZIF-67 and removal of tetracycline in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35204-35216. [PMID: 35048341 DOI: 10.1007/s11356-021-18042-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
We prepared a double-layer magnetic nanocomposite Fe3O4@ZIF-8@ZIF-67 by layer-by-layer self-assembly. Fe3O4@ZIF-8@ZIF-67 was used to remove tetracycline from an aqueous solution via a combination of adsorption and Fenton-like oxidation. Depending on the outstanding porous structure of the Fe3O4@ZIF-8@ZIF-67, a high adsorption capacity for tetracycline was 356.25 mg g-1, with > 95.47% removal efficiency within 100 min based on Fenton-like oxidation. To better understand the mechanisms involved in integrated adsorption and Fenton-like oxidation, various advanced characterization techniques were used to monitor the changes in morphology and composition of Fe3O4@ZIF-8@ZIF-67 before and after removal of tetracycline. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) all supported adsorption and Fenton oxidation of tetracycline. This study extends the application of Fe3O4@ZIF-8@ZIF-67 for environmental remediation.
Collapse
Affiliation(s)
- Xu Song
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jingqian Mo
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yuting Fang
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Shumin Luo
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jingjing Xu
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Xu Wang
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Gopal G, Natarajan C, Mukherjee A. Synergistic removal of tetracycline and copper (II) by in-situ B-Fe/Ni nanocomposite—A novel and an environmentally sustainable green nanomaterial. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 25:102187. [DOI: 10.1016/j.eti.2021.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
12
|
Sustainable preparation of graphene-analogue boron nitride by ball-milling for adsorption of organic pollutants. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Synthesis and property analysis of high magnetic and stable ternary composite Fe3O4/BiOBr/BiOI. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Bi J, Tao Q, Huang X, Wang J, Wang T, Hao H. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. CHEMOSPHERE 2021; 284:131270. [PMID: 34323782 DOI: 10.1016/j.chemosphere.2021.131270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water remediation techniques have been extensively investigated due to the increasing threats of soluble pollutants posed on the human health, ecology and sustainability. Confronted with the complex composition matrix of wastewater, the simultaneous elimination of coexisting multi-pollutants remains a great challenge due to their different physicochemical properties. By integrating multi-contaminants elimination processes into one unit operation, simultaneous decontamination attracted more and more attention under the consideration of versatile applications and economical benefits. In this review, the state-of-art simultaneous decontamination methods were systematically summarized as chemical precipitation, adsorption, photocatalysis, oxidation-reduction, biological removal and membrane filtration. Their applications, mechanisms, mutual interactions, sustainability and recyclability were outlined and discussed in detail. Finally, the prospects and opportunities for future research were proposed for further development of simultaneous decontamination. This work could provide guidelines for the design and fabrication of well-organized simultaneous decontaminating system.
Collapse
Affiliation(s)
- Jingtao Bi
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingqing Tao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| | - Jingkang Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China
| | - Ting Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Li Y, Lin X, Zhang C, Zhuang Q, Dong W. Polydopamine magnetic microspheres grafted with sulfonic acid groups for efficient adsorption of tetracycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Xu G, Du M, Li T, Guan Y, Guo C. Facile synthesis of magnetically retrievable Fe3O4/BiVO4/CdS heterojunction composite for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Bhattacharyya P, Basak S, Chakrabarti S. Advancement towards Antibiotic Remediation: Heterostructure and Composite materials. ChemistrySelect 2021. [DOI: 10.1002/slct.202100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Puja Bhattacharyya
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sanchari Basak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
18
|
Wei J, Chen Z, Tong Z. Engineering Z-scheme silver oxide/bismuth tungstate heterostructure incorporated reduced graphene oxide with superior visible-light photocatalytic activity. J Colloid Interface Sci 2021; 596:22-33. [DOI: 10.1016/j.jcis.2021.03.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022]
|
19
|
Gao P, Yang Y, Yin Z, Kang F, Fan W, Sheng J, Feng L, Liu Y, Du Z, Zhang L. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125186. [PMID: 33516110 DOI: 10.1016/j.jhazmat.2021.125186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical active compounds (PhACs), as a kind of widely used pharmaceutical drugs, has attracted much attention. The bismuth oxyhalides (BiOX)-based photocatalysis can remove PhACs efficiently due to its unique layered structure, optical and electronic properties. Nevertheless, the rapid recombination of photogenerated electron-hole pairs, and the inherent instability of structure have limited its practical application. In order to solve these problems, recent modification studies tend to focus on facet control, elemental doping, bismuth-rich strategies, defect engineering and heterojunction. Therefore, the objective of this review is to summarize the recent developments in multiply modified strategies for PhACs degradation. The synthesis methods, photocatalytic properties and the enhancement mechanism are elaborated. Besides, based on theoretical calculation, the reactive sites of typical PhACs attacked by different reactive oxygen species were also proposed. Subsequently, challenges and opportunities in applications are also featured which include factors, viz., dissolution of halogen ions, instability under visible light, applications of real water/wastewater, intermediates and byproducts toxicity analysis of BiOX-based photocatalysis. Finally, the perspectives of BiOX-based photocatalysis for PhACs photodegradation in actual water applications are highlighted.
