1
|
Liu L, Wang W, Hong Y. A cost-effective and high efficient Janus membrane for the treatment of oily brine using membrane distillation. NANOTECHNOLOGY 2024; 35:305703. [PMID: 38598248 DOI: 10.1088/1361-6528/ad3cd1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Membrane distillation technology could utilize low-grade heat to desalinate brine, but the membrane material often suffers from disadvantages of low permeation flux and weak robustness to contaminants. To address these issues, the commercial polytetrafluoroethylene (PTFE) membrane was modified by cost-effective chemicals of tannic acid and (3-Aminopropyl)-triethoxysilane (APTES) to construct hydrophilic/underwater superoleophobic nano-rough structures on the surface to enhance its flux and oil-fouling resistance in direct contact membrane distillation. The results show that a high underwater oil contact angle of 180° is observed to the membrane surface due to the rough nanostructures functionalized by abundant hydroxyl groups. Despite the additional mass transfer resistance provided by the rough nanostructures, the flux was increased noticeably. This is mainly attributed to the strong interactions between the abundant hydroxyl groups of hydrophilic layer surface and water molecules, leading to a part of free water staying at intermediate transition state (IW). The mass transfer resistance of the hydrophilic layer itself is reduced as a consequence of decreased evaporation enthalpy of water, thereby increasing the flux. Moreover, while the flux of the pristine membrane is reduced by 84.18%, the flux of Janus membrane remains the same when treating mineral oil brine emulsions with oil concentration up to 1500 ppm in comparison with the result for 35 g l-1brine solution, indicating that the Janus membrane is safe from the oil contamination. Our work provides a fine guidance for membrane distillation to treat high oily brine.
Collapse
Affiliation(s)
- Lang Liu
- Key Laboratory of LowGrade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Wang
- Key Laboratory of LowGrade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ye Hong
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| |
Collapse
|
2
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
3
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
5
|
Shi D, Gong T, Wang R, Qing W, Shao S. Control the hydrophilic layer thickness of Janus membranes by manipulating membrane wetting in membrane distillation. WATER RESEARCH 2023; 237:119984. [PMID: 37099871 DOI: 10.1016/j.watres.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Janus membranes with asymmetric wettability have attracted wide attentions for their robust anti-oil-wetting/fouling abilities in membrane distillation (MD). Compared to traditional surface modification approaches, in this study, we provided a new approach which manipulated surfactant-induced wetting to fabricate Janus membrane with a controllable thickness of the hydrophilic layer. The membranes with 10, 20, and 40 μm of wetted layers were obtained by stopping the wetting induced by 40 mg L-1 Triton X-100 (J = 25 L m-2 h-1) at about 15, 40, and 120 s, respectively. Then, the wetted layers were coated using polydopamine (PDA) to fabricate the Janus membranes. The resulting Janus membranes showed no significant change in porosities or pore size distributions compared with the virgin PVDF membrane. These Janus membranes exhibited low in-air water contact angles (< 50°), high underwater oil contact angles (> 145°), and low adhesion with oil droplets. Therefore, they all showed excellent oil-water separation performance with ∼100% rejection and stable flux. The Janus membranes showed no significant decline in flux, but a trade-off existed between the hydrophilic layer thicknesses and the vapor flux. Utilizing membranes with tunable hydrophilic layer thickness, we elucidated the underlying mechanism of such trade-off in mass transfer. Furthermore, the successful modification of membranes with different coatings and in-situ immobilization of silver nanoparticles indicated that this facile modification method is universal and can be further expanded for multifunctional membrane fabrication.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Rui Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, PR China.
| |
Collapse
|
6
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
7
|
Nayak V, Mannekote Shivanna J, Ramu S, Radoor S, Balakrishna RG. Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review. ACS OMEGA 2022; 7:43346-43363. [PMID: 36506161 PMCID: PMC9730468 DOI: 10.1021/acsomega.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.
