1
|
Şimşek B, Ruhkopf J, Plachetka U, Rademacher N, Belete M, Lemme MC. Silver Nanoparticle-Assisted Electrochemically Exfoliated Graphene Inks Coated on PVA-Based Self-Healing Polymer Composites for Soft Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7838-7849. [PMID: 38295437 DOI: 10.1021/acsami.3c17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Smart sensors with self-healing capabilities have recently aroused increasing interest in applications in soft electronics. However, challenges remain in balancing the sensors' self-healing and compatibility between their sensing and substrate layers. This study evaluated several self-healing polymer substrates and graphene ink-based strain-sensing coatings. The optimum electrochemically exfoliated graphene (e-graphene)/silver nanoparticle-coated tannic acid (TA)/superabsorbent polymer/graphene oxide (GO) blended poly(vinyl alcohol) polymer composites exhibited improvements of 47.1 and 39.2%, respectively, for the healing efficiency in a substrate crack area and in the graphene-based sensing layer due to conductive layer adhesion. While TA was found to improve healing efficiency on the coating surface by forming hydrogen bonds between the sensing and polymer layers, GO healed the polymer surface due to its ability to form bonds in the polymer matrix. The superabsorbent polymer was found to absorb excess water in e-graphene dispersion due to its host-guest interaction, while also reducing the coating thickness.
Collapse
Affiliation(s)
- Barış Şimşek
- Department of Chemical Engineering, Çankırı Karatekin University, 18100 Çankırı, Turkey
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Jasper Ruhkopf
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Ulrich Plachetka
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Nico Rademacher
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Melkamu Belete
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Max C Lemme
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| |
Collapse
|
2
|
Kowalewska A, Majewska-Smolarek K. Synergistic Self-Healing Enhancement in Multifunctional Silicone Elastomers and Their Application in Smart Materials. Polymers (Basel) 2024; 16:487. [PMID: 38399865 PMCID: PMC10892785 DOI: 10.3390/polym16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. However, current silicone trends in chemistry and materials engineering are focused on new smart applications, including stretchable electronics, wearable stress sensors, protective coatings, and soft robotics. Such applications require a fresh approach to methods for increasing the durability and mechanical strength of polysiloxanes, including crosslinked systems. The introduction of self-healing options to silicones has been recognized as a promising alternative in this field, but only carefully designed multifunctional systems operating with several different self-healing mechanisms can truly address the demands placed on such valuable materials. In this review, we summarized the progress of research efforts dedicated to the synthesis and applications of self-healing hybrid materials through multi-component systems that enable the design of functional silicon-based polymers for smart applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
3
|
Chen L, Xu J, Zhu M, Zeng Z, Song Y, Zhang Y, Zhang X, Deng Y, Xiong R, Huang C. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. MATERIALS HORIZONS 2023; 10:4000-4032. [PMID: 37489089 DOI: 10.1039/d3mh00236e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.
Collapse
Affiliation(s)
- Long Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ziyuan Zeng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
4
|
Li C, Shi Y, Su H, Yang Y, Li W, Zhang T, Chen W, Lin R, Li Y, Liao L. Mechanically Robust and Recyclable Siloxane Elastomers Enabled by Adjustable Dynamic Polymer Networks for Electronic Skin. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Zhang Y, Zheng J, Ma W, Zhang X, Du Y, Li K, Liu Y, Yu G, Jia Y. Ultra-stretchable and ultra-low temperature self-healing polyurethane enabled by dual dynamic bonds strategy. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Zhang Y, Zheng J, Zhang X, Du Y, Li K, Liu Y, Yu G, Jia Y, Song S. Dual dynamic bonds self-healing polyurethane with superior mechanical properties over a wide temperature range. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ding S, Zhang J, Zhu G, Ren X, Zhou L, Luo Y. Rationally Constructed Surface Energy and Dynamic Hard Domains Balance Mechanical Strength and Self-Healing Efficiency of Energetic Linear Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8997-9008. [PMID: 34279105 DOI: 10.1021/acs.langmuir.1c00939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymeric materials that simultaneously possess excellent mechanical properties and high self-healing ability at room temperature, convenient healing, and facile fabrication are always a huge challenge. Herein, we report on surface-energy-driven self-healing energetic linear polyurethane elastomers (EPU) that were facilely fabricated by two-step methods to acquire high healing efficiency and mechanical properties. By constructing surface energy and dynamic hard domains, energetic linear polyurethane elastomers not only obtained high healing ability and mechanical properties at high or room temperature but also avoid the use of some assisted healing conditions and complex chemical structure design and decrease manufacturing difficulty. Based on the interfacial healing physical model, various trends of surface tension, radius, and depth of the crack bottom were calculated to analyze the healing mechanism. We propose that polyurethane elastomers with low junction density could generate excess surface energy resulting from damage and drive self-healing, and incorporating a small amount of disulfide bonds increases the slightly packed hard phase and decreases the healing energy barrier. This work may offer a novel strategy for improving mechanical tensile and healing ability in the field of self-healing material application.