Collapse
Affiliation(s)
- Peng Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Yuning Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Ze Yin
- Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Department of Water Resource and Environment, Hebei GEO University, No. 136 Huai'an Road, Shijiazhuang 050031, Hebei, PR China
| | - Fengxin Kang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Waner Fan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Jiayi Sheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
20
|
Amaly N, El-Moghazy AY, Sun G, Pandey PK. Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl alcohol-co-ethylene)/polyaniline metal complex nanofibrous membranes. J Colloid Interface Sci 2021; 597:9-20. [PMID: 33862449 DOI: 10.1016/j.jcis.2021.03.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Antibiotic residues from animal wastes enter underground and surface water streams, posing high risks to public health. Novel technologies capable of removing the residues from the matrix of concern such as animal waste should be developed. This research investigates the development of nanofiber absorbent for removing tetracycline (TC) antibiotic residues from liquid streams of dairy manure produced in a typical dairy farm. Hierarchically structured nanofibrous adsorbent was developed through growing a uniform polyaniline (PAni) nanodots on poly (vinyl alcohol-co-ethylene) (EVOH) nanofiber membrane (NFM). Moreover, Cu2+ ions were chelated on the developed EVOH/PAni-Cl NFM to improve TC adsorption efficiency and selectivity. The TC adsorption capacities of EVOH/PAni-Cl-Cu2+ and EVOH/PAni-Cl) NFM were 1100 mg g-1 and 600 mg g-1 within 120 min., respectively. The NFMs adsorption efficiency was investigated using dairy wastewater. Initial TC concentrations in dairy wastewater sample varied between 20 and 50 ppm. The EVOH/PAni-Cl-Cu2+ NFM showed TC removal of 86% from dairy manure samples at 25 ppm initial TC concentration within 60 min. during batch mode treatment. Results showed that the dynamic binding efficiency of 450 mg g-1 can be achieved at an initial TC concentration of 50 ppm. Furthermore, the NFM displayed efficient chemical and physical stability even after 8 cycles of reusing without significant changes in its performance or hazardous Cu2+ leaching.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA
| | - Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA.
| |
Collapse
|
21
|
Khanmohammadi M, Shahrouzi JR, Rahmani F. Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:862-879. [PMID: 32820444 DOI: 10.1007/s11356-020-10546-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
In this research, tetracycline photodegradation under UV light was investigated over bare TiO2 and a series of MCM-41 supported CuO-TiO2 heterojunctions varying in CuO content with the intent of exploring the effect of MCM-41 presence and especially, CuO addition. Several techniques including XRD, FESEM, EDX, DRS, BET, and PL were applied to characterize the physicochemical and photophysical properties of synthesized nanocomposites. It was found that the co-existence of MCM-41 and CuO enhances the surface dispersion of Ti species, leading to less number of agglomerates and smaller particle size of TiO2, which it promoted photophysical properties and reinforced the interaction of surface species with the support and thereby, the photosite leachings were lessened. However, the excessive loadings alleviate the synergetic effect of CuO due to the significant decrease of surface area, the appearance of more number of agglomerations, and surface coverage of MCM-41. The results revealed that CuO addition not only enhances the photocatalytic activity of TiO2/MCM-41 but also makes it reusable in further experiments. It was also observed that the highest photodegradation of tetracycline was obtained over TiO2-CuO/MCM-41 nanocomposite containing 5 wt% CuO. It is attributed to less electron-hole recombination, appropriate band gap, smaller number of agglomerations, and more uniform dispersion of photosites. Following the obtained results, a possible reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Morteza Khanmohammadi
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Javad Rahbar Shahrouzi
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Farhad Rahmani
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O. Box 66177-15175, Sanandaj, Iran.