Collapse
Affiliation(s)
- Vignesh Nayak
- Institute
of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice-532 10, Czech Republic
| | - Jyothi Mannekote Shivanna
- Department
of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru 260083, Karnataka, India
| | - Shwetharani Ramu
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sabarish Radoor
- Department
of Mechanical and Process Engineering, The Sirindhorn International
Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - R. Geetha Balakrishna
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
8
|
Li B, Hou D, Li C, Yun Y. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Yue D, Wang Y, Zhang H, Sun D, Li B, Ye X, Fang W, Liu M. A novel silver / activated - polyvinylidene fluoride - polydimethyl siloxane hydrophilic-hydrophobic Janus membrane for vacuum membrane distillation and its anti-oil-fouling ability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
11
|
Zhang P, Liu W, Rajabzadeh S, Jia Y, Shen Q, Fang C, Kato N, Matsuyama H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Sun L, Guo J, Chen H, Zhang D, Shang L, Zhang B, Zhao Y. Tailoring Materials with Specific Wettability in Biomedical Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100126. [PMID: 34369090 PMCID: PMC8498887 DOI: 10.1002/advs.202100126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/22/2021] [Indexed: 05/02/2023]
Abstract
As a fundamental feature of solid surfaces, wettability is playing an increasingly important role in our daily life. Benefitting from the inspiration of biological paradigms and the development in manufacturing technology, numerous wettability materials with elaborately designed surface topology and chemical compositions have been fabricated. Based on these advances, wettability materials have found broad technological implications in various fields ranging from academy, industry, agriculture to biomedical engineering. Among them, the practical applications of wettability materials in biomedical-related fields are receiving remarkable researches during the past decades because of the increasing attention to healthcare. In this review, the research progress of materials with specific wettability is discussed. After briefly introducing the underlying mechanisms, the fabrication strategies of artificial materials with specific wettability are described. The emphasis is put on the application progress of wettability biomaterials in biomedical engineering. The prospects for the future trend of wettability materials are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jiahui Guo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Dagan Zhang
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Luoran Shang
- Zhongshan‐Xuhui Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Bing Zhang
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Yuanjin Zhao
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
13
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
14
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Huang X, Zhang S, Xiao W, Luo J, Li B, Wang L, Xue H, Gao J. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118500] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Sun F, Li TT, Zhang X, Shiu BC, Zhang Y, Ren HT, Peng HK, Lin JH, Lou CW. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. CHEMOSPHERE 2020; 254:126873. [PMID: 32957285 DOI: 10.1016/j.chemosphere.2020.126873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The removal of organic pollutants from water is highly desired because of the development of industrial and social economy. Superhydrophilic and underwater superoleophobic membranes are emerging materials for effective oil/water separation. In this paper, superhydrophilic and underwater superoleophobic polypropylene (PP) melt-blown membranes were prepared through melt-blown and in situ growth method, achieving highly efficient oil/water separation. After in situ growth, polydopamine (PDA) grows on the surface of PP fibers, and the addition of coupling agent (3-aminopropyltriethoxysilane, APTES) can improve the stability of the membrane in harsh environments (1 M HCl, 1 M NaOH, 1 M NaCl). The PDA/APTES@PP membrane could dramatically enhance the wetting (water contact angle ∼0, underwater oil contact angle∼154°) compare with the pristine PP melt-blown membrane (water contact angle ∼130°, underwater oil contact angle ∼0). Moreover, the filtration performance is at a high level (∼99%). The behaviors are comparable or even superior to the typical reported results in the references (such as the mussel-inspired superhydrophilic PVDF membrane and copper mesh). This method provides a facile route to prepared multi-functional membrane for highly efficiency oil/water separation and industrial oily wastewater remediation.
Collapse
Affiliation(s)
- Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | - Xiayun Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | | | - Yue Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; Ocean College, Minjiang University, Fuzhou, 350108, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan; Department of Fashion Design, Asia University, Taichung, 41354, Taiwan; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong, 266071, China; School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; Ocean College, Minjiang University, Fuzhou, 350108, China; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong, 266071, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
17
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
18
|
Han M, Dong T, Hou D, Yao J, Han L. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Tang M, Hou D, Ding C, Wang K, Wang D, Wang J. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133883. [PMID: 31446287 DOI: 10.1016/j.scitotenv.2019.133883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
As a promising thermally driven separation process, membrane distillation (MD) is capable of treating challenging wastewaters. However, the traditional hydrophobic membranes are vulnerable to fouling by non-polar contaminants owing to the strong hydrophobic-hydrophobic interactions. To address this problem, we developed novel anti-oil-fouling MD membranes in this study. The composite membranes with asymmetric wettability were fabricated through electrospinning polyacrylonitrile (PAN) fibrous coating on a hydrophobic polytetrafluoroethylene (PTFE) membrane, followed by hydrolyzing the PAN coating with ethylenediamine (EDA) and NaOH, respectively. These two composite membranes exhibited excellent underwater superoleophobicity, with the underwater oil contact angle >150°, which can be attributed to the fibrous and re-entrant surface structure and the optimized surface hydrophilicity of the electrospun coating. During MD process using saline and oily emulsion as feed, the composite membranes presented robust anti-oil-fouling performance, indicating by stable permeate flux and salt rejection. A novel oil-droplet adhesion force probe was introduced to quasi-quantitatively elucidate oil-membrane interaction and evaluate membrane fouling propensity, the force spectroscopy indicated that the fabricated composite membranes had fairly less attractive to crude oil compared with the PTFE membrane. Our research results suggest that the novel composite membranes with asymmetric wettability were competent to serve as an anti-oil-fouling MD membrane for desalinating challenging saline and oily wastewaters.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Deyin Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunli Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kunpeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dewu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interface Sci 2019; 273:102022. [PMID: 31494337 DOI: 10.1016/j.cis.2019.102022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettabilities has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface-energies, and interfacial hydration layers to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface-modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.
Collapse
|
22
|
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:45-66. [PMID: 31078929 DOI: 10.1016/j.jenvman.2019.04.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.
Collapse
Affiliation(s)
- Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea; Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Aftab Ahmed Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|