Collapse
Affiliation(s)
- Shanjun Ding
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guocui Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Ren
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. J Colloid Interface Sci 2021; 599:360-369. [PMID: 33962197 DOI: 10.1016/j.jcis.2021.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
Self-healing conductive elastomers have been widely used in smart electronic devices, such as wearable sensors. However, nano fillers hinder the flow of polymer segments, which make the development of conductive elastomer with rapid repair and high ductility a challenge. In this work, thioctic acid (TA) was grafted onto amino-modified polysiloxane (PDMS-NH2) by dehydration condensation of amino group and carboxyl group. By introducing gold nanoparticles, a dynamic network based on S-Au interaction was constructed. The dynamic gold cross-linking could effectively dissipate the energy exerted by external force and improve the extensibility of conductive elastomer. In addition, S-Au interaction had a good optothermal effect, so that the elastomer rapidly healed under NIR irradiation, and the repair efficiency reached 92%. We further evaluated the performance of the conductive elastomer as a strain sensor. The sample could accurately monitor the bending of human joints and small muscle state changes. This kind of self-healable conductive elastomer based on dynamic S-Au interaction has great potential in the fields of interpersonal interaction and health monitoring.
Collapse
|
9
|
Liu Y, Zheng J, Zhang X, Du Y, Yu G, Li K, Jia Y, Zhang Y. Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties. RSC Adv 2021; 11:14665-14677. [PMID: 35423966 PMCID: PMC8698205 DOI: 10.1039/d1ra00944c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022] Open
Abstract
Self-healing efficiency and mechanical strength are always a pair of mechanical contradictions of a polymer. Herein, a series of novel mussel-inspired modified graphene oxide/polyurethane composites were successfully fabricated via rational molecular design and introducing hyperbranched polymer-modified graphene oxide. The composites exhibit outstanding self-healing performances with a self-healing efficiency of 87.9%. Especially, their self-healing properties possess exceptional water-insensitivity, which presents a high self-healing efficiency of 92.5% under 60 °C water for 2 h and 74.6% under 25 °C water for 6 h. Furthermore, the tensile strength of the composites increased by 107.7% with a high strain of 2170%. In addition, the composites show a remarkable recovery capability of 76.3% and 83.7% under tensile and compression loading, respectively, after 20 cycles. This strategy shows prominent application potential in high-performance solid propellants, protective coating, electronic skin, soft sensors and other water-insensitive devices. We successfully modified graphene oxide with amino-terminated hyperbranched polyamide(MGO), and obtained novel mussel-inspired MGO/polyurethane composites with outstanding self-healing and mechanical performances via rational molecular design.![]()
Collapse
Affiliation(s)
- Yahao Liu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Jian Zheng
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Xiao Zhang
- Engineering University of PAP Xi'an 710086 China
| | - Yongqiang Du
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Guibo Yu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Ke Li
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering Wuhan 430033 China
| | - Yunfei Jia
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Yu Zhang
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| |
Collapse
|
10
|
Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. J Colloid Interface Sci 2021; 593:105-115. [PMID: 33744521 DOI: 10.1016/j.jcis.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022]
Abstract
Although lots of methods have been developed for self-healing materials, it remains a formidable challenge to achieve a thermosetting material with water-insensitive and self-healing properties at room temperature. Nature always provides intelligent strategies for developing advanced materials with superior properties. Herein, a novel self-healable polyurea-urethane was rationally designed by combining mussel adhesive protein-mimetic structure and dynamic aromatic disulfide bonds. It achieves high self-healing efficiency of 98.4% at room temperature for only 6 h and 90% at 60℃ for only 30 min without any external stimuli. Impressively, this self-healing capability possesses exceptional water-resistance, which presents high self-healing efficiency of 98.1% for 2 h and 82.1% for 6 h in 60℃ and 25℃ water, respectively. Besides, the designed polyurea-urethane exhibits excellent mechanical properties such as high elongation at break of 2400%, notch-insensitive stretching elongation of 1500% and notable recovery capability. This strategy shows promising application potential in solid propellants, protective coating, electronic skin, soft sensors and other water-resistant devices.