| |
Collapse
|
22
|
Minale M, Gu Z, Guadie A, Kabtamu DM, Li Y, Wang X. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111310. [PMID: 32891984 DOI: 10.1016/j.jenvman.2020.111310] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Tetracyclines are extensively used to treat human and animal infectious diseases due to its effective antimicrobial activities. About 70-90% of its parent materials are released into the environment through urine and feces, implying they are the most frequently detected antibiotics in the environment with high ecological risks. Adsorption and photocatalysis have been promising techniques for the removal of tetracyclines due to effectiveness and efficiency. Graphene-based materials provide promising platforms for adsorptive and photocatalytic removal of tetracyclines from aqueous environment owning to distinctive remarkable physicochemical, optical, and electrical characteristics. Herein, we intensively reviewed the available literatures in order to provide comprehensive insight about the applications and mechanisms of graphene-based materials for removal of tetracyclines via adsorption and phototocatalysis. The synthesis methods of graphene-based materials, the tetracycline adsorption and photocatalytic-degradation conditions, and removal mechanisms have been extensively discussed. Finally concluding remarks and future perspectives have been deduced and recommended to stimulate further researches in the subject. The review study can be used as theoretical guideline for further researchers to improve the current approaches of material synthesis and application towards tetracyclines removal.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zaoli Gu
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| |
Collapse
|
23
|
Fabrication of Fe2O3/g-C3N4@N-TiO2 photocatalyst nanotube arrays that promote bisphenol A photodegradation under simulated sunlight irradiation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116924] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wang Y, He J, Wu P, Luo D, Yan R, Zhang H, Jiang W. Simultaneous Removal of Tetracycline and Cu(II) in Hybrid Wastewater through Formic-Acid-Assisted TiO2 Photocatalysis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dingyuan Luo
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Runhua Yan
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hao Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
25
|
Naing HH, Wang K, Li Y, Mishra AK, Zhang G. Sepiolite supported BiVO 4 nanocomposites for efficient photocatalytic degradation of organic pollutants: Insight into the interface effect towards separation of photogenerated charges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137825. [PMID: 32217434 DOI: 10.1016/j.scitotenv.2020.137825] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Although the construction of clay-supported photocatalyst is a promising strategy to develop the low cost and high activity photocatalyst, only few works researched the effect of their interfaces on the photocatalytic performance. Herein, a monoclinic BiVO4/sepiolite nanocomposite was fabricated as case to study the transport mechanism of photogenerated carries based on the interfaces effect. The obtained BiVO4/sepiolite nanocomposites exhibited excellent visible light photocatalytic performance. The photocatalytic degradation rates of antibiotic tetracyclines (TCs) and methylene blue (MB) by the nanocomposites are 2 and 5.34 times higher than that by pure BiVO4 under visible light irradiation. XPS and Raman spectra confirmed the strong interfaces effect existing between BiVO4 and sepiolite clay. Moreover, PL and transient photocurrent response suggested that the strong interfaces effect effectively promoted the separation of photogenerated electron-hole pairs and further enhanced the photocatalytic performance. In addition, the results of trapping experiments revealed that the photo-induced holes (h+) were the dominant active species in the photocatalytic mechanism. This work illuminates the photocatalytic mechanism of monoclinic BiVO4/sepiolite nanocomposites and provides a novel strategy for designing the clay-supported photocatalyst for degradation of organic pollutants.
