1
|
Zhong Q, Zeng J, Jia X. Self-Assembled Aggregated Structures of Natural Products for Oral Drug Delivery. Int J Nanomedicine 2024; 19:5931-5949. [PMID: 38887690 PMCID: PMC11182358 DOI: 10.2147/ijn.s467354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The self-assembling aggregated structures of natural products have gained significant interest due to their simple synthesis, lack of carrier-related toxicity, and excellent biological efficacy. However, the mechanisms of their assembly and their ability to traverse the gastrointestinal (GI) barrier remain unclear. This review summarizes various intermolecular non-covalent interactions and aggregated structures, drawing on research indexed in Web of Science from 2010 to 2024. Cheminformatics analysis of the self-assembly behaviors of natural small molecules and their supramolecular aggregates reveals assembly-favorable conditions, aiding drug formulation. Additionally, the review explores the self-assembly properties of macromolecules like polysaccharides, proteins, and exosomes, highlighting their role in drug delivery. Strategies to overcome gastrointestinal barriers and enhance drug bioavailability are also discussed. This work underscores the potential of natural products in oral drug delivery and offers insights for designing more effective drug delivery systems.
Collapse
Affiliation(s)
- Qiyuan Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
2
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
3
|
Gu X, Li Y, Qi C, Cai K. Biodegradable magnesium phosphates in biomedical applications. J Mater Chem B 2022; 10:2097-2112. [DOI: 10.1039/d1tb02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an essential element, magnesium is involved in a variety of physiological processes. Magnesium is the second most abundant cation in cells and the fourth most abundant cation in living...
Collapse
|
4
|
Hafez IT, Biskos G. New method for the protection and restoration of calcareous cultural heritage stones by polyelectrolytes and hydroxyapatite nanocrystals. J Colloid Interface Sci 2021; 604:604-615. [PMID: 34280758 DOI: 10.1016/j.jcis.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
We have investigated the feasibility of a new two-step protocol for the restoration of marbles. The process employs a polyelectrolyte multilayer film that enhances the chemical affinity between the treated stone and restorative material (hydroxyapatite nanocrystals), through functionalization, while at the same time it attributes an acid resistant property to the resulting system. Surface functionalization and material deposition is achieved through spraying; a simple and versatile application method suitable for objects of various sizes and geometries. Polyelectrolyte (polyethylenimine and polyacrylic acid) deposition was examined through Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM), and tested through contact angle, water absorption and dissolution experiments. The hydroxyapatite nanocrystals were studied by ATR-FTIR, z-potential, AFM and Scanning Electron Microscopy (SEM), and characterized via contact angle and color alteration measurements. Our results show that the polyelectrolyte multilayer was stable in an aqueous environment with increased acid resistance (up to 46% decrease in mass weight loss when compared with untreated samples) and decreased water absorption (up to 39%). Color measurements of the outer hydroxyapatite layer showed a minimal color alteration for one type of the tested substrates showing low color difference values (ΔΕ* < 5). The results suggest that the proposed method holds great potential for marble restoration as it attributes multi-functionality and is easy to apply.
Collapse
Affiliation(s)
- Iosif T Hafez
- Science and Technology in Archaeology and Culture Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus.
| | - George Biskos
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, the Netherlands
| |
Collapse
|
5
|
Gelli R, Tonelli M, Ridi F, Bonini M, Kwaambwa HM, Rennie AR, Baglioni P. Modifying the crystallization of amorphous magnesium-calcium phosphate nanoparticles with proteins from Moringa oleifera seeds. J Colloid Interface Sci 2021; 589:367-377. [DOI: 10.1016/j.jcis.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/10/2023]
|
6
|
Gelli R, Salvestrini S, Ridi F. Effect of Biologically-Relevant Molecules on the Physico-Chemical Properties of Amorphous Magnesium-Calcium Phosphate Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2872-2878. [PMID: 33653453 DOI: 10.1166/jnn.2021.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recently-discovered endogenous formation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in human distal small intestine occurs in a complex environment, which is rich in biologically-relevant molecules and macromolecules that can shape the properties and the stability of these inorganic particles. In this work, we selected as case studies four diverse molecules, which have different properties and are representative of intestinal luminal components, namely butyric acid, lactose, gluten and peptidoglycan. We prepared AMCPs in the presence of these four additives and we investigated their effect on the features of the particles in terms of morphology, porosity, chemical nature and incorporation/adsorption. The combined use of electron microscopy, infrared spectroscopy and thermal analysis showed that while the morphology and microstructure of the particles do not depend on the type of additive present during the synthesis, AMCPs are able to incorporate a significant amount of peptidoglycan, similarly to the process in which they are involved in vivo.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Serena Salvestrini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Gelli R, Martini F, Geppi M, Borsacchi S, Ridi F, Baglioni P. Exploring the interplay of mucin with biologically-relevant amorphous magnesium-calcium phosphate nanoparticles. J Colloid Interface Sci 2021; 594:802-811. [PMID: 33794402 DOI: 10.1016/j.jcis.2021.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR-ICCOM Pisa, via G. Moruzzi 1, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Gelli R, Di Pompo G, Graziani G, Avnet S, Baldini N, Baglioni P, Ridi F. Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements. ACS Biomater Sci Eng 2020; 6:5538-5548. [PMID: 33320576 PMCID: PMC8011797 DOI: 10.1021/acsbiomaterials.0c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
the framework of new materials for orthopedic applications,
Magnesium Phosphate-based Cements (MPCs) are currently the focus of
active research in biomedicine, given their promising features; in
this field, the loading of MPCs with active molecules to be released
in the proximity of newly forming bone could represent an innovative
approach to enhance the in vivo performances of the biomaterial. In
this work, we describe the preparation and characterization of MPCs
containing citrate, an ion naturally present in bone which presents
beneficial effects when released in the proximity of newly forming
bone tissue. The cements were characterized in terms of handling properties,
setting time, mechanical properties, crystallinity, and microstructure,
so as to unravel the effect of citrate concentration on the features
of the material. Upon incubation in aqueous media, we demonstrated
that citrate could be successfully released from the cements, while
contributing to the alkalinization of the surroundings. The cytotoxicity
of the materials toward human fibroblasts was also tested, revealing
the importance of a fine modulation of released citrate to guarantee
the biocompatibility of the material.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Gemma Di Pompo
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology (NaBi), IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Sofia Avnet
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Nicola Baldini
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|