Collapse
|
11
|
Khatib M, Zohar O, Haick H. Self-Healing Soft Sensors: From Material Design to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004190. [PMID: 33533124 DOI: 10.1002/adma.202004190] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Indexed: 05/20/2023]
Abstract
The demand for interfacing electronics in everyday life is rapidly accelerating, with an ever-growing number of applications in wearable electronics and electronic skins for robotics, prosthetics, and other purposes. Soft sensors that efficiently detect environmental or biological/physiological stimuli have been extensively studied due to their essential role in creating the necessary interfaces for these applications. Unfortunately, due to their natural softness, these sensors are highly sensitive to structural and mechanical damage. The integration of natural properties, such as self-healing, into these systems should improve their reliability, stability, and long-term performance. Recent studies on self-healing soft sensors for varying chemical and physical parameters are herein reviewed. In addition, contemporary studies on material design, device structure, and fabrication methods for sensing platforms are also discussed. Finally, the main challenges and future perspectives in this field are introduced, while focusing on the most promising examples and directions already reported.
Collapse
Affiliation(s)
- Muhammad Khatib
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orr Zohar
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hossam Haick
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
12
|
Shi X, Zhang K, Zhao L, Jiang B, Huang Y. Robust, Self-Healable Siloxane Elastomers Constructed by Multiple Dynamic Bonds for Stretchable Electronics and Microsystems. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiangrong Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liwei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
14
|
Self-healing Polyurethane Elastomer Based on Molecular Design: Combination of Reversible Hydrogen Bonds and High Segment Mobility. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01697-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Rahman MM. Polyurethane/Zinc Oxide (PU/ZnO) Composite-Synthesis, Protective Propertyand Application. Polymers (Basel) 2020; 12:polym12071535. [PMID: 32664589 PMCID: PMC7407999 DOI: 10.3390/polym12071535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
A polyurethane (PU) is a multifunctional polymer prepared by using more than two types of monomers. The unique properties of PU come from monomers, thus broadening the applicability of PU in many different sectors. The properties can be further improved by using many nanoparticles. Different metal oxides as nanoparticles are also widely used in PU materials. ZnO is a widely used inorganic metal oxide nanoparticle for improving polymer properties. In this review article, the techniques to prepare a PU/ZnO composite are reviewed; the key protective properties, such as adhesive strength and self-healing, and applications of PU/ZnO composites are also highlighted. This review also highlights the PU/ZnO composite's current challenges and future prospects, which will help to broaden the composite practical application by preparing environmentally friendly composites.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman
- Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
Fan W, Jin Y, Shi L, Du W, Zhou R. Transparent, eco-friendly, super-tough “living” supramolecular polymers with fast room-temperature self-healability and reprocessability under visible light. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Tian M, Zuo H, Wang J, Ning N, Yu B, Zhang L. A silicone elastomer with optimized and tunable mechanical strength and self-healing ability based on strong and weak coordination bonds. Polym Chem 2020. [DOI: 10.1039/d0py00434k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A self-healable silicone elastomer is fabricated based on the synergistic effect of strong and weak coordination bonds.
Collapse
Affiliation(s)
- Ming Tian
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Hongli Zuo
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jie Wang
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Nanying Ning
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Bing Yu
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Liqun Zhang
- State Key Laboratory of Organic Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
18
|
Macedo R. Lima G, Orozco F, Picchioni F, Moreno-Villoslada I, Pucci A, Bose RK, Araya-Hermosilla R. Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds. Polymers (Basel) 2019; 11:E1885. [PMID: 31739616 PMCID: PMC6918341 DOI: 10.3390/polym11111885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
In this work, we prepared electrically conductive self-healing nanocomposites. The material consists of multi-walled carbon nanotubes (MWCNT) that are dispersed into thermally reversible crosslinked polyketones. The reversible nature is based on both covalent (Diels-Alder) and non-covalent (hydrogen bonding) interactions. The design allowed for us to tune the thermomechanical properties of the system by changing the fractions of filler, and diene-dienophile and hydroxyl groups. The nanocomposites show up to 1 × 104 S/m electrical conductivity, reaching temperatures between 120 and 150 °C under 20-50 V. The self-healing effect, induced by electricity was qualitatively demonstrated as microcracks were repaired. As pointed out by electron microscopy, samples that were already healed by electricity showed a better dispersion of MWCNT within the polymer. These features point toward prolonging the service life of polymer nanocomposites, improving the product performance, making it effectively stronger and more reliable.
Collapse
Affiliation(s)
- Guilherme Macedo R. Lima
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands (F.O.); (F.P.)
| | - Felipe Orozco
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands (F.O.); (F.P.)
| | - Francesco Picchioni
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands (F.O.); (F.P.)
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
| | - Ranjita K. Bose
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands (F.O.); (F.P.)
| | - Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile
| |
Collapse
|