Collapse
Affiliation(s)
- Htet Htet Naing
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kai Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Ajay Kumar Mishra
- Nanotechnology and Water Sustainability Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Rooderport, Johannesburg, South Africa
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
26
|
Plasmonic Z-scheme Pt-Au/BiVO4 photocatalyst: Synergistic effect of crystal-facet engineering and selective loading of Pt-Au cocatalyst for improved photocatalytic performance. J Colloid Interface Sci 2020; 570:232-241. [DOI: 10.1016/j.jcis.2020.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 11/23/2022]
|
27
|
Tang Q, Li B, Ma W, Gao H, Zhou H, Yang C, Gao Y, Wang D. Fabrication of a double-layer membrane cathode based on modified carbon nanotubes for the sequential electro-Fenton oxidation of p-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18773-18783. [PMID: 32207003 DOI: 10.1007/s11356-020-08364-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
To improve the electrocatalytic efficiency of the cathode and provide a wider pH range in the electro-Fenton process, N-doped multi-walled carbon nanotubes (NCNTs) and ferrous ion complexed with carboxylated carbon nanotubes (CNT-COOFe2+) were used to fabricate the diffusion layer and catalyst layer of a membrane cathode, respectively. The morphology, structure, and composition of CNT-COOFe2+ were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The oxygen reduction performance of NCNT was evaluated using cyclic voltammetry (CV) and the rotating disk electrode technique (RDE). In addition, a potential application of the cathode in sequential electro-Fenton degradation of p-nitrophenol (p-NP) was investigated. The results revealed that iron was successfully doped on the carboxylated carbon nanotubes in ionic complexation form and the content of iron atoms in CNT-COOFe2+ was 2.65%. Furthermore, the defects on the tube walls provided more reactive sites for the electro-Fenton process. A combination of CV and RDE data indicated that NCNT had better electrocatalytic H2O2 generation activity with a more positive onset potential and higher cathodic peak current response than CNT. A p-NP removal rate of 96.04% was achieved within 120 min, and a mineralization efficiency of 80.26% was obtained at 180 min in the sequential electro-Fenton process at a cathodic potential of - 0.7 V vs SCE and neutral pH. The activity of the used cathode was restored simply through electro-reduction at - 1.0 V vs SCE, and a p-NP removal rate of more than 70% was obtained at 60 min after six regeneration cycles.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China.
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China.
| | - Binglun Li
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Wenge Ma
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hang Gao
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hao Zhou
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China.
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China.
| | - Yonghui Gao
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
| | - Dong Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
28
|
Zhu Y, Liu K, Muhammad Y, Zhang H, Tong Z, Yu B, Sahibzada M. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5155-5167. [PMID: 31845280 DOI: 10.1007/s11356-019-07062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
To reveal the characteristics of tetracycline (TC) photocatalytic degradation under Cu(II) coexistence, effects of Cu(II) on TC photocatalytic degradation by ZnO nanoparticles (ZnO NPs) as a function of pH, humic acid (HA), and initial Cu(II) concentration were investigated. Interaction of TC with Cu(II) in the treatment process was analyzed by circular dichroism (CD) spectroscopy, while TC degradation pathway was investigated by high-performance liquid chromatography-mass spectrometry. Sixty-five percent and ninety-one percent TC degradation within 60 min in the absence and presence of Cu(II), respectively, was reported. Both adsorption and photocatalytic degradation of TC under Cu(II) coexistence increased with increasing pH from 3 to 6, while decreased with further increase in pH. HA inhibited the degradation of TC by ZnO NPs both in the presence as well absence of Cu(II), while TC degradation decreased from 91 to 73% and from 73 to 37% in the presence and absence of Cu(II), respectively. TC degradation by ZnO NPs first increased then decreased with increasing Cu(II). Maximum TC degradation (about 94%) was obtained in the optimum concentration range of Cu(II) (0.05-0.15 mmol/L). In addition, there was a lag effect between TC adsorption and degradation on ZnO NPs. TC degradation was improved via Cu(II)-TC surface complexation and followed N-demethylation and hydroxylation routes. This study could be of potential importance in extrapolating the transformation of TC or other antibiotics under the coexistence of heavy metals in water.
