1
|
Liu W, Yu H, Yang S, Song Z, Chen X, Zhang X. Constructing surface oxygen defects at CuO-Co 3O 4 interface to boost toluene oxidation over CuO/Co 3O 4 catalysts. ENVIRONMENTAL RESEARCH 2024; 248:118411. [PMID: 38316382 DOI: 10.1016/j.envres.2024.118411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
As a typical heterogeneous catalytic process, the catalytic combustion of toluene over Co3O4-based catalysts is strongly depends on the surface properties of catalysts, especially the concentration of surface oxygen defects. Here, a novel way was proposed to construct chemically bonded CuO-Co3O4 interface by chemical deposition of CuO onto Co3O4 nanoflowers. The interfacial refinement effect between CuO and Co3O4 support disrupted the ordered atomic arrangement and created countless unsaturated coordination sites at CuO-Co3O4 interface, inducing a significant generation of surface oxygen defects. Surface-rich oxygen vacancies enhanced the capacity of 20%CuO/Co3O4-R to adsorb and activate oxygen species. Benefiting from this, 90 % toluene conversion was reached at 228 °C over 20%CuO/Co3O4-R, which was much lower than that over 20%CuO/Co3O4-S prepared by impregnation method and CuO/Co3O4-mix obtained by mechanically mixing way. In-situ DRIFTS analysis revealed that toluene could be directly decomposed into benzaldehyde at the highly defective CuO-Co3O4 interface, leading to toluene oxidation following the path of toluene → benzaldehyde → benzoate → maleic anhydride → water and carbon dioxide over 20%CuO/Co3O4-R, which was significantly different from decomposition mechanism over 20%CuO/Co3O4-S. Additionally, 20%CuO/Co3O4-R displayed terrific recyclability and outstanding stability, showing good application potential.
Collapse
Affiliation(s)
- Wei Liu
- College of science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Huiqiong Yu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuang Yang
- College of science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xi Chen
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Xuejun Zhang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| |
Collapse
|
2
|
Wang Z, Li T, Wang Q. Plasma-Engineered CeO x Nanosheet Array with Nitrogen-Doping and Porous Architecture for Efficient Electrocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:185. [PMID: 38251149 PMCID: PMC10821299 DOI: 10.3390/nano14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Surface engineering has been proved efficient and universally applicable in improving the performance of CeO2 in various fields. However, previous approaches have typically required high-temperature calcination or tedious procedures, which makes discovery of a moderate and facile modification approach for CeO2 an attractive subject. In this paper, porous CeO2 nanosheets with effective nitrogen-doping were synthesized via a low-temperature NH3/Ar plasma treatment and exhibited boosted hydrogen evolution reaction performance with low overpotential (65 mV) and long-term stability. The mechanism of the elevated performance was investigated by introducing Ar-plasma-treated CeO2 with no nitrogen-doping as the control group, which revealed the dominant role of nitrogen-doping by providing abundant active sites and improving charge transfer characteristics. This work illuminates further investigations into the surface engineering methodologies boosted by plasma and the relative mechanism of the structure-activity relationship.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.W.); (T.L.)
| |
Collapse
|
3
|
Zhang R, Chen Q, Hu YT, Yang L, Chen Z, Wang CW, Qin YH. Highly Active and Water-Resistant Cu-Doped OMS-2 Catalysts for CO Oxidation: The Importance of the OMS-2 Synthesis Method and Cu Doping. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58476-58486. [PMID: 38062933 DOI: 10.1021/acsami.3c14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porous cryptomelane-type Mn oxide (OMS-2) has an outstanding redox property, making it a highly desirable substitute for noble metal catalysts for CO oxidation, but its catalytic activity still needs to be improved, especially in the presence of water. Given the strong structure-performance correlation of OMS-2 for oxidation reactions, herein, OMS-2 is synthesized by solid state (OMS-2S), reflux (OMS-2R), and hydrothermal (OMS-2H) methods, aiming to improve its CO oxidation performance through manipulating synthesis parameters to tailor its particle size, morphology, and crystallinity. Characterization shows that OMS-2S has the highest CO oxidation activity in the absence of water due to its low crystallinity, high specific surface area, large oxygen vacancy content, and good redox property, but the presence of water can greatly reduce its CO oxidation activity. Doping Cu into an OMS-2 can not only improve its CO oxidation activity but also greatly improve its water tolerance. The Cu-doped OMS-2S catalyst with ∼4 wt % Cu can achieve a T90 of 49 °C (1% CO/10% O2/N2 and WHSV = 60,000 mL·g-1·h-1), ranking among the lowest reported T90 values for Mn oxide-based CO oxidation catalysts, and it can maintain nearly 100% CO conversion in the presence of 5 vol % water for over 50 h. In situ DRIFTs characterization indicates that the good water resistance of Cu-doped OMS-2S can be attributed to the significantly suppressed surface hydroxyl group generation because of Cu doping. This work demonstrates the importance of the synthesis method and Cu doping in determining the CO oxidation activity and water resistance of OMS-2 and will provide guidance for synthesizing highly active and water-resistant CO oxidation catalysts.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun-Tao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cun-Wen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan-Hang Qin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Joint Laboratory of Catalytic Materials and Engineering, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Chen L, Liu F, Li X, Tao Q, Huang Z, Zuo Q, Chen Y, Li T, Fu M, Ye D. Surface adsorbed and lattice oxygen activated by the CeO 2/Co 3O 4 interface for enhancive catalytic soot combustion: Experimental and theoretical investigations. J Colloid Interface Sci 2023; 638:109-122. [PMID: 36736113 DOI: 10.1016/j.jcis.2023.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Metal oxide-oxide interface on supported catalyst has been rarely studied due to the complex interfacial structure and synthetic challenge. Herein, different Ag-supported CeO2/Co3O4 samples with various covered-state of CeO2 were prepared for catalytic soot oxidation. In comparison, catalytic activity was significantly improved by grafting CeO2 on Co3O4, in which the best performing Ag/CoCe-2 exhibited remarkable catalytic performance towards soot oxidation with a T50 of 290.5 ℃ under 10 % O2/N2. Catalyst characterization investigated by Scanning Electron Microscope (SEM), quasi in-situ X-ray Photoelectron Spectroscopy (XPS), in-situ Raman, etc. revealed that this outstanding promotion in catalytic activity can be principally ascribed to the formation of the CeO2/Co3O4 interface. An appropriate CeO2 dosage maximized the contact and interaction between Co3O4 and CeO2, resulting in the largest CeO2/Co3O4 interface featured with abundant generated superoxide species and activated surface lattice oxygen. Density functional theory (DFT) calculations were also carried out for the oxygen vacancy formation energy, Gibbs free energy, etc. In presence of the CeO2/Co3O4 interface, a charge density redistribution around the adsorbed reactants at oxygen vacancies could be formed, owing to the efficient charge transfer enhanced by the electron-appealing effect. The change in electronic structure favored reducing the oxygen vacancy formation energy and boosting the lattice oxygen activation induced by the hybridized Co-O-Ce bonds, finally lowering the adsorption and activation barriers for reactive species and accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Longwen Chen
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Feng Liu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Xiaoqian Li
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Qiuzhen Tao
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Zhaoqin Huang
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Qi Zuo
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Yanwu Chen
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China.