Collapse
Affiliation(s)
- Ying Zhu
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kun Liu
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yaseen Muhammad
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KP, 25120, Pakistan
| | - Hanbing Zhang
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Binbin Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Maria Sahibzada
- Department of Chemistry, Umea University, 90187, Umea, Sweden
| |
Collapse
|
29
|
Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135023. [PMID: 31715480 DOI: 10.1016/j.scitotenv.2019.135023] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 05/03/2023]
Abstract
Antibiotics are becoming emerging contaminants due to their extensive production and consumption, which have caused hazards to the ecological environment and human health. Various techniques have been studied to remove antibiotics from water and wastewater, including biological, physical and chemical methods. Among them, advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability, which are effective for the degradation of antibiotics in aquatic environments. In this review paper, a variety of AOPs, such as Fenton or Fenton-like reaction, ozonation or catalytic ozonation, photocatalytic oxidation, electrochemical oxidation, and ionizing radiation were briefly introduced, including their principles, characteristics, main influencing factors and applications. The current applications of AOPs for the degradation of antibiotics in water and wastewater were analyzed and summarized, the concluding remarks were given and their future perspectives and challenges were discussed.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Run Zhuan
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
30
|
Bahareh K, Habibi MH. High photocatalytic activity of light-driven Fe2TiO5 nanoheterostructure toward degradation of antibiotic metronidazole. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions. J Colloid Interface Sci 2019; 553:688-698. [DOI: 10.1016/j.jcis.2019.06.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
|
32
|
Li J, Yang F, Zhou Q, Ren R, Wu L, Lv Y. A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: Fabrication, visible-light photocatalytic activity and degradation mechanism. J Colloid Interface Sci 2019; 546:139-151. [DOI: 10.1016/j.jcis.2019.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
|
33
|
Huang Z, Dai X, Huang Z, Wang T, Cui L, Ye J, Wu P. Simultaneous and efficient photocatalytic reduction of Cr(VI) and oxidation of trace sulfamethoxazole under LED light by rGO@Cu 2O/BiVO 4p-n heterojunction composite. CHEMOSPHERE 2019; 221:824-833. [PMID: 30684780 DOI: 10.1016/j.chemosphere.2019.01.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/29/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics and heavy metals often coexist in polluted environment, and the harm of combined pollution is greater than that of single pollution. In this study, a series of graphene supported p-n heterojunction rGO@Cu2O/BiVO4 composites are synthesized with different Cu2O doping for simultaneous detoxification of Cr(VI) and antibiotics. The obtained photocatalysts (rGO@Cu2O/BiVO4) with proper loading amount of Cu2O shows the a high photocatalytic degradation activity for simultaneously efficient Cr(VI) reduction and sulfamethoxazole (SMZ) oxidation under LED light at neutral pH. The Cr(VI) was completely transformed to Cr(III) rather than simply Cr(VI) adsorbed on the surface of rGO@Cu2O/BiVO4. The photocatalytic activity of composites can be attributed to excellent electrical conductivity of rGO and the p-n heterojunction between Cu2O and BiVO4, which promotes the spatial separation of photogenerated charges at the heterojunction boundary and inhibits of the photogenerated h+ and e- recombination. It's confirmed that h+, O2- and OH are the main reactive species for the photocatalytic SMZ oxidation, and the most important reactive species is h+. Finally, the tentative degradation pathways of SMZ are proposed based on the liquid chromatography-triple quadrupole mass spectrometry analysis. This work provides an effective approach for the treatment of water that contains SMZ and Cr(VI) under LED light.