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Ji Y, Liu S, Song S, Xu W, Li L, Zhang Y, Chen W, Li H, Jiang J, Zhu T, Li Z, Zhong Z, Wang D, Xu G, Su F. Negatively Charged Single-Atom Pt Catalyst Shows Superior SO 2 Tolerance in NO x Reduction by CO. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing100048, China
| | - Shaomian Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing102249, China
| | - Wenqing Xu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Liang Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer, 161006Heilongjiang Province, China
| | - Yu Zhang
- Institute of Education and Talent, CNPC Managers Training Institute, Beijing100096, China
| | - Wenxing Chen
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Huifang Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Jingang Jiang
- Department of Chemistry, East China Normal University, Shanghai200062, China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing102249, China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou515063, China
- Technion-Israel Institute of Technology (IIT), Haifa32000, Israel
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Guangwen Xu
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| |
Collapse
|
6
|
Song L, Liu Y, Zhang S, Zhou C, Ma K, Yue H. Tuning Oxygen Vacancies of the Co 3O 4 Catalyst through an Ethanol-Assisted Hydrothermal Method for Low-Temperature CO Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanhong Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shihui Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changan Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
7
|
Wang T, Fu Q, Wang S, Xing D, Bai Y, Wang S. Enhanced water-resistance of Mn-based catalysts for ambient temperature ozone elimination: Roles of N and Pd modification. CHEMOSPHERE 2022; 303:135014. [PMID: 35598789 DOI: 10.1016/j.chemosphere.2022.135014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Cryptomelane-type MnO2 catalysts own excellent ozone (O3) decomposition performance. However, it is urgent to improve their long-term stability at ambient temperature, especially under the presence of water. In the present study, a modification strategy was proposed by N-doping and the successive Pd introduction. The N-doping of MnO2 by NH4Cl (NH4-MnO2) can increase its activity for O3 decomposition. And almost 100% O3 decomposition was achieved within 24 h under water-free atmosphere at ambient temperature (25 °C). Successive Pd addition further promoted the water-resistance of NH4-MnO2 catalyst under high humidity (RH > 90%). In combination with detailed characterizations, it indicated that the enhancements on stability and water-resistance were attributed to synergistic effect among acid sites, oxygen defects and Pd clusters. Finally, the decomposition mechanism of gaseous O3 was proposed based on three decisive active sites above.
Collapse
Affiliation(s)
- Ting Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qijun Fu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sheng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
| | - Defeng Xing
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuting Bai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Shudong Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
8
|
Wang Q, Zhong T, Wang Z. Plasma-Engineered N-CoO x Nanowire Array as a Bifunctional Electrode for Supercapacitor and Electrocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172984. [PMID: 36080021 PMCID: PMC9457654 DOI: 10.3390/nano12172984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/02/2023]
Abstract
Surface engineering has achieved great success in enhancing the electrochemical activity of Co3O4. However, the previously reported methods always involve high-temperature calcination processes which are prone to induce agglomeration of the nanostructure, leading to the attenuation of performance. In this work, Co3O4 nanowires were successfully modified by a low-temperature NH3/Ar plasma treatment, which simultaneously generated a porous structure and efficient nitrogen doping with no agglomeration. The modified N-CoOx electrode exhibited remarkable performance due to the synergistic effect of the porous structure and nitrogen doping, which provided additional active sites for faradic transitions and improved charge transfer characteristics. The electrode achieved excellent supercapacitive performance with a maximum specific capacitance of 2862 mF/cm2 and superior cycling retention. Furthermore, the assembled asymmetric supercapacitor (N-CoOx//AC) device exhibited an extended potential window of 1.5 V, a maximum specific energy of 80.5 Wh/kg, and a maximum specific power of 25.4 kW/kg with 91% capacity retention after 5000 charge-discharge cycles. Moreover, boosted hydrogen evolution reaction performance was also confirmed by the low overpotential (126 mV) and long-term stability. This work enlightens prospective research on the plasma-enhanced surface engineering strategies.
Collapse
|
9
|
Wang P, Ma X, Hao X, Tang B, Abudula A, Guan G. Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2078555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Peifen Wang
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Xuli Ma
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Bing Tang
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou, P.R. China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Japan
| |
Collapse
|
10
|
Sun Y, Zhou X, Xin T, Bai G, Wang Y, Li X, Mufeng X. Effect of Sn on the CO Catalytic Activity and Water Resistance of Cu-Mn Catalyst. ACS OMEGA 2022; 7:12390-12400. [PMID: 35449903 PMCID: PMC9016806 DOI: 10.1021/acsomega.2c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In view of the problem that excessive CO in underground coal mine space can easily lead to a large number of casualties, Cu-Mn-Sn water-resistant eliminators with different Sn contents were prepared by a co-precipitation method. The activity of the eliminators was analyzed by using an independently developed activity testing platform, N2 adsorption and desorption, XRD, SEM, XPS, and FTIR to characterize the activity factors and water resistance. The results showed that Cu-Mn-Sn-20 with 20% Sn content had the highest activity, which was 3.23 times that of Cu-Mn. The main reason for the increased activity is that Cu-Mn-Sn-20 doped with 20% Sn provides a larger specific surface area and more active sites and reduces the pore size, so that the crystallization degree of Cu1.4Mn1.5O4 is lower. The doping of 20% Sn reduces the absorption of lattice water and coordination water and improves the water resistance of Cu-Mn-Sn-type eliminators. The Cu-Mn-Sn-20 water-resistant eliminator is used to quickly eliminate CO in underground coal mines, which is of great significance for the rescue workers in underground coal mines after disasters.
Collapse
Affiliation(s)
- Yashengnan Sun
- College
of Safety Science and Engineering, Liaoning
Technical University, Fuxin 123000, China
- Key
Laboratory of Mine Thermodynamic Disaster and Control of Ministry
of Education, Huludao 125105 China
| | - Xihua Zhou
- College
of Safety Science and Engineering, Liaoning
Technical University, Fuxin 123000, China
- Key
Laboratory of Mine Thermodynamic Disaster and Control of Ministry
of Education, Huludao 125105 China
| | - Tianyu Xin
- Institute
of Mechanics and Engineering, Liaoning Technical
University, Fuxin 123000 China
| | - Gang Bai
- College
of Safety Science and Engineering, Liaoning
Technical University, Fuxin 123000, China
- Key
Laboratory of Mine Thermodynamic Disaster and Control of Ministry
of Education, Huludao 125105 China
| | - Yumeng Wang
- College
of Safety Science and Engineering, Liaoning
Technical University, Fuxin 123000, China
- Key
Laboratory of Mine Thermodynamic Disaster and Control of Ministry
of Education, Huludao 125105 China
| | - Xianlin Li
- College
of Safety Science and Engineering, Liaoning
Technical University, Fuxin 123000, China
- Key
Laboratory of Mine Thermodynamic Disaster and Control of Ministry
of Education, Huludao 125105 China
| | - Xiao Mufeng
- College
of Architecture and Transportation, Liaoning
Technical University, Fuxin 123000 China
| |
Collapse
|
11
|
Guo Z, Wu C. Low Temperature CO Oxidation over Co3O4 Monolithic Catalysts on a Series of Metal Foams. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842108005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Facet Effects of α-Fe2O3 with Different Morphologies on the Thermal Decomposition of Ammonium Erchlorate. Catal Letters 2022. [DOI: 10.1007/s10562-021-03902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Zheng X, Zhang C, Mao D, Mao H, Yu J. Fabrication of MnCoOx composite oxides for catalytic CO oxidation via a solid-phase synthesis: The significant effect of manganese precursor. NEW J CHEM 2022. [DOI: 10.1039/d1nj06026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Mn3Co16Ox composite oxides catalysts were fabricated via a solid-phase synthesis using different manganese precursors (namely as manganese acetate (A), nitrate (N), and sulfate (S)). It has been...
Collapse
|
14
|
Chen L, Zhang J, Wang J, Chen P, Fu M, Wu J, Ye D. Insight into the Improvement Effect of Nitrogen Dopant in Ag/Co 3O 4 Nanocubes for Soot Oxidation: Experimental and Theoretical Studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126604. [PMID: 34271450 DOI: 10.1016/j.jhazmat.2021.126604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Different doping amounts of N-doped Ag/Co3O4 nanocubes were synthesized for the first time for catalytic soot oxidation. The N-doped sample exhibited remarkably improved catalytic activity, of which the maximum decrease in temperature for 90% soot conversion was almost 40 ℃. Characterization results analyzed by TEM, XPS, EPR, H2-TPR, O2-TPD, etc. revealed that the incorporation of N atoms can alter the electronic structure, leading to the generation of more oxygen vacancies and enhancement of lattice oxygen mobility. Meanwhile, larger surface area, rugged morphology and promoted reducibility also contribute to the performance improvement. DFT calculations on the differential charge density, Gibbs free energy, etc. were performed to investigate the intrinsic reasons on an atomic level. Due to the relatively higher electronegativity, N dopant could be an electron-appealing center to promote efficient electron transfer, resulting in the redistribution of charge density and formation of conductive Co-N bonds. This variation in electronic structure favors lowering the formation energy of oxygen vacancies and facilitating the activation of the lattice oxygen originated from the highly hybridized Co-O bonds, which ultimately reduces the activation barriers for reactants/intermediates and accelerates the reaction kinetics. This study evidenced that N doping could be an effective strategy to promote catalytic soot oxidation.