Collapse
Affiliation(s)
- Zhiyan Huang
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xide Dai
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Zhongshan Puchuan Testing Technology Co., Ltd., Zhongshan, 528478, PR China
| | - Zhujian Huang
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Tenglu Wang
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lihua Cui
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaer Ye
- Key Laboratory of Agro-environments in Tropics (Ministry of Agriculture), College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Pingxiao Wu
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
34
|
Wang J, Liang J, Sun L, Gao S. PVA/CS and PVA/CS/Fe gel beads' synthesis mechanism and their performance in cultivating anaerobic granular sludge. CHEMOSPHERE 2019; 219:130-139. [PMID: 30537586 DOI: 10.1016/j.chemosphere.2018.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/14/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Biomass washout from high-speed anaerobic suspended bed bio-reactors is still a challenge to their stable operation. Preserving active biomass to efficiently retain biomass in the reactor is one of the solutions to this problem. Herein, two carriers (polyvinyl alcohol/chitosan (PVA/CS) and PVA/CS/Fe gel beads) were prepared using the cross-linking method. The fourier transform infrared (FTIR) and 13C nuclear magnetic resonance (13C NMR) analyses showed that PVA/CS gel beads formed mainly through hydrogen-bonds (NH2OH-). Furthermore, FTIR, 13C NMR, energy dispersive spectrum (EDS), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that PVA/CS/Fe gel beads formed mainly through chelate bond (NH2-FeM+OH-). The scanning electron microscope (SEM) results affirmed that the gel beads had rough and well-developed porous structure for the attachment of microbes. Furthermore, the abilities of gel beads on the cultivation of granular sludge in an up-flow anaerobic sludge bed (UASB) reactor were effectively demonstrated while treating wastewater polluted with glucose and alkali lignin. The results showed that the gel beads-assisted reactors had a higher performance than those without the gel beads. The cultivation of granules in these reactors was accelerated, while the granules became bigger and exhibited better settling velocities. The reactor with gel beads was easier to withstand a higher organic loading rate due to dense microbial aggregates, which were caused by more humic-like substance. Particularly, the reactor with PVA/CS/Fe gel beads was able to improve the overall robustness of the system due to stronger mechanical properties of gel beads, and also prevented cells detachment.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li Sun
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sha Gao
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
35
|
Organosuperbase dendron manganese complex grafted on magnetic nanoparticles; heterogeneous catalyst for green and selective oxidation of ethylbenzene, cyclohexene and oximes by molecular oxygen. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Li J, Yang F, Zhou Q, Wu L, Li W, Ren R, Lv Y. Visible-light photocatalytic performance, recovery and degradation mechanism of ternary magnetic Fe3O4/BiOBr/BiOI composite. RSC Adv 2019; 9:23545-23553. [PMID: 35530612 PMCID: PMC9073387 DOI: 10.1039/c9ra04412d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/09/2020] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The ternary magnetic Fe3O4/BiOBr/BiOI (x : 3 : 1) photocatalysts were successfully synthesized by a facile solvothermal method. The samples were characterized by XRD, SEM, EDS, ICP-AES, XPS, UV-vis DRS, PL and VSM. Nitrogen-containing dye RhB was used as a degradation substrate to evaluate the photocatalytic degradation activities of the samples. The photocatalytic performance of Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) is superior to other Fe3O4/BiOBr/BiOI (x : 3 : 1). Compared with binary magnetic Fe3O4/BiOBr (0.5 : 1) prepared in our previous work, the Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) has obvious advantages in photocatalytic activity and adsorption capacity. And the specific surface area (48.30 m2 g−1) is much larger than that of the previous report (Fe3O4/BiOBr/BiOI (0.5 : 2 : 2)) synthesized by a co-precipitation method. Besides, after 25 s of magnetic field, Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) can be rapidly separated from water. After eight recycling cycles, the magnetic properties, photocatalytic activity, crystallization and morphology of the Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) catalyst remain good. The possible photocatalytic degradation mechanism of RhB under Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) photocatalyst was also proposed. The results indicate that the ternary magnetic Fe3O4/BiOBr/BiOI (0.4 : 3 : 1) composite with high photocatalytic degradation efficiency, good magnetic separation performance and excellent recyclability and stability has potential application prospect in wastewater. The ternary magnetic Fe3O4/BiOBr/BiOI (x : 3 : 1) photocatalysts were successfully synthesized by a facile solvothermal method.![]()
Collapse
Affiliation(s)
- Jianhui Li
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Fan Yang
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Quan Zhou
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Lijie Wu
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Wenying Li
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Ruipeng Ren
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Yongkang Lv
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| |
Collapse
|
37
|
Jiang X, Sang Q, Yang M, Du J, Wang W, Yang L, Han X, Zhao B. Metal-free SERS substrate based on rGO–TiO2–Fe3O4 nanohybrid: contribution from interfacial charge transfer and magnetic controllability. Phys Chem Chem Phys 2019; 21:12850-12858. [DOI: 10.1039/c9cp02160d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We proposed a new ternary nanohybrid rGO–TiO2–Fe3O4 as a magnetically controllable, ultra-sensitive SERS substrate with ultra-high SERS activity and applicability.
Collapse
Affiliation(s)
- Xin Jiang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Qinqin Sang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Ming Yang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Juan Du
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Weie Wang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Libin Yang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- People's Republic of China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| |
Collapse
|