Collapse
Affiliation(s)
- Longwen Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China.
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China
| | - Jing Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou 510640, China.
| |
Collapse
|
15
|
Chen J, Tang H, Huang M, Yan Y, Zhang J, Liu H, Zhang J, Wang G, Wang R. Surface Lattice Oxygen Activation by Nitrogen-Doped Manganese Dioxide as an Effective and Longevous Catalyst for Indoor HCHO Decomposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26960-26970. [PMID: 34077203 DOI: 10.1021/acsami.1c04369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxygen vacancy plays an important role in catalytic oxidation of formaldehyde (HCHO), but the inherent drawback of its thermodynamic instability causes the deactivation of catalysts. Hence, improving the thermodynamic stability of oxygen vacancy is a crux during HCHO oxidation. Here, a novel and simple nitrogen doping of MnO2/C catalyst is designed for HCHO oxidation at room temperature. The surface lattice oxygen of MnO2 will be activated by nitrogen-doping, which acts as active sites for HCHO oxidation and solves the thermodynamic instability issue of oxygen vacancy. Furthermore, carbon is doped with nitrogen to promote electron transfer and accelerate the HCHO oxidation process. Therefore, the catalytic activity and stability of the catalyst can be significantly promoted, which can completely remove ∼1 ppm HCHO in the tank within 3 h, and remains highly active after 5 cycles at room temperature (RH = 55%). In addition, the excellent removal performance over the prepared catalyst is also attributed to abundant surface oxygen species, amorphous crystallinity, and low reduction temperature. In situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and density functional theory (DFT) calculations reveal the reaction mechanism of HCHO. This strategy provides crucial enlightenment for designing novel Mn-based catalysts for application in the HCHO oxidation field.
Collapse
Affiliation(s)
- Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
| | - Haiyan Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Honggang Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
| |
Collapse
|
16
|
Kong F, Zhang H, Chai H, Liu B, Cao Y. Insight into the Crystal Structures and Surface Property of Manganese Oxide on CO Catalytic Oxidation Performance. Inorg Chem 2021; 60:5812-5820. [PMID: 33783206 DOI: 10.1021/acs.inorgchem.1c00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-MnO2 nanorods and flower-like γ-MnO2 microspheres were synthesized by facile and mild methods to illustrate the effect of crystal structures and surface features on catalytic performance with the help of carbon monoxide (CO) oxidation. It is revealed that the flower-like γ-MnO2 microspheres possess better catalytic oxidation performance (CO complete conversion temperature at 120 °C and long-time stability for 50 h) than α-MnO2 nanorods, which can be attributed to the obvious differences in the chemical bonds and linking modes of [MnO6] octahedra due to the different crystal structures. γ-MnO2 possesses lower Mn-O bond strength that enables γ-MnO2 to present a large amount of surface lattice oxygen and superior oxygen mobility. The disordered random intergrowth tunnel structure can adsorb effectively CO molecules, resulting in excellent catalytic performance for CO catalytic oxidation. In addition, the MnO2 catalyst probably occurred via a Mars-van Krevelen mechanism for CO oxidation. This work provides an insight into the effect of crystal structures and surface property of manganese oxide on catalytic oxidation performance, which presents help for the future design of promising catalysts with excellent catalytic performance.
Collapse
Affiliation(s)
- Fanlin Kong
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Hongyu Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Hui Chai
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Baolin Liu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| |
Collapse
|
17
|
He W, Huang L, Liu C, Wang S, Long Z, Hu F, Sun Z. Interfacial sites in platinum-hydroxide-cobalt hybrid nanostructures for promoting CO oxidation activity. NANOSCALE 2021; 13:2593-2600. [PMID: 33480944 DOI: 10.1039/d0nr07880h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-oxide/hydroxide hybrid nanostructures provide an excellent platform to study the interfacial effects on tailoring the catalysis of metal catalysts. Herein, a hybrid nanostructure of Pt@Co(OH)2 supported on SiO2 was synthesized by incipient wetness impregnation of Co(OH)2 with the aid of H2O2 and successive urea-assisted deposition-precipitation of platinum nanoparticles. The Fenton-like reaction between Co2+ and H2O2 during the impregnation process facilitates the formation of active interfacial sites. This hybrid nanostructure exhibits much higher catalytic activity towards CO oxidation than Pt/SiO2 nanoparticles with a similar Pt loading and particle size. In situ diffuse reflectance infrared Fourier transform spectroscopy was used to track the CO adsorption processes and to identify the reaction intermediates during CO oxidation. It shows that the OH species at the Pt-OH-Co interfacial sites could readily react with CO adsorbed on neighboring Pt to yield CO2 by forming *COOH intermediates and oxygen vacancies. Under the CO + O2 oxidation conditions, O2 molecules are activated by the oxygen vacancy and react with the CO molecules adsorbed on Pt to generate CO2, via forming the highly active *OOH intermediates as observed by DRIFTS.
Collapse
Affiliation(s)
- Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Chengyong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Siyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhixin Long
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
18
|
He K, Wang Q, Wei J. A Robust Cu Catalyst for Low-Temperature CO Oxidation in Flue Gas: Mitigating Deactivation via Co-Doping. Catal Letters 2021. [DOI: 10.1007/s10562-020-03471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Du X, Dong F, Tang Z, Zhang J. Precise design and synthesis of Pd/InO x@CoO x core-shell nanofibers for the highly efficient catalytic combustion of toluene. NANOSCALE 2020; 12:12133-12145. [PMID: 32484180 DOI: 10.1039/d0nr02334e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, Pd/InOx@CoOx core-shell nanofibers, CoOx@Pd/InOx core-shell nanofibers and Pd/InOx/CoOx nanofibers with different morphologies have been successfully synthesized for the catalytic combustion of toluene. Among them, the Pd/InOx@CoOx core-shell sample is novel and composed of Pd/InOx nanotube cores, CoOx nanocubes and CoOx nanoparticle shells derived from ZIF-67. On the contrary, the CoOx@Pd/InOx core-shell catalyst is assembled by CoOx nanocube cores and Pd/InOx nanotube shells. Finally, the Pd/InOx/CoOx nanofibers as references are synthesized by a method similar to the synthesis of the CoOx@Pd/InOx core-shell sample. Interestingly, the Pd/InOx@CoOx core-shell sample displayed the best activity for toluene oxidation with T90 = 253 °C, good thermal stability and good cyclic stability during three runs. Through some characterizations, it was verified that the Pd/InOx@CoOx core-shell sample exhibited the best performance for toluene oxidation reactions due to a larger specific surface area, higher reducibility, more abundant structural defects and oxygen vacancies, higher proportion of Pd0 and Co3+ species and higher lattice oxygen species than others. Simultaneously, the Pd/InOx@CoOx core-shell sample exhibited good thermal stability and cyclic stability, which might be due to the layer of the CoOx shell to protect the stability of the Pd nanoparticle core.
Collapse
Affiliation(s)
- Xuebi Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
| | | | | | | |
Collapse
|
20
|
Morphology-Controlled Fabrication of Co3O4 Catalysts and Performance Towards Low Temperature CO Oxidation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03249-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Liu B, Li Y, Wang K, Cao Y. The solid-state in situ construction of Cu 2O/CuO heterostructures with adjustable phase compositions to promote CO oxidation activity. CrystEngComm 2020. [DOI: 10.1039/d0ce01324b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cu2O/CuO heterojunctions were fabricated via in situ solid-state technology. Tuning the ratio of reactants enables optimization of the components of the Cu2O/CuO heterostructures and their catalytic activities for CO oxidation.
Collapse
Affiliation(s)
- Baolin Liu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| |
Collapse
|